Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (11): 2853-2865.doi: 10.3724/SP.J.1006.2022.11099

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Evaluation on concentration and nutrition of micro-elements in wheat grains in major wheat production regions of China

CHU Hong-Xin1(), MU Wen-Yan1, DANG Hai-Yan1, WANG Tao1, SUN Rui-Qing1, HOU Sai-Bin1, HUANG Ting-Miao1,3, HUANG Qian-Nan1,4, SHI Mei1, WANG Zhao-Hui1,2,*()   

  1. 1College of Natural Resources and Environment, Northwest A&F University / Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi, China
    2State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China
    3College of Agriculture, Shanxi Agricultural University, Taigu 030801, Shanxi, China
    4Yili Institute of Agricultural Science, Yining 835000, Xinjiang, China
  • Received:2021-11-12 Accepted:2022-02-25 Online:2022-11-12 Published:2022-03-16
  • Contact: WANG Zhao-Hui E-mail:1447993659@qq.com;w-zhaohui@263.net
  • Supported by:
    The China Agriculture Research System of MOF and MARA(CARS-3);The National Key Research and Development Program of China(2018YFD0200400)

Abstract:

Wheat is a kind of staple food crop, and an important source for carbohydrates and microelement for human health. Therefore, it is of great significance to clarify the micronutrient concentration and nutritional status of wheat grain in the major wheat production regions in China, for the purpose of optimizing wheat micronutrient management and maintaining human health. Totally, 1112 wheat and soil samples were collected from 17 major wheat production provinces in China during 2016 to 2020. Microelement concentrations of the samples were determined and nutritional status was evaluated by comparison with the acceptable daily intake value (ADI) according to the human micronutrient intake standard of Chinese Nutrition Society and health risk assessment method of United States Environmental Protection Agency, as well as the dietary habit of Chinese residents. Results showed that the average grain iron (Fe) concentration of wheat in China was 43.8 mg kg-1 when 72.9% of the samples of Fe concentration was under the lower Fe limit of 50 mg kg-1, and all the samples were under the upper limit of 140 mg kg-1. The average grain manganese (Mn) concentration was 43.0 mg kg-1 when only 4.1% of samples were under the lower limit of 22 mg kg-1 and 23.7% of samples were above the upper limit of 50 mg kg-1. The average grain copper (Cu) concentration was 4.6 mg kg-1 when 7.6% of samples were under the lower limit of 3 mg kg-1 and no sample was above the upper limit of 10 mg kg-1. The average grain zinc (Zn) concentration was 31.4 mg kg-1 when 85.8% of samples were under the lower limit of 40 mg kg-1 and only 4.1% was above the upper limit of 50 mg kg-1. The average grain boron (B) concentration was 1.2 mg kg-1 when 29.2% of samples was under the lower limit of 0.8 mg kg-1 and no sample was above the upper limit of 10 mg kg-1. The average grain molybdenum (Mo) concentration was 0.5 mg kg-1 when 18.8% of samples were under the lower limit of 0.2 mg kg-1 and only 0.4% of samples was above the upper limit of 2 mg kg-1. There were regional variations in the contents of wheat grain micronutrient in major wheat production regions in China, among which the contents of Fe and Zn were generally low in most regions, and the contents of B and Mo were insufficient in some areas, while the content of Mn was high, and the content of Cu was basically in the recommended concentration ranges.

Key words: wheat, microelements, iron concentration, zinc concentration, nutrition

Fig. 1

Frequency and regional distribution of wheat grain Fe concentration in major wheat production regions of China, sampled from 2016 to 2020"

Table 1

Physical and chemical properties of top 0-20 cm soil in major wheat production regions in China"

区域
Region
pH 有机质
Organic matter
(g kg-1)
全氮
Total N
(g kg-1)
铵态氮
Ammonium N
(mg kg-1)
硝态氮
Nitrate N
(mg kg-1)
有效磷
Available P
(mg kg-1)
速效钾
Available K
(mg kg-1)
北部麦区NWR 8.3±0.4 a 19.4±6.0 c 1.1±0.3 d 3.2±2.0 cd 29.0±44.4 a 30.9±23.1 b 189.4±96.6 b
东北麦区NEWR 6.5±0.4 d 37.7±9.9 a 1.9±0.4 a 5.4±1.8 bc 12.1±12.5 b 52.0±18.2 a 249.2±67.7 a
黄淮麦区HWR 7.5±3.3 b 20.7±7.3 c 1.2±0.4 c 5.9±9.8 b 25.5±28.7 a 35.2±25.7 b 195.3±113.4 b
西北麦区NWWR 8.3±0.3 a 14.8±3.8 d 0.9±0.2 e 2.3±1.7 d 27.8±64.6 a 23.2±17.2 d 192.3±69.5 b
西南麦区SWWR 7.1±0.9 c 24.6±13.0 b 1.4±0.6 b 5.8±5.2 b 14.4±16.9 b 24.6±27.7 cd 145.2±72.1 c
新疆麦区XWR 8.4±0.5 a 17.8±4.2 cd 1.0±0.3 de 2.7±1.8 cd 12.3±8.1 b 37.4±27.7 b 164.2±88.3 bc
长江中下游麦区YRWC 6.6±1.0 d 25.3±8.9 b 1.4±0.5 b 10.0±11.2 a 17.4±20.6 b 29.3±20.1 bc 163.1±71.6 c

Table 2

Micro-element contents of top 0-20 cm soil in major wheat production regions in China (mg kg-1)"

区域
Region
有效铁
Available
Fe
有效锰 Available
Mn
有效铜 Available
Cu
有效锌Available
Zn
有效硼 Available
B
有效钼 Available
Mo
北部麦区 Northern Wheat Region 7.8±3.6 d 10.0±4.3 d 1.3±0.7 d 1.6±1.1 a 0.69 0.14
东北麦区Northeastern Wheat Region 75.8±48.4 b 30.7±16.2 b 1.7±0.3 c 0.8±0.3 b 0.38 0.30
黄淮麦区Huanghuai Wheat Region 41.4±66.8 c 23.0±27.6 c 1.8±1.1 c 1.7±1.9 a 0.37 0.08
西北麦区Northwestern Wheat Region 7.3±6.6 d 7.6±3.0 d 1.1±0.6 d 0.7±0.5 b 0.63 0.20
西南麦区Southwestern Wheat Region 72.9±70.5 b 24.2±21.3 bc 2.7±2.1 b 1.6±1.5 a 0.27 0.19
新疆麦区Xinjiang Wheat Region 11.9±6.3 cd 9.4±6.3 d 1.4±0.6 cd 0.6±0.3 b 2.59 0.24
长江中下游麦区 YRWC 131.2±104.2 a 40.5±32.8 a 3.3±1.5 a 1.8±.2.2 a 0.32 0.08

Fig. 2

Frequency and regional distribution of wheat grain Mn concentration in major wheat production regions of China, sampled from 2016 to 2020"

Fig. 3

Frequency and regional distribution of wheat grain Cu concentration in major wheat production regions of China, sampled from 2016 to 2020"

Fig. 4

Frequency and regional distribution of wheat grain Zn concentration in major wheat production regions of China, sampled from 2016 to 2020"

Fig. 5

Frequency and regional distribution of wheat grain B concentration in wheat production regions of China, sampled from 2016 to 2020"

Fig. 6

Frequency and regional distribution of wheat grain Mo concentration in major wheat production regions of China, sampled from 2016 to 2020"

[1] WFP. The state of food security and nutrition in the world. 2020. https://www.wfp.org/publications/state-food-security-and-nutrition-world-sofi-report-2020.
[2] 中华人民共和国国家统计局. 中国统计年鉴. 北京: 中国统计出版社, 2021.
National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbook. Beijing: China Statistics Press, 2021. (in Chinese)
[3] Muthayya S, Rah J H, Sugimoto J D, Roos F F, Black R E. The global hidden hunger indices and maps: an advocacy tool for action. PLoS One, 2013, 8: e67860.
doi: 10.1371/journal.pone.0067860
[4] Mertz W, Underwood E J. Trace elements in human and animal nutrition. Soil Sci, 1986, 82: 287.
doi: 10.1097/00010694-195610000-00004
[5] 倪宗瓒. 卫生统计学. 北京: 人民卫生出版社, 2000. pp 128-145.
Ni Z Z. Health Statistics. Beijing: People’s Medical Publishing House, 2000. pp 128-145. (in Chinese)
[6] WHO. Guidelines on Food Fortification with Micronutrients. France: WHO Library Cataloguing-in-Publication Data, 2006. pp 139-142.
[7] Bouis H E, Welch R M. Biofortification: a sustainable agricultural strategy for reducing micronutrient malnutrition in the global south. Crop Sci, 2010, 50: 20-30.
[8] Liu H, Wang Z H, Li F C, Li K Y, Yang N, Yang Y E, Huang D L, Liang D L, Zhao H B, Mao H, Liu J S, Qiu W H. Grain iron and zinc concentrations of wheat and their relationships to yield in major wheat production areas in China. Field Crops Res, 2014, 156: 151-160.
doi: 10.1016/j.fcr.2013.11.011
[9] 周晓雨. 我国铁营养强化小麦的适宜强化水平研究. 中国农业科学院研究生院硕士学位论文, 北京 2019.
Zhou X Y. Study on the Appropriate Fortification Level of Iron-biofortificad wheat in China. MS Thesis of Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China, 2009. (in Chinese with English abstract)
[10] Cakmak I. Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant Soil, 2007, 302: 1-17.
doi: 10.1007/s11104-007-9466-3
[11] Shi M, Hou S B, Sun Y Y, Dang H Y, Song Q, Jiang L G, Cao W, Wang H L, He X H, Wang Z H. Regional wheat grain manganese and its potential risks affected by soil pH and precipitation. J Clean Prod, 2020, 264: 121677.
doi: 10.1016/j.jclepro.2020.121677
[12] USEPA. Environmental Protection Agency, Region 9, Preliminary remediation goals, 2012. http://www.epa.gov/region9/superfund/prg/.
[13] 刘慧, 王朝辉, 李富翠, 李可懿, 杨宁, 杨月娥. 不同麦区小麦籽粒蛋白质与氨基酸含量及评价. 作物学报, 2016, 42: 768-777.
doi: 10.3724/SP.J.1006.2016.00768
Liu H, Wang Z H, Li F C, Li K Y, Yang N, Yang Y E. Contents of protein and amino acids of wheat grain in different wheat pro-duction regions and their evaluation. Acta Agron Sin, 2016, 42: 768-777. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2016.00768
[14] 刘铮. 中国土壤微量元素. 南京: 江苏科学技术出版社, 1996. pp 25-298.
Liu Z. Microelements in Soils of China. Nanjing: Phoenix Science Press, 1996. pp 25-298. (in Chinese)
[15] 全国土壤普查办公室. 中国土壤. 北京: 中国农业出版社, 1998. pp 945-970.
Nationwide Soil Survey Office. Chinese Soil. Beijing: China Agriculture Press, 1998. pp 945-970. (in Chinese)
[16] 邹春琴, 张福锁. 中国土壤-作物中微量元素研究现状和展望. 北京: 中国农业大学出版社, 2009. pp 156-186.
Zou C Q, Zhang F S. Current Status and Prospects of Research on Trace Elements in Soils and Crops in China. Beijing: China Agricultural University Press, 2009. pp 156-186. (in Chinese)
[17] 黄宁, 王朝辉, 王丽, 马清霞, 张悦悦, 张欣欣, 王瑞. 我国主要麦区主栽高产品种产量差异及其与产量构成和氮磷钾吸收利用的关系. 中国农业科学, 2020, 53: 81-93.
Huang N, Wang Z H, Wang L, Ma Q X, Zhang Y Y, Zhang X X, Wang R. Yield variation of winter wheat and its relationship to yield components, NPK uptake and utilization of leading and high yielding wheat cultivars in main wheat production regions of China. Sci Agric Sin, 2020, 53: 81-93. (in Chinese with English abstract)
[18] 鲍士旦. 土壤农化分析(第3版). 北京: 中国农业出版社, 2000.
Bao S D. Soil and Agricultural Chemistry Analysis, 3rd edn. Beijing: China Agriculture Press, 2000. (in Chinese)
[19] FAO. Date-Faostat-Food Supply-Crops Primary Equivalent, 2013. .
[20] USEPA.Electronic code of federal regulations, title 40-protection of environment, Part 423d steam electric power generating point source category. Appendix a to Part423-126. Priority Pollution, 2013. .
[21] Liu Y M, Liu D Y, Zhang W, Chen X X, Zhao Q Y, Chen X P, Zou C Q. Health risk assessment of heavy metals (Zn, Cu, Cd, Pb, as and Cr) in wheat grain receiving repeated Zn fertilizers. Environ Pollut, 2019, 257: 113581.
doi: 10.1016/j.envpol.2019.113581
[22] 国家卫生计生委疾病预防控制局. 中国居民营养与慢性病状况报告. 北京: 人民卫生出版社, 2015. pp 6-9.
National Health and Family Planning Commission Disease Prevention and Control Bureau. Report on the Status of Nutrition and Chronic Diseases of Chinese Residents. Beijing: People’s Medical Publishing House, 2015. pp 6-9. (in Chinese)
[23] USEPA. Environmental protection agency, region 3, Risk-Based concentration table: technical background information. Unites states environmental protection agency. Washington, DC, 2006. https://www.epa.gov/iris.
[24] 王晓曦, 贾爱霞, 于中利. 不同出粉率小麦粉的品质特性及营养组分研究. 中国粮油学报, 2012, 27(1): 6-9.
Wang X X, Jia A X, Yu Z L. Study on wheatmeal quality characteristic and nutritive composition of different flour yield. J Chin Cer Oils Associa, 2012, 27(1): 6-9 (in Chinese with English abstract).
[25] Ma G S, Ying J, Jin Y, Li Y P, Zhai F Y, Kok F J, Jacobsen E, Yang X G. Iron and zinc deficiencies in China: what is a feasible and cost-effective strategy? Public Health Nutr, 2008, 11: 632-638.
doi: 10.1017/S1368980007001085
[26] Zhang Y, Song Q C, Yan J, Tang J, Zhao R, Zhang Y, He Z, Zou C. Ortiz-monasterio: I. Mineral element concentrations in grains of Chinese wheat cultivars. Euphytica, 2010, 174: 303-313.
doi: 10.1007/s10681-009-0082-6
[27] 钟立人. 食品科学与工艺原理. 北京: 中国轻工业出版社, 1999. pp 66-75.
Zhong L R. Principles of Food Science and Technology. Beijing: China Light Industry Press, 1999. pp 66-75. (in Chinese)
[28] Du S S, Wu X Y, Han T S, Duan W, Liu L, Qi J Y, Niu Y C, Na L X, Sun C H. Dietary manganese and type 2 diabetes mellitus: two prospective cohort studies in China. Diabetologia, 2018, 61:1985-1995.
doi: 10.1007/s00125-018-4674-3
[29] Zhou B, Su X, Su D, Zeng F, Wang M H, Huang L, Huang E, Zhu Y, Zhao D, He D. Dietary intake of manganese and the risk of the metabolic syndrome in a Chinese population. Brut J Nutr, 2016, 116: 853-863.
[30] 王建武, 刘新花, 杨永亮. 麦麸中微量元素特征. 微量元素与健康研究, 2013, 30: 32-33.
Wang J W, Liu X H, Yang Y L. Analysis of trace elements in several flours. Stud Trace Elem Heath, 2013, 30: 32-33. (in Chinese with English abstract)
[31] 张磊. 中国不同性别-年龄组人群铅、镉、砷、铜的膳食摄入量研究. 中国疾病预防控制中心硕士学位论文, 北京, 2003.
Zhang L. Study on Dietary Intake of Lead, Cadmium, Arsenic, and Copper Among Different Sex-Age Groups in China. MS Thesis of Graduate School of Chinese Center for Disease Control and Prevention, Beijing, China, 2003. (in Chinese with English abstract)
[32] Eagling T, Neal A L, Mcgrath S P, Fairweathertait S, Shewry P R, Zhao F. Distribution and speciation of iron and zinc in grain of two wheat genotypes. J Agric Food Chem, 2014, 62: 708-716.
doi: 10.1021/jf403331p
[33] Liu D, Liu Y, Zhang W, Chen X, Zou C. Agronomic approach of zinc biofortification can increase zinc bioavailability in wheat flour and thereby reduce zinc deficiency in humans. Nutrients, 2017, 9: 465.
doi: 10.3390/nu9050465
[34] 宋筱瑜, 李凤琴, 刘兆平, 张磊, 朱江辉, 严卫星, 李宁, 陈君石. 中国12省市部分食品中硼本底含量调查及居民摄入量初估. 卫生研究, 2011, 40: 431-433.
Song X Y, Li F Q, Liu Z P, Zhang L, Zhu J H, Yan W X, Li N, Chen J S. Boron background value survey of some foodstuffs in 12 provinces of China and boron primary intake estimation of Chinese. J Hygiene Rese, 2011, 40: 431-433. (in Chinese with English abstract)
[35] 杨俊, 汤璐, 张琳琳, 刘芳芳, 赖晓芳. 食品中钼的测定和深圳居民钼摄入量评估. 食品工业, 2016, 37(10): 278-280.
Yang J, Tang L, Zhang L L, Liu F F, Lai X F. Determination of molybdenum content in food and assessment of dietary molybdenum intake of inhabitant in Shenzhen. Food Ind, 2016, 37(10): 278-280. (in Chinese with English abstract)
[36] 张勇, 王德森, 张艳, 何中虎. 北方冬麦区小麦品种籽粒主要矿物质元素含量分布及其相关性分析. 中国农业科学, 2007, 9: 1871-1876.
Zhang Y, Wang D S, He Z H, Variation of major mineral elements concentration and their relationships in grain of Chinese wheat. Sci Agric Sin, 2007, 9: 1871-1876 (in Chinese with English abstract).
[37] Mahin K, Majid A, Hossin K A, Andreas P, Rainer S. Grain zinc, iron, and copper concentrations of wheat grown in central Iran and their relationships with soil and climate variables. J Agric Food Chem, 2009, 57: 10876-10882.
doi: 10.1021/jf902074f
[38] Graham R D, Senadhira D, Ortiz-monasterio I. A strategy for breeding staple-food crops with high micronutrient density. Soil Sci Plant Nutr, 1997, 43: 1153-1157.
doi: 10.1080/00380768.1997.11863734
[39] Ida J, Inara K, Kantāne, Sanita Z, Inga J, Vadims B, Macro-elements and trace elements in cereal grains cultivated in Latvia. Pro Latvian Aca Sci, 2015, 69: 152-157.
[40] Szira F, Monostori I, Galiba G, Rakszegi M, Balint A F. Micronutrient contents and nutritional values of commercial wheat flours and flours of field-grown wheat varieties- a survey in hungary. Cereal Res Commun, 2014, 42: 293-302.
doi: 10.1556/CRC.2013.0059
[41] Li B Y, Huang S M, Wei M B, Zhang H L, Shen A L, Xu J M, Ruan X L. Dynamics of soil and grain micronutrients as affected by long-term fertilization in an aquic inceptisol. Pedosphere, 2010, 20: 725-735.
doi: 10.1016/S1002-0160(10)60063-X
[42] Oury F X, Leenhardt F, Remesy C, Chanliaud E, Duperrier B, Balfourier F, Charmet G. Genetic variability and stability of grain magnesium, zinc and iron concentrations in bread wheat. Eur J Agron, 2006, 25: 177-185.
doi: 10.1016/j.eja.2006.04.011
[43] Karami M, Afyuni M, Khoshgoftarmanesh A H, Papritz A, Schulin R. Grain zinc, iron, and copper concentrations of wheat grown in central Iran and their relationships with soil and climate variables. J Agric Food Chem, 2009, 57: 10876-10882.
doi: 10.1021/jf902074f
[44] Svecnjak Z, Jenel M, Bujan M, Vitali D, Dragojevic I V. Trace element concentrations in the grain of wheat cultivars as affected by nitrogen fertilization. Agric Food Sci, 2015, 22: 445-451.
[45] 丁汉凤, 谢连杰, 李娜娜, 王海云, 裴艳婷. 山东省近60年主推冬小麦微量矿质元素变化. 江苏农业科学, 2020, 48(15): 138-143.
Ding H F, Xie L J, Li N N, Wang H Y, Pei Y T. Study on trace mineral elements change of main push winter wheat in Shandong province in recent 60 years. Jiangsu Agric Sci 2020, 48(15): 138-143. (in Chinese with English abstract)
[46] 郭明慧, 裴自友, 温辉芹, 王仕稳, 辻本壽. 普通小麦品种籽粒矿质元素含量分析. 中国农学通报, 2011, 27(18): 41-44.
Guo M H, Pei Z Y, Wen H Q, Wang S W, Tsujimoto H. Mineral elements concentration analysis on major wheat cultivars. Chin Agric Sci Bull, 2011, 27(18): 41-44 (in Chinese with English abstract).
[47] 姜丽娜, 蒿宝珍, 张黛静, 邵云, 李春喜. 小麦籽粒Zn、Fe、Mn、Cu含量的基因型和环境差异及与产量关系的研究. 中国生态农业学报, 2010, 18: 982-987.
Jiang L N, Hao B Z, Zhang D J, Shao Y, Li C X. Genotypic and environmental differences in grain contents of Zn, Fe, Mn and Cu and how they relate to wheat yield. Chin J Eco-Agric, 2010, 18: 982-987. (in Chinese with English abstract)
doi: 10.3724/SP.J.1011.2010.00982
[48] Ayoubi S, Mehnatkesh A, Jalalian A, Sahrawat K L, Gheysari M. Relationships between grain protein, Zn, Cu, Fe and Mn contents in wheat and soil and topographic attributes. Arch Agron Soil Sci, 2014, 60: 625-638.
doi: 10.1080/03650340.2013.825899
[49] 刘鑫, 朱端卫, 雷宏军, 耿明建, 周文兵. 酸性土壤活性锰与pH、Eh关系及其生物反应. 植物营养与肥料学报, 2003, 9: 317-323.
Liu X, Zhu D W, Lei H J, Geng M J, Zhou W B. Dynamic relationship between soil active Mn and pH, Eh in acid soils and its biological response. Plant Nutr Fert Sci, 2003, 9: 317-323. (in Chinese with English abstract)
[50] Krauss M, Wilcke W, Kobza J, Zech W. Predicting heavy metal transfer from soil to plant: potential use of Freundlich-type functions. J Plant Nutr Soil Sci, 2015, 165: 3-8.
doi: 10.1002/1522-2624(200202)165:1<3::AID-JPLN3>3.0.CO;2-B
[51] Murphy K M, Reeves P G, Jones S S. Relationship between yield and mineral nutrient concentrations in historical and modern spring wheat cultivars. Euphytica, 2008, 163: 381-390.
doi: 10.1007/s10681-008-9681-x
[52] 党红凯, 李瑞奇, 李雁鸣, 张馨文, 孙亚辉. 超高产冬小麦四种微量元素的积累及其与产量性状的关系. 麦类作物学报, 2012, 32: 326-332.
Dang H K, Li R Q, Li Y M, Zhang X W, Sun Y H. Accumulation of four microelements and their relationship with yield traits in super high-yield winter wheat. J Triticeae Crops, 2012, 32: 326-332. (in Chinese with English abstract)
[53] 李可懿. 黄土高原旱地与豆科绿肥轮作和施氮对小麦产量及籽粒矿质养分的影响及其土壤学机制. 西北农林科技大学硕士学位论文, 陕西杨凌, 2011.
Li K Y. Effects of Rotation with Legume and Nitrogen Application on Yield and Mineral Nutrition of Wheat Grain and Its Soil Mechanism on Dryland of the Loess Plateau. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2011. (in Chinese with English abstract)
[54] Rawashdeh H M, Sala F. Effect of some micronutrients on growth and yield of wheat and its leaves and grain content of iron and boron. Bull Univ Agric Sci Veter, 2015, 72: 503-508.
[55] Waniewski S, Kaniuczak J, Hajduk E, Nazarkiewicz M. Effect of mineral fertilization on the yield, boron content and bioaccumulation factor in grain of cereals. J Elementol, 2019, 24: 1047-1061.
[56] Irmak S, Vapur H. Correlation between boron contents of soils and wheat plants (Triticum spp.) in the Cukurova Plain in Turkey. Asian J Chem, 2009, 21: 2615-2624.
[57] Rerkasem B, Jamjod S. Boron deficiency in wheat: a review. Field Crops Res, 2004, 89: 173-186.
doi: 10.1016/j.fcr.2004.01.022
[58] 胡承孝, 王运华, 庞静, 陈浩, 魏文学. 冬小麦不同生育阶段对钼的吸收和积累. 华中农业大学学报, 2001, 20: 350-353.
Hu C X, Wang Y H, Pang J, Chen H, Wei W X, Study on molybdenum absorption and accumulation of winter wheat at different stages. J Huazhong Agric Univ, 2001, 20: 350-353. (in Chinese with English abstract)
[59] Keshavarzi B, Moore F, Ansari M, Mehr M R, Kaabi H, Kermani M. Macronutrients and trace metals in soil and food crops of Isfahan province, Iran. Environ Monit Assess, 2015, 187: 4113.
doi: 10.1007/s10661-014-4113-y pmid: 25416129
[60] Huang M, Zhou S, Bo S, Zhao Q. Heavy metals in wheat grain: assessment of potential health risk for inhabitants in Kunshan, China. Sci Total Environ 2008, 405: 54-61.
doi: 10.1016/j.scitotenv.2008.07.004
[61] Zeng X, Wang Z, Wang J, Guo J, Zhuang J. Health risk assessment of heavy metals via dietary intake of wheat grown in Tianjin sewage irrigation area. Ecotoxicology, 2015, 24: 2115-2124.
doi: 10.1007/s10646-015-1547-0
[62] Zhu Y E, Ye Z, Ke S, Chen Z F, Ji Y Q. Heavy metals in wheat grain and soil: assessment of the potential health risk for inhabitants in a sewage-irrigated area of Beijing, China. Fresen Environ Bull, 2011, 20: 1109-1116.
[63] Chen X X, Liu Y M, Zhao Q Y, Cao W Q, Chen X P, Zou C Q. Health risk assessment associated with heavy metal accumulation in wheat after long-term phosphorus fertilizer application. Environ Pollut, 2020, 262: 114348.
doi: 10.1016/j.envpol.2020.114348
[64] Ahmed M K, Shaheen N, Islam M S, Habibullah-al-mamun M, Islam S, Banu U C P. Trace elements in two staple cereals (rice and wheat) and associated health risk implications in Bangladesh. Environ Monit Assess, 2015, 187: 326.
doi: 10.1007/s10661-015-4576-5
[65] Yang W X, Wang G D, Wang M K, Zhou F, Huang J, Xue M Y, Dinh Q T, Liang D L. Heavy metals and associated health risk of wheat grain in a traditional cultivation area of Baoji, Shaanxi, China. Environ Monit Assess, 2019, 191: 428.
doi: 10.1007/s10661-019-7534-9
[66] 王彩霞, 郭蓉, 程国霞, 聂晓玲, 刘宇. 陕西省谷物中重金属污染状况及健康风险评估. 卫生研究, 2016, 45: 35-38.
Wang C X, Guo R, Cheng G X, Nie X L, Liu Y. Dietary exposure and health risk assessment of heavy metal in grains of Shaanxi province. J Hygiene Res, 2016, 45: 35-38. (in Chinese with English abstract)
[67] 朱昊, 吴春发, 陈宜. 苏中地区小麦籽粒重金属含量水平及健康风险. 环境监测管理与技术, 2017, 29(1): 35-38.
Zhu H, Wu C F, Chen Y. Concentrations of heavy metals in wheat grains and their potential health risk in the central region of Jiangsu. Admin Tech Environl Mon, 2017, 29(1): 35-38. (in Chinese with English abstract)
[68] 青平, 曾晶, 李剑, 游良志. 中国作物营养强化的现状与展望. 农业经济问题, 2019, (8): 83-93.
Qing P, Zeng J, Li J, You L Z. The current situations and prospects of biofortification in China. Issues Agric Econ, 2019, (8): 83-93. (in Chinese with English abstract)
[69] 张金磊, 李路平. 中国生物强化富铁小麦营养干预居民缺铁性贫血疾病负担分析. 中国农业科技导报, 2014, 16(6): 132-142.
Zhang J L, Li L P. The analysis on China's biofortified iron-rich wheat nutrition intervening Chinese people's disease burden of iron deficiency anemia. J Agric Sci Tech, 2014, 16(6): 132-142. (in Chinese with English abstract)
[70] Eide D J. Zinc transporters and the cellular trafficking of zinc. BBA-Mol Cell Res, 2006, 1763: 711-722.
[71] Aciksoz S B, Yazici A, Ozturk L, Cakmak I. Biofortification of wheat with iron through soil and foliar application of nitrogen and iron fertilizers. Plant Soil, 2011, 349: 215-225.
doi: 10.1007/s11104-011-0863-2
[1] ZHANG Yi-Duo, LI Guo-Qiang, KONG Zhong-Xin, WANG Yu-Quan, LI Xiao-Li, RU Zhen-Gang, JIA Hai-Yan, MA Zheng-Qiang. Breeding of FHB-resistant wheat line Bainong 4299 by gene pyramiding [J]. Acta Agronomica Sinica, 2022, 48(9): 2221-2227.
[2] TAN Zhao-Guo, YUAN Shao-Hua, LI Yan-Mei, BAI Jian-Fang, YUE Jie-Ru, LIU Zi-Han, ZHANG Tian-Bao, ZHAO Fu-Yong, ZHAO Chang-Ping, XU Ben-Bo, ZHANG Sheng-Quan, PANG Bin-Shuang, ZHNAG Li-Ping. Cloning of TaPIP1 gene and its potential function in anther dehiscence in wheat [J]. Acta Agronomica Sinica, 2022, 48(9): 2242-2254.
[3] FENG Zi-Heng, LI Xiao, DUAN Jian-Zhao, GAO Fei, HE Li, YANG Tian-Chong, RONG Ya-Si, SONG Li, YIN Fei, FENG Wei. Hyperspectral remote sensing monitoring of wheat powdery mildew based on feature band selection and machine learning [J]. Acta Agronomica Sinica, 2022, 48(9): 2300-2314.
[4] CAO Ji-Ling, ZENG Qing, ZHU Jian-Guo. Responses of photosynthetic characteristics and gene expression in different wheat cultivars to elevated ozone concentration at grain filling stage [J]. Acta Agronomica Sinica, 2022, 48(9): 2339-2350.
[5] LI Yong-Bo, CUI De-Zhou, HUANG Chen, SUI Xin-Xia, FAN Qing-Qi, CHU Xiu-Sheng. Preparation of highly specific wheat ATG8 antibody and its application in the detection of autophagy [J]. Acta Agronomica Sinica, 2022, 48(9): 2390-2399.
[6] WANG Yun-Qi, GAO Fu-Li, LI Ao, GUO Tong-Ji, QI Liu-Ran, ZENG Huan-Yu, ZHAO Jian-Yun, WANG Xiao-Ge, GAO Guo-Ying, YANG Jia-Peng, BAI Jin-Ze, MA Ya-Huan, LIANG Yue-Xin, ZHANG Rui. Variation of ear temperature after anthesis and its relationship with yield in wheat [J]. Acta Agronomica Sinica, 2022, 48(9): 2400-2408.
[7] DU Qi-Di, GUO Hui-Jun, XIONG Hong-Chun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, SONG Xi-Yun, LIU Lu-Xiang. Gene mapping of apical spikelet degeneration mutant asd1 in wheat [J]. Acta Agronomica Sinica, 2022, 48(8): 1905-1913.
[8] FENG Ya-Juan, LI Ting-Xuan, PU Yong, ZHANG Xi-Zhou. Characteristics of cadmium accumulation and distribution in different organs of wheat with different cadmium-accumulating type [J]. Acta Agronomica Sinica, 2022, 48(7): 1761-1770.
[9] LIU A-Kang, MA Rui-Qi, WANG De-Mei, WANG Yan-Jie, YANG Yu-Shuang, ZHAO Guang-Cai, CHANG Xu-Hong. Effects of filming and supplemental nitrogen fertilizer application on plant growth and population quality of late sowing winter wheat before winter [J]. Acta Agronomica Sinica, 2022, 48(7): 1771-1786.
[10] WANG Juan, LIU Yi, YAO Dan-Yu, ZOU Jing-Wei, XIAO Shi-He, SUN Guo-Zhong. Identification on sensitivity of wheat to low temperature at reproductive stages [J]. Acta Agronomica Sinica, 2022, 48(7): 1721-1729.
[11] ZHANG Shao-Hua, DUAN Jian-Zhao, HE Li, JING Yu-Hang, Urs Christoph Schulthess, Azam Lashkari, GUO Tian-Cai, WANG Yong-Hua, FENG Wei. Wheat yield estimation from UAV platform based on multi-modal remote sensing data fusion [J]. Acta Agronomica Sinica, 2022, 48(7): 1746-1760.
[12] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[13] GUO Xing-Yu, LIU Peng-Zhao, WANG Rui, WANG Xiao-Li, LI Jun. Response of winter wheat yield, nitrogen use efficiency and soil nitrogen balance to rainfall types and nitrogen application rate in dryland [J]. Acta Agronomica Sinica, 2022, 48(5): 1262-1272.
[14] LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221.
[15] FU Mei-Yu, XIONG Hong-Chun, ZHOU Chun-Yun, GUO Hui-Jun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, XU Yan-Hao, LIU Lu-Xiang. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene [J]. Acta Agronomica Sinica, 2022, 48(3): 580-589.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[4] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .
[5] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .
[6] ZHENG Yong-Mei;DING Yan-Feng;WANG Qiang-Sheng;LI Gang-Hua;WANG Hui-Zhi;WANG Shao-Hua. Effect of Nitrogen Applied before Transplanting on Tillering and Nitrogen Utilization in Rice[J]. Acta Agron Sin, 2008, 34(03): 513 -519 .
[7] QIN En-Hua;YANG Lan-Fang;. Selenium Content in Seedling and Selenium Forms in Rhizospheric Soil of Nicotiana tabacum L.[J]. Acta Agron Sin, 2008, 34(03): 506 -512 .
[8] LÜ Li-Hua;TAO Hong-Bin;XIA Lai-Kun; HANG Ya-Jie;ZHAO Ming;ZHAO Jiu-Ran;WANG Pu;. Canopy Structure and Photosynthesis Traits of Summer Maize under Different Planting Densities[J]. Acta Agron Sin, 2008, 34(03): 447 -455 .
[9] Zhang Shubiao;Yang Rencui. Some Biological Character of eui-hybrid Rice[J]. Acta Agron Sin, 2003, 29(06): 919 -924 .
[10] SHAO Rui-Xin;SHANG-GUAN Zhou-Ping. Effects of Exogenous Nitric Oxide Donor Sodium Nitroprusside on Photosynthetic Pigment Content and Light Use Capability of PS II in Wheat under Water Stress[J]. Acta Agron Sin, 2008, 34(05): 818 -822 .