Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (11): 2733-2748.doi: 10.3724/SP.J.1006.2022.14168

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Differential expressed analysis by transcriptome sequencing in leaves of different ploidy Gossypium herbaceum

YANG Ya-Jie(), LI Yu-Ying, SHEN Zhuang-Zhuang, CHEN Tian, RONG Er-Hua, WU Yu-Xiang*()   

  1. College of Agronomy, Shanxi Agricultural University, Jinzhong 030801, Shanxi, China
  • Received:2021-09-23 Accepted:2022-02-25 Online:2022-11-12 Published:2022-04-01
  • Contact: WU Yu-Xiang E-mail:yyj15235924721@163.com;yuxiangwu2009@hotmail.com
  • Supported by:
    The National Natural Science Foundation of China(31171599);The Shanxi Province Basic Research Program (Free Exploration)(20210302124154)

Abstract:

To investigate the basis for the relative expression level of genes between the phenotypic changes of autopolyploid and the changes of genetic material during chromosome doubling, the differentially expressed genes between autopolyploids and diploids were screened by transcriptome sequencing of G. herbaceum. In this study, the diploid G. herbaceum (CK) and autopolyploid progenies were used as materials, autotriploid (T) and autotetraploid (M) plants were identified by flow cytometry. After the physiological indexes of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), proline, and soluble protein contents of autotetraploids and diploids were compared, and transcriptome sequencing were analyzed. The contents of SOD, POD, CAT, proline, and soluble protein in the leaves of autotetraploids were significantly higher than those of diploids. DESeq difference analysis showed that there were 4166 (2832 up-regulated and 1334 down-regulated), 4037 (1766 up-regulated and 2271 down-regulated), and 4184 (2679 up-regulated and 1505 down-regulated) DEGs, in CK vs T, T vs M, and CK vs M, respectively, and 205 DEGs were common expressed among three groups of pairwise comparison of different ploidy plants. GO function revealed that DEGs had significant differences in intrinsic component of membrane, integral component of membrane, catalytic activity. KEGG enrichment indicated that DEGs was more active than other pathways in flavonoid biosynthesis, phenylpropane biosynthesis, and photosynthesis-antenna protein. Through enrichment analysis, the DEGs related to ploidy in CK vs T and CK vs M were screened, and the results demonstrated that polyploidy were detected mostly up-regulated, in response to stimulus (62.46% and 54.84%), stress (57.42% and 53.85%), cell (70.16% and 66.22%), metabolism (72.73% and 66.14%), biologically active substances and resistance (60.33% and 63.37%), photosynthesis (58.06% and 63.16%), which may be the key factor leading to polyploid advantage. A total of 27 resistance-related genes (19 up-regulated and 8 down-regulated) and 11 photosynthetic-related genes (9 up-regulated and 2 down-regulated) were obtained by Nr annotation CK vs M. Cluster analysis of 27 DEGs related to photosynthesis in different ploidy of G. herbaceum showed that the relative expression of 18 genes (66.67%) had the highest expression abundance in autotetraploids. We performed Nr annotation and expression analysis on 205 DEGs common expressed among three groups, indicating that 30 genes were up-regulated, and the relative expression was the highest in autotetraploids. While 7 genes were down-regulated, and the expression was the lowest in autotetraploids. The 37 genes may be influenced by DNA gene-dose or related to plant ploidy level. The results showed that polyploid plants are superior to diploid plants in terms of resistance, growth vigor, metabolism, and photosynthesis rate.

Key words: Gossypium herbaceum, autopolyploids, flow cytometry, physiological indexs, transcriptome sequencing, differentially expressed genes

Table 1

Fluorescence peaks of autopolyploid progenies of G. herbaceum"

材料代号
Material code
平均荧光强度
X-mean
倍性
Ploidy
1 89.68 二倍体Diploid
2 139.51 三倍体Triploid
3 125.93 三倍体Triploid
4 135.29 三倍体Triploid
5 185.39 四倍体Tetraploid
6 181.19 四倍体Tetraploid
7 179.46 四倍体Tetraploid
8 178.46 四倍体Tetraploid
9 187.80 四倍体Tetraploid
10 157.11 三倍体-四倍体 Triploid-tetraploid
11 159.34 三倍体-四倍体 Triploid-tetraploid

Table 2

Net photosynthetic rate and chlorophyll content among different ploidy G. herbaceum"

光合指标
Photosynthetic index
二倍体
Diploid
三倍体
Triploid
四倍体
Tetraploid
净光合速率Pn (μmol m-2 s-1) 13.07±0.89 c 15.40±0.73 b 19.15±0.86 a
相对叶绿素含量 SPAD 33.23±1.77 c 36.05±0.66 b 38.07±0.81 a

Table 3

Comparison of different physiological indexes of diploid and autotetraploid leaves of G. herbaceum"

材料
Material
SOD活性
SOD activity
(U g-1 min-1)
POD活性
POD activity
(U g-1 min-1)
CAT活性
CAT activity
(U g-1 min-1)
脯氨酸含量
Proline content
(μg g-1)
可溶性蛋白含量
Soluble sugar content
(mg g-1)
二倍体Diploid 138.96±4.10 76.22±7.90 9.33±0.67 8.14±0.23 8.70±0.55
同源四倍体Autotetraploid 186.14±10.86** 99.56±7.00* 17.22±2.36** 12.74±0.36** 14.92±0.35**

Fig. 1

Relative expression levels of different ploidy G. herbaceum CK: diploid; T: triploid: M: tetraploid."

Fig. 2

Differential gene expression of pairwise comparison among different ploidy G. herbaceum Abbreviations are the same as those given in Fig. 1."

Table 4

Functional classification of differentially expressed genes in CK vs M"

功能分类
Functional
characterization
GO条目/代谢通路
GO term/pathway
上调基因数量
Number of up-regulated genes
下调基因数量
Number of down-regulated genes
差异表达
基因数量
Number of DEGs
FDR
抗逆性
Stress resistance
应激反应
Response to stimulus (GO:0050896)
153 (54.84%) 126 279 1
逆境反应
Response to stress (GO:0006950)
77 (53.85%) 66 143 1
细胞
Cell
细胞生长
Cell growth (GO:0016049)
16 (80.00%) 4 20 0.4033192
细胞周期
Cell cycle (GO:0007049)
43 (91.49%) 4 47 0.0009799
细胞壁
Cell wall (GO:0005618)
55 (83.33%) 11 66 6.599E-06
细胞壁组织及生物发生
Cell wall organization or biogenesis (GO:0071554)
82 (82.83%) 17 99 4.835E-07
细胞器
Organelle (GO:0043226)
371 (64.63%) 203 574 1
生物调节
Biological regulation (GO:0065007)
255 (56.79%) 194 449 1
细胞过程
Cellular process (GO:0009987)
926 (63.21%) 539 1465 1
细胞膜
Membrane (GO:0016020)
920 (70.28%) 389 1309 4.826E-10
代谢
Metabolism
碳水化合物代谢
Carbohydrate metabolism (-)
140 (64.81%) 76 216 0.6612823
氨基酸代谢
Amino acid metabolism (-)
80 (62.50%) 48 128 0.5819777
核苷酸代谢
Nucleotide metabolism (-)
22 (66.67%) 11 33 0.5692334
脂质代谢
Lipid metabolism (-)
96 (71.64%) 38 134 0.4141365
活性物质和抗性
Active substances and resistance
苯丙烷生物合成
Phenylpropanoid biosynthesis (ko00940)
33 (78.57%) 9 42 0.0492074
黄酮和黄酮醇生物合成
Flavone and flavonol biosynthesis (ko00944)
2 (100%) 0 2 0.1934463
类黄酮生物合成
Flavonoid biosynthesis (ko00941)
19 (100%) 0 19 0.0007179
功能分类
Functional
characterization
GO条目/代谢通路
GO term/pathway
上调基因数量
Number of up-regulated genes
下调基因数量
Number of down-regulated genes
差异表达
基因数量
Number of DEGs
FDR
活性物质和抗性
Active substances and resistance
单萜生物合成
Monoterpenoid biosynthesis (ko00902)
2 (66.67%) 1 3 0.3228966
单萜生物合成
Monoterpenoid biosynthesis (ko00902)
2 (66.67%) 1 3 0.3228966
二萜生物合成
Diterpenoid biosynthesis (ko00904)
5 (71.43%) 2 7 0.4795232
倍半萜和三萜生物合成
Sesquiterpenoid and triterpenoid biosynthesis (ko00909)
6 (85.71%) 1 7 0.1255444
萜类主链生物合成
Terpenoid backbone biosynthesis (ko00900)
6 (85.71%) 1 7 1
过氧化物酶体
Peroxisome (ko04146)
4 (33.33%) 8 12 1
半胱氨酸和蛋氨酸代谢
Cysteine and methionine metabolism (ko00270)
14 (66.67%) 7 21 0.4112855
植物-病原相互作用
Plant-pathogen interaction (ko04626)
15 (42.86%) 20 35 0.9309574
MAPK信号通路-植物
MAPK signaling pathway-plant (ko04016)
14 (45.16%) 17 31 0.4434954
植物激素信号转导
Plant hormone signal transduction (ko04075)
34 (59.65%) 23 57 0.4795232
光合
Photosynthesis
光合作用-天线蛋白
Photosynthesis-antenna proteins (ko00196)
10 (100%) 0 10 0.034253
类胡萝卜素生物合成
Carotenoid biosynthesis (ko00906)
1 (16.67%) 5 6 0.6849565
卟啉与叶绿素代谢
Porphyrin and chlorophyll metabolism (ko00860)
3 (100%) 0 3 1
光合合成碳的固定
Carbon fixation in photosynthetic organisms (ko00710)
5 (45.45%) 6 11 1
光合作用
Photosynthesis (ko00195)
5 (62.50%) 3 8 1

Table 5

Differentially expressed genes related to partial resistance and photosynthesis in CK vs M"

分类
Classify
代谢通路
Pathway
基因ID
Gene ID
Nr 注释
Nr annotation
FDR
抗性
Resistance
MAPK信号通路-植物
MAPK signaling
pathway-plant
gene-LOC108472111↑ EIN3结合F-box 1-样蛋白
EIN3-binding F-box 1-like protein
0.011587493
gene-LOC108453563↑ EIN3结合F-box 1-样蛋白
EIN3-binding F-box 1-like protein
0.044251564
gene-LOC108467504↑ 蛋白磷酸酶2C 77-样蛋白
Protein phosphatase 2C 77-like protein
0.014589885
gene-LOC108478294↑ 丝裂原活化蛋白激酶9
Mitogen-activated protein kinase kinase 9
0.0008591
gene-LOC108457272↑ 乙烯受体2-样蛋白
Ethylene receptor 2-like protein
0.024368941
gene-LOC108476169↑ 内切几丁质酶1 Endochitinase 1 0.215277812
gene-LOC108483169↓ 乙烯受体Ethylene receptor 0.000750193
gene-LOC108463936↓ 丝裂原活化蛋白激酶17
Mitogen-activated protein kinase 17
0.016328221
gene-LOC108450183↓ 丝裂原活化蛋白激酶3
Mitogen-activated protein kinase 3
0.233022156
植物激素信号转导
Plant hormone signal
transduction
gene-LOC108484000↑ DELLA蛋白DWARF8-类
DELLA protein DWARF8-like
0.077283861
gene-LOC108472111↑ EIN3结合F-box 1-样蛋白
EIN3-binding F-box 1-like protein
0.011587493
gene-LOC108450344↑ 生长素反应基因IAA27-样蛋白
Auxin-responsive IAA27-like protein
0.006431987
gene-LOC108482284↑ 蛋白TIFY 9-样蛋白
Protein TIFY 9-like protein
0.003835613
gene-LOC108467504↑ 蛋白磷酸酶2C 77-样蛋白
Protein phosphatase 2C 77-like protein
0.014589885
gene-LOC108470619↑ 生长素诱导的AUX28
Auxin-induced AUX28
2.81365E-06
gene-LOC108466602↑ 细胞周期蛋白D3-2-样蛋白
Cyclin-D3-2-like protein
0.134508825
gene-LOC108453563↑ EIN3结合F-box 1-样蛋白
EIN3-binding F-box 1-like protein
0.044251564
gene-LOC108461714↑ 双组分反应调节剂ARR12-样蛋白
Two-component response regulator ARR12-like
protein
0.170570504
gene-LOC108485375↑ 对脱落酸不敏感的5-样蛋白4
Abscisic acid-insensitive 5-like protein 4
0.002462993
gene-LOC108469335↑ 生长素反应基因IAA30-样蛋白
Auxin-responsive IAA30-like protein
0.1026197
gene-LOC108457272↑ 乙烯受体2-样蛋白
Ethylene receptor 2-like protein
0.024368941
抗性
Resistance
植物激素信号转导
Plant hormone signal
transduction
gene-LOC108457634↑ 生长素反应基因IAA9-样蛋白
Auxin-responsive IAA9-like protein
0.211599147
gene-LOC108451896↓ IAA16蛋白IAA16 protein 0.01579825
gene-LOC108457881↓ 转录因子PIF3 Transcription factor PIF3 0.013753921
gene-LOC108488454↓ 双组分反应调节剂ARR9-样蛋白
Two-component response regulator ARR9-like protein
0.041768036
gene-LOC108456238↓ 调节剂NPR5-样蛋白
Regulatory NPR5-like protein
0.02941149
gene-LOC108474109↓ 转录因子PIF3-样蛋白
Transcription factor PIF3-like protein
6.26018E-05
光合
Photosynthesis
光合作用-天线蛋白
Photosynthesis-antenna proteins
gene-LOC108480333↑ 叶绿素a-b结合13, 叶绿体
Chlorophyll a-b binding 13, chloroplastic
0.002356614
gene-LOC108476043↑ 叶绿素a-b结合CP24 10A, 叶绿体
Chlorophyll a-b binding CP24 10A, chloroplastic
0.000187662
gene-LOC108489181↑ LHCII型叶绿素a-b结合蛋白-类
Chlorophyll a-b binding protein of LHCII type 1-like
1.58539E-05
类胡萝卜素生物合成
Carotenoid biosynthesis
gene-LOC108469787↑ 八氢番茄红素合成酶Phytoene synthase 1.59539E-05
gene-LOC108461129↓ Zeta胡萝卜素去饱和酶, 叶绿体
Zeta-carotene desaturase, chloroplastic/chromoplastic
0.000454432
卟啉与叶绿素代谢
Porphyrin and chlorophyll metabolism
gene-LOC108450311↑ 原叶绿素还原酶, 叶绿体
Protochlorophyllide reductase, chloroplastic
0.000599834
gene-LOC108461585↑ 原叶绿素还原酶, 叶绿体
Protochlorophyllide reductase, chloroplastic
0.004268314
光合合成碳的固定
Carbon fixation in
photosynthetic organisms
gene-LOC108483247↑ 磷酸烯醇式丙酮酸羧化酶
Phosphoenolpyruvate carboxylase, housekeeping isozyme
0.003229881
gene-LOC108453781↑ 果糖二磷酸醛缩酶, 细胞质同工酶
Fructose-bisphosphate aldolase, cytoplasmic isozyme
0.097210442
光合作用
Photosynthesis
gene-LOC108488482↑ 光系统I反应中心亚单位IV, 叶绿体
Photosystem I reaction center subunit IV, chloroplastic
0.012650004
gene-GoarCp007↓ ATP合成酶CF0 B亚单位
ATP synthase CF0 B subunit
0.159437765

Table 6

Differentially expressed genes of pairwise comparison among different ploidy G. herbaceum"

功能分类
Functional characterization
CK vs T DEGs T vs M DEGs CK vs M DEGs
Up DEGs Up DEGs Up DEGs
应激反应 Response to stimulus 178 (62.46%) 285 116 (42.34%) 274 153 (54.84%) 279
逆境反应 Response to stress 89 (57.42%) 155 69 (46.62%) 148 77 (53.85%) 143
细胞 Cell 2586 (70.16%) 3686 1621 (45.22%) 3585 2668 (66.22%) 4029
代谢 Metabolism 360 (72.73%) 495 164 (38.32%) 428 338 (66.14%) 511
活性物质和抗性 Active substances and resistance 181 (60.33%) 300 124 (47.69%) 260 154 (63.37%) 243
光合 Photosynthesis 18 (58.06%) 31 21 (43.75%) 48 24 (63.16%) 38

Fig. 3

Relative expression profiles of DEGs related to photosynthesis among different ploidy G. herbaceum Abbreviations are the same as those given in Fig. 1."

Table 7

Functional characteristics of common differentially expressed genes in different groups"

基因ID
Gene ID
Nr注释
Nr annotation
GO条目
GO term
gene-LOC108450929↑ 果胶甲基酯酶
Pectin methylesterase (gi|377824753)
果胶分解代谢过程, 催化活性的负调节, 细胞壁降解
Pectin catabolic process (GO:0045490), negative regulation of catalytic activity (GO:0043086), cell wall modification (GO:0042545)
gene-LOC108489968↑ 蛋白酪氨酸磷酸酶基因Pten (gi|728820218) 肽基酪氨酸去磷酸化
Peptidyl-tyrosine dephosphorylation (GO:0035335)
gene-LOC108468194↑ 65-kD微管相关4-样蛋白
65-kD microtubule-associated 4-like protein (gi|728815965)
微管细胞骨架组织, 胞质分裂
Microtubule cytoskeleton organization (GO:0000226),
cytokinesis (GO:0000910)
gene-LOC108473756↑ 信号肽肽酶-样2B
Signal peptide peptidase-like 2B (gi|728825570)
蛋白质水解
Proteolysis (GO:0006508)
gene-LOC108450751↑ 帕他汀A-3组
Patatin group A-3 (gi|728835268)
脂质分解代谢过程
Lipid catabolic process (GO:0016042)
gene-LOC108489958↑ 肽转运蛋白PTR1-样蛋白
Peptide transporter PTR1-like protein (gi|728848860)
寡肽运输
Oligopeptide transport (GO:0006857)
gene-LOC108464066↑ 类枯草杆菌蛋白酶
Subtilisin-like protease (gi|728836560)
蛋白质水解
Proteolysis (GO:0006508)
gene-LOC108454777↑ BAG家族分子伴侣调节因子3
BAG family molecular chaperone regulator 3 (gi|728828609)
基因ID
Gene ID
Nr注释
Nr annotation
GO条目
GO term
gene-LOC108474367↑ 膜蛋白B Envelope glycoprotein B (gi|728812650)
gene-LOC108474374↑ 多聚半乳糖醛酸酶, 非催化亚单位蛋白
Polygalacturonase non-catalytic subunit protein (gi|728845004)
gene-LOC108467652↑ 3-酮酰基辅酶A合酶48
3-ketoacyl-CoA synthase 48 (gi|939191559)
脂肪酸生物合成过程
Fatty acid biosynthetic process (GO:0006633)
gene-LOC108463792↑ 蛋白IQ-31结构域-样蛋白
Protein IQ-DOMAIN 31-like protein (gi|728817716)
gene-LOC108482485↑ RNA聚合酶相关rapA
RNA polymerase-associated rapA (gi|728833883)
gene-LOC108488520↑ 扩张蛋白-A5-样蛋白
Expansin-A5-like protein (gi|728838775)
维细胞生长, 植物型细胞壁组织, 初生根发育
Unidimensional cell growth (GO:0009826), plant-type cell wall organization (GO:0009664), primary root development (GO:0080022)
gene-LOC108470064 束状阿拉伯半乳糖蛋白7
Fasciclin-like arabinogalactan protein 7 (gi|728814486)
gene-LOC108457041↑ 抗氧化1 Oxidation resistance 1 (gi|728849019)
gene-LOC108454471↑ 非特异性脂质转移3
Non-specific lipid-transfer 3 (gi|728831038)
脂质转运
Lipid transport (GO:0006869)
gene-LOC108453673↑ 微管相关TORTIFOLIA1-样蛋白
Microtubule-associated TORTIFOLIA1-like
protein (gi|728816012)
gene-LOC108450464↑ 溶酶体β-葡萄糖苷酶
Lysosomal beta glucosidase (gi|728850760)
葡聚糖分解代谢过程
Glucan catabolic process (GO:0009251)
gene-LOC108471291↑ 蛋白透明种皮12-样蛋白
Protein transparent testa 12-like protein (gi|728842256)
药物跨膜转运
Drug transmembrane transport (GO:0006855)
gene-LOC108450235↑ 微管相关TORTIFOLIA1-样蛋白
Microtubule-associated TORTIFOLIA1-like
protein (gi|728831405)
gene-LOC108452970↑ 孢子衣SA Spore coat SA (gi|728832383)
gene-LOC108488617↑ 脂质转移蛋白前体
Lipid transfer protein precursor (gi|403391463)
脂质转运
Lipid transport (GO:0006869)
gene-LOC108483479↑ 微管相关TORTIFOLIA1-样蛋白
Microtubule-associated TORTIFOLIA1-like protein (gi|728812036)
gene-LOC108461575↑ 葡甘聚糖4-β-甘露糖基转移酶9-样蛋白
Glucomannan 4-beta-mannosyltransferase 9-like protein (gi|728840378)
基因ID
Gene ID
Nr注释
Nr annotation
GO条目
GO term
gene-LOC108451848↑ 纤维素合酶A催化亚基6[UDP形成]-样蛋白
Cellulose synthase A catalytic subunit 6 [UDP-forming]-like protein (gi|728849775)
纤维素生物合成过程, 细胞壁组织
Cellulose biosynthetic process (GO:0030244), cell wall
organization (GO:0071555)
gene-LOC108452375↑ 双功能单脱氢抗坏血酸还原酶和碳酸酐酶-3
Bifunctional monodehydroascorbate reductase and carbonic anhydrase nectarin-3 (gi|728829994)
gene-LOC108465289↑ 葡甘聚糖4-β-甘露糖基转移酶2-样蛋白
Glucomannan 4-beta-mannosyltransferase 2-like protein (gi|728841581)
甘露糖基化, 黏质生物合成过程, 与种皮发育有关的黏质代谢过程
Mannosylation (GO:0097502), mucilage biosynthetic process (GO:0010192), mucilage metabolic process involved in seed coat development (GO:0048359)
gene-LOC108457166↑ 葡甘聚糖4-β-甘露糖基转移酶2-样蛋白
Glucomannan 4-beta-mannosyltransferase 2-like protein (gi|728809263)
甘露糖基化, 黏质生物合成过程, 与种皮发育有关的黏质代谢过程
Mannosylation (GO:0097502), mucilage biosynthetic process (GO:0010192), mucilage metabolic process involved in seed coat development (GO:0048359)
gene-LOC108471046↑ 磷酸核糖氨基咪唑琥珀酰胺合酶
Phosphoribosylaminoimidazole-succinocarboxamide synthase (gi|728831447)
gene-LOC108489598↓ (+)-新薄荷醇脱氢酶-样蛋白
(+)-neomenthol dehydrogenase-like protein (gi|7288377490)
氧化还原过程
Oxidation-reduction process (GO:0055114)
gene-LOC108472997↓ 光调节Light-regulated (gi|728817354)
gene-LOC108459335↓ 光调节Light-regulated (gi|728842555)
gene-LOC108476977↓ β-淀粉酶3, 叶绿体-样蛋白
Beta-amylase 3, chloroplastic-like protein (gi|728849255)
多糖分解代谢过程
Polysaccharide catabolic process (GO:0000272)
gene-LOC108475943↓ 丝氨酸/苏氨酸蛋白激酶CTR1
Serine/threonine-protein kinase CTR1 (gi|728830021)
蛋白质磷酸化
Protein phosphorylation (GO:0006468)
gene-LOC108476209↓ γ-谷氨酰连接酶Gamma-glutamyl ligase (gi|728810338)
gene-LOC108472513↓ 戊二醛基二磷酸合酶, 叶绿体
Ent-copalyl diphosphate synthase, chloroplastic (gi|728815153)
代谢过程Metabolic process (GO:0008152)
[1] Hutchinson J B, Silow R A, Stephens S G. The evolution of Gossypium and the differentiation of the cultivated cottons. Quart Rev Biol, 1949, 24: 143-144.
doi: 10.1086/396965
[2] Satya N J, Anukool S, Krishan M R, Alok R, Sunil K S, Tarannum N, Meenal S, Sumit K. B, Shrikant M, Mehar H A, Hemant K Y, Rakesh T, Samir V S. Development and characterization of genomic and expressed SSRs for levant cotton (Gossypium herbaceum L.). Theor Appl Genet, 2012, 124: 565-576.
doi: 10.1007/s00122-011-1729-y
[3] Sattler M C, Carvalho C R, Clarindo W R. The polyploidy and its key role in plant breeding. Planta, 2016, 243: 281-296.
doi: 10.1007/s00425-015-2450-x
[4] Bhattarai K, Areem A K, Deng Z. In vivo induction and characterization of polyploids in gerbera daisy. Sci Hortic, 2021, 282: 110054.
doi: 10.1016/j.scienta.2021.110054
[5] 尚小红, 单忠英, 严华兵, 肖亮, 曹升, 周慧文. 木薯‘新选048’二倍体及其同源四倍体对干旱胁迫的生理响应. 植物生理学报, 2018, 54: 1064-1072.
Shang X H, Shan Z Y, Yan H B, Xiao L, Cao S, Zhou H W. Physiological responses of cassava variety ‘Xinxuan 048’ diploid and autotetraploid to drought stress. Plant Physiol J, 2018, 54: 1064-1072. (in Chinese with English abstract)
[6] 李昱樱, 申状状, 荣二花, 郑赟, 吴玉香. 草棉同源四倍体的诱导与鉴定. 山西农业大学学报(自然科学版), 2019, 39(6): 40-44.
Li Y Y, Shen Z Z, Rong E H, Zheng Y, Wu Y X. Autotetraploid induction and identification of G. herbaceum. J Shanxi Agric Univ (Nat Sci Edn), 2019, 39(6): 40-44. (in Chinese with English abstract)
[7] 姚娜, 刘秀明, 董园园, 王南, 孟璐璐, 李海燕. 转录组的测序方法及应用研究概述. 北方园艺, 2017, (12): 192-198.
Yao N, Liu X M, Dong Y Y, Wang N, Meng L L, Li H Y. Advances in application and sequencing methods of transcriptome. Northern Hortic, 2017, (12): 192-198. (in Chinese with English abstract)
[8] Li H Y, Chen S M, Song A P, Wang H B, Fang W M, Guan Z Y, Jiang J F, Chen F D. RNA-Seq derived identification of differential transcription in the chrysanthemum leaf following inoculation with Alternaria tenuissima. BMC Genomics, 2014, 15: 9.
doi: 10.1186/1471-2164-15-9
[9] 戚家明, 张东旭, 王少丽, 黄立斌, 夏丽丽, 董汪洋, 郑强, 刘青娥, 肖建中, 徐志文. 基于转录组测序数据对Weissella confusa XU1中低聚木糖代谢系统的分析. 微生物学报, 2020, 60: 912-923.
Qi J M, Zhang D X, Wang S L, Huang L B, Xia L L, Dong W Y, Zheng Q, Liu Q E, Xiao J Z, Xu Z W. Transcriptome analysis of xylo-oligosaccharides utilization systems in Weissella confusa XU1. Acta Microbiol Sin, 2020, 60: 912-923. (in Chinese with English abstract)
[10] 侯孟典, 王会, 钟金城, 柴志欣, 益西康珠, 王吉坤, 王嘉博. 基于转录组测序筛选黄牛低氧适应性相关差异基因. 华北农学报, 2020, 35(2): 217-227.
Hou M D, Wang H, Zhong J C, Chai Z X, Yixikangzhu, Wang J K, Wang J B. Screening differential genes related to hypoxia adaptation in cattle by using transcriptome analysis. Acta Agric Boreali-Sin, 2020, 35(2): 217-227. (in Chinese with English abstract)
[11] 黄伊子, 郭芾, 韩凝, 边红武. 基于RNA-seq的水稻根尖和侧根区伤组织诱导中生长素相关基因差异表达分析. 植物生理学报, 2020, 56: 1745-1755.
Huang Y Z, Guo F, Han N, Bian H W. RNA-seq-based differential expression analysis of auxin-related genes during callus induction derived from root tip and lateral root region in rice (Oryza sativa). Plant Physiol J, 2020, 56: 1745-1755. (in Chinese with English abstract)
[12] 申状状. 棉属远缘杂种的合成及性状鉴定与转录组分析. 山西农业大学硕士学位论文, 山西晋中, 2018.
Shen Z Z. Synthesis, Identification and Transcriptome Analysis of Distant Hybrids in Gossypium. MS Thesis of Shanxi Agricultural University, Jinzhong, Shanxi, China, 2018. (in Chinese with English abstract)
[13] 刘新星, 陈超. 基于短序列测序数据的四倍体拟南芥转录组研究. 中国生物工程杂志, 2011, 31(7): 45-53.
Liu X X, Chen C. De novo assembly of allotetraploid Arabidopsis suecica transcriptome using short reads for gene discovery and marker identification. China Biotechnol, 2011, 31(7): 45-53. (in Chinese with English abstract)
[14] 李萌, 郭烨, 刘松珊, 庞晓明, 李颖岳. 二倍体及其同源四倍体酸枣的生理特征和转录组分析. 北京林业大学学报, 2019, 41(7): 57-67.
Li M, Guo Y, Liu S S, Pang X M, Li Y Y. Physiological characteristics and transcriptomics analysis in diploid Ziziphus jujuba Mill. var. spinosa and its autotetraploid. J Beijing For Univ, 2019, 41(7): 57-67. (in Chinese with English abstract)
[15] 高真, 张成才, 罗丽娜, 张子璇, 王将, 向增旭. 茅苍术二倍体及其同源四倍体的生理特征与转录组差异分析. 南京农业大学学报, 2020, 43: 1024-1032.
Gao Z, Zhang C C, Luo L N, Zhang Z X, Wang J, Xiang Z X. Physiological characteristics and transcriptome differences analysis of diploid and autotetraploid of Atractylodes lancea. J Nanjing Agric Univ, 2020, 43: 1024-1032. (in Chinese with English abstract)
[16] 王娜, 赵资博, 高琼, 何守朴, 马晨辉, 彭振, 杜雄明. 陆地棉盐胁迫应答基因GhPEAMT1的克隆及功能分析. 中国农业科学, 2021, 54: 248-260.
Wang N, Zhao Z B, Gao Q, He S P, Ma C H, Peng Z, Du X M. Cloning and functional analysis of salt stress response gene GhPEAMT1 in upland cotton. Sci Agric Sin, 2021, 54: 248-260. (in Chinese with English abstract)
[17] 王晓阳, 王丽媛, 潘兆娥, 何守朴, 王骁, 龚文芳, 杜雄明. 亚洲棉短绒突变体纤维发育及其差异基因表达分析. 作物学报, 2020, 46: 645-660.
doi: 10.3724/SP.J.1006.2020.94133
Wang X Y, Wang L Y, Pan Z E, He S P, Wang X, Gong W F, Du X M. Analysis of differentially expressed genes and fiber development in Gossypium arboreum fuzzless mutant. Acta Agron Sin, 2020, 46: 645-660 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2020.94133
[18] 钱玉源, 刘祎, 张曦, 王燕, 王广恩, 崔淑芳, 李俊兰. 棉花种子质量突变体ims-15及其近等基因系种子发育期转录组分析. 华北农学报, 2021, 36(3): 50-59.
Qian Y Y, Liu Y, Zhang X, Wang Y, Wang G E, Cui S F, Li J L. Transcriptome analysis of cotton seed weight mutant ims-15 and its near isogenic line during seed development. Acta Agric Boreali-Sin, 2021, 36(3): 50-59. (in Chinese with English abstract)
[19] 王三根. 植物生理学实验教程. 北京: 科学出版社, 2017. pp 188-206.
Wang S G. Plant Physiology Experiment. Beijing: Science Press, 2017. pp 188-206. (in Chinese)
[20] 高俊凤. 植物生理学实验指导. 北京: 高等教育出版社, 2006. pp 140-148.
Gao J F. Experimental Guidance of Plant Physiology. Beijing: Higher Education Press, 2006. pp 140-148. (in Chinese)
[21] 何光源. 植物基因工程. 北京: 清华大学出版社, 2007. pp 74-82.
He G Y. Plant Physiology. Beijing: Tsinghua University Press, 2007. pp 74-82. (in Chinese)
[22] 周庭辉, 戴小枫. 棉花抗黄萎病生理与生化机制研究. 分子植物育种, 2006, 4: 593-600.
Zhou T H, Dai X F. Research on physiological and biochemical mechanism of cotton against verticillium wilt. Mol Plant Breed, 2006, 4: 593-600. (in Chinese with English abstract)
[23] Gange J M, Smalle J, Gingerich D J, Walker J M, Yoo S D, Yanagisawa S C, Vierstra R D, Newcomb E H. Arabidopsis EIN3-binding F-box 1 and 2 form ubiquitin-protein ligases that repress ethylene action and promote growth by directing EIN3 degradation Proc Natl Acad Sci USA, 2004, 101: 6803-6808.
[24] 王涛, 陈孟龙, 刘玲, 宁传丽, 蔡斌华, 章镇, 乔玉山. 植物多倍体化中基因组和基因表达的变化. 植物学报, 2015, 50: 504-515.
doi: 10.11983/CBB14097
Wang T, Chen M L, Liu L, Ning C L, Cai B H, Zhang Z, Qiao Y S. Changes in genome and gene expression during plant polyploidization. Chin Bull Bot, 2015, 50: 504-515. (in Chinese with English abstract)
[25] Xu C, Bai Y, Lin X, Zhao N, Hu L, Gong Z, Wendel J F, Liu B. Genome-wide disruption of gene expression in allopolyploids but not hybrids of rice subspecies. Mol Biol Evol, 2014, 31: 1066-1076.
doi: 10.1093/molbev/msu085
[26] 柴小翠, 杨文涛, 汤琪, 马雪凤, 熊杰, 王平, 缪炜. 竹节参处理下嗜热四膜虫基因表达变化分析. 中国中药杂志, 2019, 44: 2580-2587.
Chai X C, Yang W T, Tang Q, Ma X F, Xiong J, Wang P, Miao W. Analysis of gene expression of Tetrahymena thermophila treated with Panax japonicas. China J Chin Materia Med, 2019, 44: 2580-2587. (in Chinese with English abstract)
[27] 蔡力. 二倍体和四倍体紫锥菊中叶形态结构及其光合效率的比较研究. 华南农业大学硕士学位论文, 广东广州, 2016.
Cai L. Comparative Study of Morphological Structure and Photosynthetic Efficiency Between Diploid and Tetraploid Echinacea Purpurea. MS Thesis of South China Agriculture University, Guangzhou, Guangdong, China, 2016. (in Chinese with English abstract)
[28] 周影影. 菘蓝同源多倍体及白菜菘蓝异源多倍体后代的细胞学及转录组学研究. 华中农业大学博士学位论文, 湖北武汉, 2014.
Zhou Y Y. Cytology and Transcriptome Analysis of Isatis indigotica Autopolyploid and the Progeny of Brassica rapa-Isatis indigotica Allohexaploid. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2014. (in Chinese with English abstract)
[29] Tsukaya H. Does ploidy level directly control cell size? Counterevidence from Arabidopsis genetics. PLoS One, 2013, 8: e83729.
doi: 10.1371/journal.pone.0083729
[30] Cosgrove D J. Loosening of plant cell walls by expansions. Nature, 2000, 407: 321-326.
doi: 10.1038/35030000
[31] Han Z F, Qin Y X, Deng Y S, Kong F J, Wang Z W, Shen G F, Wang J H, Duan B, Li R Z. Expression profiles of a cytoplasmic male sterile line of Gossypium harknessii and its fertility restorer and maintainer lines revealed by RNA-Seq. Plant Physiol Biochem, 2017, 116: 106-115.
doi: 10.1016/j.plaphy.2017.04.018
[32] Siedlecka A, Wiklund S, Peronne M A, Micheli F, Lesniewska J, Sethson I, Edlund U, Richardl, Sundberg B, Mellerowicz E J. Pectin methyl esterase inhibits intrusive and symplastic cell growth in developing wood cells of Populus. Plant Physiol, 2008, 146: 554-565.
doi: 10.1104/pp.107.111963 pmid: 18065553
[33] Hongo S, Sato K, Yokoyama R, Nishitani K. Demethylesterification of the primary wall by PECTIN METHYLESTERASE35 provides mechanical support to the Arabidopsis stem. Plant Cell, 2012, 24: 2624-2634.
doi: 10.1105/tpc.112.099325
[34] Chen J, Dong X, Li Q, Zhou X, Chen W. Biosynthesis of the active compounds of Isatis indigotica based on transcriptome sequencing and metabolites profiling. BioMed Central, 2013, 14: 857-869.
[35] Gao A G, Hakimi S M, Mittanck C A, Wu Y, Woerner B M, Stark D M, Shah D M, Liang J, Rommens C M. Fungal pathogen protection in potato by expression of a plant defensin peptide. Nat Biotechnol, 2000, 18: 1307-1340.
pmid: 11101813
[36] Romeis T, Ludwig A A, Martin R, Jones J D G. Calcium- dependent protein kinases play an essential role in a plant defense response. EMBO J, 2001, 20: 5556-5567.
pmid: 11597999
[37] Rudd J J, Franklin-Tong V E. Unraveling response-specificity in Ca2+ signaling pathways in plant cells. New Phytol, 2001, 151: 7-33.
doi: 10.1046/j.1469-8137.2001.00173.x
[38] 姬万丽, 朱红菊, 路绪强, 赵胜杰, 何楠, 耿丽华, 刘文革. 四倍体西瓜抗枯萎病菌生理小种1的机理. 中国农业科学, 2018, 51: 3750-3765.
Ji W L, Zhu H J, Lu X Q, Zhao S J, He N, Geng L H, Liu W G. The Mechanism of resistance to Fusarium oxysporum f. sp. niveum race 1 in tetraploid watermelon. Sci Agric Sin, 2018, 51: 3750-3765. (in Chinese with English abstract)
[39] 万华方, 魏帅, 冯宇霞, 钱伟. 以六倍体(AnAnCnCnCoCo)为桥梁创制抗旱新型甘蓝型油菜(AnArCnCo). 中国农业科学, 2020, 53: 3226-3234.
Wan H F, Wei S, Feng Y X, Qian W. Creating a new-type Brassica napus (AnArCnCo) with high drought-resistance employing hexaploid (AnAnCnCnCoCo) as a bridge. Sci Agric Sin, 2020, 53: 3226-3234. (in Chinese with English abstract)
[40] 葛霞, 徐瑞, 李梅, 田甲春, 李守强, 程建新, 田世龙. 香芹酮对马铃薯种薯发芽的调控机制. 中国农业科学, 2020, 53: 4929-4939.
Ge X, Xu R, Li M, Tian J C, Li S Q, Cheng J X, Tian S L. Regulation mechanism of carvone on seed potato sprouting. Sci Agric Sin, 2020, 53: 4929-4939. (in Chinese with English abstract)
[41] 李玉青, 王清连, 韦春艳, 董涛, 陈全家, 周瑞阳. 棉花胞质雄性不育细胞形态学观察及生理生化特性的研究. 西南农业学报, 2020, 33(1): 58-63.
Li Y Q, Wang Q L, Wei C Y, Dong T, Chen Q J, Zhou R Y. Morphological observation and physiological and biochemical characteristics of cotton cytoplasmic male sterile cells. Southwest China J Agric Sci, 2020, 33(1): 58-63. (in Chinese with English abstract)
[42] 王忠. 植物生理学. 北京: 中国农业出版社, 2010. p 137.
Wang Z. Plant Physiology. Beijing: China Agriculture Press, 2010. p 137. (in Chinese)
[43] 于济, 沙伟, 张梅娟, 马天意. 植物磷酸烯醇式丙酮酸羧化酶的研究进展. 高师理科学刊, 2021, 41(2): 54-60.
Yu J, Sha W, Zhang M J, Ma T Y. Research progress of plant phosphoenolpyruvate carboxylase. J Sci Teach Coll Univ, 2021, 41(2): 54-60. (in Chinese with English abstract)
[1] LI A-Li, FENG Ya-Nan, LI Ping, ZHANG Dong-Sheng, ZONG Yu-Zheng, LIN Wen, HAO Xing-Yu. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.] [J]. Acta Agronomica Sinica, 2022, 48(5): 1103-1118.
[2] HUANG Wen-Gong, JIANG Wei-Dong, YAO Yu-Bo, SONG Xi-Xia, LIU Yan, CHEN Si, ZHAO Dong-Sheng, WU Guang-Wen, YUAN Hong-Mei, REN Chuan-Ying, SUN Zhong-Yi, WU Jian-Zhong, KANG Qing-Hua. Transcriptome profiling of flax (Linum usttatissimum L.) response to low potassium stress [J]. Acta Agronomica Sinica, 2021, 47(6): 1070-1081.
[3] XU Jing, PAN Li-Juan, LI Hao-Yuan, WANG Tong, CHEN Na, CHEN Ming-Na, WANG Mian, YU Shan-Lin, HOU Yan-Hua, CHI Xiao-Yuan. Expression pattern analysis of genes related to lipid synthesis in peanut [J]. Acta Agronomica Sinica, 2021, 47(6): 1124-1137.
[4] WANG Rui-Li, WANG Liu-Yan, LEI Wei, WU Jia-Yi, SHI Hong-Song, LI Chen-Yang, TANG Zhang-Lin, LI Jia-Na, ZHOU Qing-Yuan, CUI Cui. Screening candidate genes related to aluminum toxicity stress at germination stage via RNA-seq and QTL mapping in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(12): 2407-2422.
[5] REN Meng-Meng, ZHANG Hong-Wei, WANG Jian-Hua, WANG Guo-Ying, ZHENG Jun. Fine mapping of a major QTL qMES20-10 associated with deep-seeding tolerance in maize and analysis of differentially expressed genes [J]. Acta Agronomica Sinica, 2020, 46(7): 1016-1024.
[6] JIA Xiao-Xia,QI En-Fang,LIU Shi,WEN Guo-Hong,MA Sheng,LI Jian-Wu,HUANG Wei. Effects of over-expression of AtDREB1A gene on potato growth and abiotic stress resistance gene expression [J]. Acta Agronomica Sinica, 2019, 45(8): 1166-1175.
[7] YANG Hui-Ju,GUO Hua-Chun*. Digital Gene Expression Profiling Analysis of Potato Under Low Temperature Stress [J]. Acta Agron Sin, 2017, 43(03): 454-463.
[8] CHEN Lin-Bo,XIA Li-Fei,TIAN Yi-Ping,LI Mei,SONG Wei-Xi,LIANG Ming-Zhi,JIANG Chang-Jun. Exploring Sterility Gene from Tea Plant Flower Based on Digital Gene Expression Profiling [J]. Acta Agron Sin, 2017, 43(02): 210-217.
[9] GE Shu-Juan,SUN Ai-Qing,LIU Peng,ZHANG Jie-Dao,DONG Shu-Ting. In silico Expression Profile of Maize Genes in Response to Osmotic Stress [J]. Acta Agron Sin, 2014, 40(07): 1164-1173.
[10] LI Yu-Liang,LIU Jian-Hua,ZHENG Jin-Rong,HU Jian-Guang. Gene Expression Profile of Sweet Corn Ears under Heat Stress [J]. Acta Agron Sin, 2013, 39(02): 269-279.
[11] YAN Gui-Xin,CHEN Bi-Yun,XU Kun,GAO Gui-Zhen,Lü Pei-Jun,WU Xiao-Ming,LI Feng,LI Jun. Differential Gene Expression Profiles in Developing Seeds of Brassica napus L. under Different Nitrogen Application Levels [J]. Acta Agron Sin, 2012, 38(11): 2052-2060.
[12] CHEN Rong-Beng, LIU Lei, MO Xiu-Qing, QIU En-Jian, WANG Chun-Jun, SONG Bao-Gang, YA Pei-Jiang, YANG Tie-Zhao. cDNA-AFLP Analysis of Differentially Expressed Genes in Tobacco Infected by TMV [J]. Acta Agron Sin, 2012, 38(01): 62-70.
[13] CHEN Xiao-Beng, ZHU Fang-He, HONG Yan-Ban, LIU Hai-Yan, ZHANG Er-Hua, ZHOU Gui-Yuan, LI Shao-Xiong, ZHONG Ni, WEN Shi-Jie, LI Xing-Yu, LIANG Xuan-Jiang. Analysis of Gene Expression Profiles in Pod and Leaf of Two Major Peanut Cultivars in Southern China [J]. Acta Agron Sin, 2011, 37(08): 1378-1388.
[14] GUO Dong-Wei;LI Fei;MA Liu-Yin;LI Lian-Cheng;MA You-Zhi;SUN Ri-Fei. Endopolyploidization Phenomenon of Chinese Cabbage (Brassica rapa ssp. pekinensis) [J]. Acta Agron Sin, 2008, 34(08): 1386-1392.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[2] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[3] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[4] Wang Yiqun. Infection of Rhizobia to Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 32 -35 .
[5] KE Li-Ping;ZHENG Tao;WU Xue-Long;HE Hai-Yan;CHEN Jin-Qing. Analysis of Self-Incompatibility Locus Gene in Brassica napus[J]. Acta Agron Sin, 2008, 34(05): 764 -769 .
[6] CUI Xiu-Hui. Male Sterility Induced by Chemical Hybridizing Agent SQ-1 in Common Millet[J]. Acta Agron Sin, 2008, 34(01): 106 -110 .
[7] A JIA La-Tie;ZENG Long-Jun;XUE Da-Wei;HU Jiang;ZENG Da-Li;GAO Zhen-Yu;GUO Long-Biao;LI Shi-Gui;QIAN Qian
. QTL Analysis for Chlorophyll Content in Four Grain-Filling Stage in Rice[J]. Acta Agron Sin, 2008, 34(01): 61 -66 .
[8] YANG Wen-Xiong;YANG Fang-Ping;LIANG Dan;HE Zhong-Hu;SHANG Xun-Wu;XIA Xian-Chun. Molecular Characterization of Slow-Rusting Genes Lr34/Yr18 in Chinese Wheat Cultivars[J]. Acta Agron Sin, 2008, 34(07): 1109 -1113 .
[9] WANG Ying;WU Cun-Xiang;ZHANG Xue-Ming;WANG Yun-Peng;HAN Tian-Fu. Effects of Soybean Major Maturity Genes under Different Photoperiods[J]. Acta Agron Sin, 2008, 34(07): 1160 -1168 .
[10] WANG Guo-Li;GUO Zhen-Fei. Effects of Phosphorus Nutrient on the Photosynthetic Characteristics in Rice Cultivars with Different Cold-Sensitivity[J]. Acta Agron Sin, 2007, 33(08): 1385 -1389 .