Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (4): 893-905.doi: 10.3724/SP.J.1006.2023.24065

• CROP GENETICS & BREEDING · GERMPLASM RESOURCES · MOLECULAR GENETICS • Previous Articles     Next Articles

BnABCI8 affects chloroplast development of Brassica napus

CHEN Xiao-Han(), WANG Li-Qin, WANG Hua-Dong, XIAO Qing, TAO Bao-Long, ZHAO Lun, WEN Jing, YI Bin, TU Jin-Xing, FU Ting-Dong, SHEN Jin-Xiong()   

  1. National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan 430070, Hubei, China
  • Received:2022-03-23 Accepted:2022-07-21 Online:2023-04-12 Published:2022-08-01
  • Contact: SHEN Jin-Xiong E-mail:809365931@qq.com;jxshen@mail.hzau.edu.cn
  • Supported by:
    National Natural Science Foundation of China(31930032)

Abstract:

Mature chloroplast is an important place for photosynthesis of higher plants and important organs that affects crop yield. BnABCI8 is a member of the ABC transporter I subfamily, and there are two functional copies of BnA09.ABCI8 and BnC09.ABCI8 in Brassica napus. Their amino acid sequences are very conserved in different species. The relative expression patterns showed that BnABCI8 was expressed in all tissues of Brassica napus, and the relative expression level in leaves and flowers was higher. Subcellular localization indicated that BnABCI8 was located in chloroplast. Phenotypic identification showed that the double mutation of BnA09.ABCI8 and BnC09.ABCI8 and the single mutation of BnA09.ABCI8 both resulted in yellow cotyledons and chlorotic true leaves, among which double mutant was more severe chlorosis. Transmission electron microscope demonstrated that the chloroplasts in the double mutants could not form normal thylakoid membranes. The knock-out of BnABCI8 resulted in the decrease of the relative expression level of related genes in the chlorophyll synthesis pathway, and significantly increased the iron content in mutant leaves. These results indicated that the mutation of BnABCI8 resulted in abnormal chloroplast structure, hindered the synthesis of chlorophyll, and significantly increased the iron content in the leaves. In addition, the accumulation of iron ion might lead to a series of reactions such as accumulation of reactive oxygen species, cell death and chlorophyll degradation, and eventually led to mutation of leaf color.

Key words: Brassica napus, BnABCI8 gene, ABC transporter, chloroplast development, chlorophyll synthesis, variegated mutant

Table S1

Primers used in this study"

引物名称
Primer name
引物序列
Primer sequence (5'-3')
作用
Function
C83-A09F cttgcatgcctgcaggtcgacATGGCGTCTCTCCTCGCG 亚细胞定位
Subcellular localization assay
C83-A09R tctaccggtacccggggatccGAACCCACTGATCCTTCAAGCTT
C83-C09FF cttgcatgcctgcaggtcgacATGGCGTCTCTCCTCGCG
C83-C09RR tctaccggtacccggggatccGAACCCACTGATCCTTCAAGCTT
C83F ATTTCATTTGGAGAGGACCTCG
C83R TGTGCCCATTAACATCACCATC
QA09F ATCCAGGTTAAGAATCCATCAGCG qPCR
分析
qPCR
analysis
QA09R TCTGCAGAACCCTGAGATCATCG
QC09F ATCCAGGTTAAGAACCCATCAGCC
QC09R TCTGCAGAACCCAGAGATCATTG
QHEMA1F TCCGAGGAACAACAACAGAACCAG
QHEMA1R TGTATATCTGTCGGGTGCAGAGT
QHEMCF CGGTTCCGTCTCCGTCAT
QHEMCR GGCATTAGGTGCGGATTCAG
QHEME2F CGAAATCTTCCCGGTCAATTCGTTG
QHEME2R AGAGGCTCAGTGGTTGCAGAG
QCHLHF GCACGCTTGGTTTGCATCCTATT
QCHLHR CATGTGACTTCCCTGTTCTAGGGTCA
QCHLDF GATTGCTATTTCAGGTCGTAGAGG
引物名称
Primer name
引物序列
Primer sequence (5'-3')
作用
Function
QCHLDR GTTCGTCTTCCCACTCATCAG
QCHLMF GCGACGATCGTTTCCTTGAC
QCHLMR AAATACTCCCTCACCACCTCCTT
QDVRF TCCAGTGGATACATACAACCAATGGCT
QDVRR ATTGGTTTGGAAGGTGGAAGCGAGA
QPORCF CCGACAAGATCTCCATCAAGGAG
QPORCR CGGCGATGCTTCGTTCGAT
QCHLGF CGAGTTGGAGCACTCTCTCTCCA
QCHLGR CTCTTCCCAGAAGAGTTGGAGTCC
QCAOF GTCTATTGTCTTCCTTCTTCCTC
QCAOR TCCTTTCACTCCCTTCTTTCTG
actionQ3F CTATCCTCCGTCTCGATCTCGC
actionQ3R CTTAGCCGTCTCCAGCTCTTGC
HA09-1-F ggagtgagtacggtgtgcACAGTACTTCCAAAACCTAGACTACGAC Hi-tom
分析
Hi-tom analysis
HA09-1-R gagttggatgctggatggGCCGAGCTTGTCGAAATACTCGA
HA09-2-F ggagtgagtacggtgtgcCCGCTTTGAACTCAGCTGTGT
HA09-2-R gagttggatgctggatggCTTCGTGACGAAATTATAAATCCCTCCT
HC09-1-F ggagtgagtacggtgtgcGCAATACTTCCAAAACCTAGACTACGAC
HC09-1-R gagttggatgctggatggGCCGAGCTTGTCGAAGTAGTCAA
HC09-2-F ggagtgagtacggtgtgcCTGCTCTGAACTCCGCCG
HC09-2-R gagttggatgctggatggGTGACGAAATTGTAGATCCCTCCCTTC
F-1 ACTCTTTCCCTACACGACGCTCTTCCGATCTgcttGCGTtggagtgagtacggtgtgc
F-2 ACTCTTTCCCTACACGACGCTCTTCCGATCTgcttGTAGtggagtgagtacggtgtgc
F-3 ACTCTTTCCCTACACGACGCTCTTCCGATCTgcttACGCtggagtgagtacggtgtgc
F-4 ACTCTTTCCCTACACGACGCTCTTCCGATCTgcttCTCGtggagtgagtacggtgtgc
F-5 ACTCTTTCCCTACACGACGCTCTTCCGATCTgcttGCTCtggagtgagtacggtgtgc
F-6 ACTCTTTCCCTACACGACGCTCTTCCGATCTgcttAGTCtggagtgagtacggtgtgc
F-7 ACTCTTTCCCTACACGACGCTCTTCCGATCTgcttCGACtggagtgagtacggtgtgc
F-8 ACTCTTTCCCTACACGACGCTCTTCCGATCTgcttGATGtggagtgagtacggtgtgc
F-9 ACTCTTTCCCTACACGACGCTCTTCCGATCTgcttATACtggagtgagtacggtgtgc
F-10 ACTCTTTCCCTACACGACGCTCTTCCGATCTgcttCACAtggagtgagtacggtgtgc
F-11 ACTCTTTCCCTACACGACGCTCTTCCGATCTgcttGTGCtggagtgagtacggtgtgc
F-12 ACTCTTTCCCTACACGACGCTCTTCCGATCTgcttACTAtggagtgagtacggtgtgc
R-A GACTGGAGTTCAGACGTGTGCTCTTCCGATCTctgtGCGTtgagttggatgctggatgg
R-B GACTGGAGTTCAGACGTGTGCTCTTCCGATCTctgtGTAGtgagttggatgctggatgg
R-C GACTGGAGTTCAGACGTGTGCTCTTCCGATCTctgtACGCtgagttggatgctggatgg
R-D GACTGGAGTTCAGACGTGTGCTCTTCCGATCTctgtCTCGtgagttggatgctggatgg
R-E GACTGGAGTTCAGACGTGTGCTCTTCCGATCTctgtGCTCtgagttggatgctggatgg
R-F GACTGGAGTTCAGACGTGTGCTCTTCCGATCTctgtAGTCtgagttggatgctggatgg
R-G GACTGGAGTTCAGACGTGTGCTCTTCCGATCTctgtCGACtgagttggatgctggatgg
R-H GACTGGAGTTCAGACGTGTGCTCTTCCGATCTctgtGATGtgagttggatgctggatgg
5UDI427 AATGATACGGCGACCACCGAGATCTACACGCCTTCAAACACTCTTTCCCTACACGACGC
5UDI428 AATGATACGGCGACCACCGAGATCTACACAGGAACCTACACTCTTTCCCTACACGACGC
7UDI427 CAAGCAGAAGACGGCATACGAGATTCACGAAGGTGACTGGAGTTCAGACGTGTGCTCTT
引物名称
Primer name
引物序列
Primer sequence (5'-3')
作用
Function
7UDI428 CAAGCAGAAGACGGCATACGAGATCTTAGCCAGTGACTGGAGTTCAGACGTGTGCTCTT
Cas9F CGAGAAGAAGAACGGCCTGTTCG 基因编辑
Gene editing
Cas9R AGTTGCCCCTAGCGAGTGGG
U626-IDF TGTCCCAGGATTAGAATGATTAGGC
U629-IDR AGCCCTCTTCTTTCGATCCATCAAC
crp1-BsF-ABCI8 ATATATGGTCTCGATTGACTCCTTCACAATCCCCAAGTT
crp1-F0-ABCI8 TGACTCCTTCACAATCCCCAAGTTTTAGAGCTAGAAATAGC
crp2-R0-ABCI8 AACCGTGTTCTTGGGGATATAGCAATCTCTTAGTCGACTCTAC
crp2-BsR-ABCI8 ATTATTGGTCTCGAAACCGTGTTCTTGGGGATATAGCAA

Fig. 1

Relationship among ABCI8 orthologs in plants A: the phylogenetic tree of the sequence of BnABCI8 and its putative orthologs in different species. Numbers on branches are bootstrap values for 1000 replications. B: the amino acid sequences of BnABCI8 and putative orthologs in five species."

Fig. 2

Relative expression pattern of BnABCI8 genes Values are means ± SDs (n = 3)."

Fig. 3

Subcellular localization of BnABCI8 A, E: green fluorescence signals of transformed tobacco with the P35S::BnaA09.ABCI8:GFP and P35S::BnaC09.ABCI8:GFP constructs, respectively. B, F: red fluorescence of chloroplasts in tobacco. C, G: the image under bright field. D, H: the merged images from (A-C) and (E-G), respectively."

Fig. 4

Gene structure of BnABCI8 and plant identification of CRISPR-edited positive plants A: gene structure of BnA09.ABCI8 and BnC09.ABCI8; B: the electrophoretic identification of CRISPR-edited positive plants. The marker bands are 2 kb, 1 kb, 750 bp, 500 bp, and 200 bp, respectively, and the target band is 686 bp."

Fig. 5

Identification of T1 generation mutant A: the editing of some plants. The yellow mark indicates the PAM site and the inserted base, and the red dash indicates the deletion. B: the relative expression levels of BnABCI8 in mutants. * and ** mean significant differences at P < 0.05 and P < 0.01, respectively."

Fig. 6

Phenotypic observation of cotyledons in mutants A-C: 10-day-old wild type; D-F: 10-day-old single mutants; G-I: 10-day-old double mutants; J-L: 17-day-old double mutants."

Fig. 7

Phenotypic observation of mutants A: 56-day-old wild type; B: 56-day-old single mutants; C: 56-day-old double mutants."

Fig. 8

Phenotypic observation and chlorophyll content determination of true leaf in double mutant A, C: the comparison of true leaves and chlorophyll contents between double mutant and WT at 30 days old; B, D: the comparison of true leaves and chlorophyll contents between double mutant and WT at 56 days old. Values are presented as mean ± SD (n = 3). * and ** mean significant differences at P < 0.05 and P < 0.01, respectively."

Fig. 9

Relative expression levels of genes related to the chlorophyll synthesis pathway Value is mean ± SD (n = 3). * and ** mean significant differences at P < 0.05 and P < 0.01, respectively."

Fig. 10

Fe content in leaves a09 represents single mutants of the BnA09.ABCI8; a09 c09 represents double mutants of the BnA09.ABCI8 and BnC09.ABCI8. Value is mean ± SD (n = 3). * and ** mean significant differences at P < 0.05 and P < 0.01, respectively."

Fig. 11

Chloroplast ultrastructure of double mutant and WT A-C: the chloroplast structure of wild type; D-F: the chloroplast structure of double mutant; Cp: chloroplast; Tm: thylakoid membrane."

[1] Timmis J N, Ayliffe M A, Huang C Y, Martin W. Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Genet, 2004, 5: 123-135.
doi: 10.1038/nrg1271 pmid: 14735123
[2] Neuhaus H E, Emes M J. Nonphotosynthetic metabolism in plastids. Annu Rev Plant Physiol Plant Mol Biol, 2000, 51: 111-140.
doi: 10.1146/annurev.arplant.51.1.111
[3] Beale S I. Green genes gleaned. Trends Plant Sci, 2005, 10: 309-312.
pmid: 15951223
[4] Hu G, Yalpani N, Briggs S P, Johal G S. A porphyrin pathway impairment is responsible for the phenotype of a dominant disease lesion mimic mutant of maize. Plant Cell, 1998, 10: 1095-1105.
doi: 10.1105/tpc.10.7.1095 pmid: 9668130
[5] Sakuraba Y, Rahman M L, Cho S H, Kim Y S, Koh H J, Yoo S C, Paek N C. The rice faded green leaf locus encodes protochlorophyllide oxidoreductase B and is essential for chlorophyll synthesis under high light conditions. Plant J, 2013, 74: 122-133.
doi: 10.1111/tpj.12110
[6] Wu Z, Zhang X, He B, Diao L, Sheng S, Wang J, Guo X, Su N, Wang L, Jiang L, Wang C, Zhai H, Wan J. A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol, 2007, 145: 29-40.
doi: 10.1104/pp.107.100321 pmid: 17535821
[7] Albrecht V, Ingenfeld A, Apel K. Characterization of the snowy cotyledon 1 mutant of Arabidopsis thaliana: the impact of chloroplast elongation factor G on chloroplast development and plant vitality. Plant Mol Biol, 2006, 60: 507-518.
doi: 10.1007/s11103-005-4921-0
[8] Hayashi-Tsugane M, Takahara H, Ahmed N, Himi E, Takagi K, Iida S, Tsugane K, Maekawa M. A mutable albino allele in rice reveals that formation of thylakoid membranes requires the SNOW-WHITE LEAF1 gene. Plant Cell Physiol, 2014, 55: 3-15.
doi: 10.1093/pcp/pct149 pmid: 24151203
[9] 王晓珠, 孙万梅, 马义峰, 韩二琴, 韩丽, 孙丽萍, 彭再慧, 王邦俊. 拟南芥ABC转运蛋白研究进展. 植物生理学报, 2017, 53: 133-144.
Wang X Z, Sun W M, Ma Y F, Han E Q, Han L, Sun L P, Peng Z H, Wang B J. Research progress of ABC transporters in Arabidopsis thaliana. Plant Physiol J, 2017, 53: 133-144. (in Chinese with English abstract)
[10] 贺彦. 水稻ATP结合盒式转运基因OsABCI7的克隆与功能分析. 中国农业科学院博士学位论文, 北京, 2020.
He Y. Map-based Cloning and Functional Analysis of the ATP-binding Cassette Transporter OsABCI7 in Rice. PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2020. (in Chinese with English abstract)
[11] Zhang X D, Zhao K X, Yang Z M. Identification of genomic ATP binding cassette (ABC) transporter genes and Cd-responsive ABCs in Brassica napus. Gene, 2018, 664: 139-151.
doi: S0378-1119(18)30434-7 pmid: 29709635
[12] Zuo J, Wu Z, Li Y, Shen Z, Feng X, Zhang M, Ye H. Mitochondrial ABC transporter ATM3 is essential for cytosolic iron-sulfur cluster assembly. Plant Physiol, 2017, 173: 2096-2109.
doi: 10.1104/pp.16.01760 pmid: 28250070
[13] Xu Y, Zhang S, Guo H, Wang S, Xu L, Li C, Qian Q, Chen F, Geisler M, Qi Y, Jiang D A. OsABCB14 functions in auxin transport and iron homeostasis in rice (Oryza sativa L.). Plant J, 2014, 79: 106-117.
doi: 10.1111/tpj.12544
[14] Rea P A. Plant ATP-binding cassette transporters. Annu Rev Plant Biol, 2007, 58: 347-375.
pmid: 17263663
[15] Dean M, Annilo T. Evolution of the ATP-binding cassette (ABC) transporter superfamily in vertebrates. Annu Rev Genomics Hum Genet, 2005, 6: 123-142.
pmid: 16124856
[16] Kang J, Park J, Choi H, Burla B, Kretzschmar T, Lee Y, Martinoia E. Plant ABC transporters. Arabidopsis Book, 2011, 9: e0153.
doi: 10.1199/tab.0153
[17] Møller S G, Kunkel T, Chua N H. A plastidic ABC protein involved in intercompartmental communication of light signaling. Genes Dev, 2001, 15: 90-103.
doi: 10.1101/gad.850101
[18] Xu X M, Adams S, Chua N H, Møller S G. AtNAP1 represents an atypical SufB protein in Arabidopsis plastids. J Biol Chem, 2005, 280: 6648-6654.
doi: 10.1074/jbc.M413082200
[19] von Voithenberg L V, Park J, Stübe R, Lux C, Lee Y, Philippar K. A novel prokaryote-type ECF/ABC transporter module in chloroplast metal homeostasis. Front Plant Sci, 2019, 10: 1264.
doi: 10.3389/fpls.2019.01264 pmid: 31736987
[20] Sun M, Hua W, Liu J, Huang S, Wang X, Liu G, Wang H. Design of new genome- and gene-sourced primers and identification of QTL for seed oil content in a specially high-oil Brassica napus cultivar. PLoS One, 2012, 7: e47037.
doi: 10.1371/journal.pone.0047037
[21] Dai C, Li Y, Li L, Du Z, Lin S, Tian X, Li S, Yang B, Yao W, Wang J. An efficient Agrobacterium-mediated transformation method using hypocotyl as explants for Brassica napus. Mol Breed, 2020, 40: 96.
doi: 10.1007/s11032-020-01174-0
[22] Xing H L, Dong L, Wang Z P, Zhang H Y, Han C Y, Liu B, Wang X C, Chen Q J. A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol, 2014, 14: 327.
doi: 10.1186/s12870-014-0327-y
[23] Liu Q, Wang C, Jiao X, Zhang H, Song L, Li Y, Gao C, Wang K. Hi-TOM: a platform for high-throughput tracking of mutations induced by CRISPR/Cas systems. Sci China Life Sci, 2019, 62: 1-7.
doi: 10.1007/s11427-018-9402-9 pmid: 30446870
[24] Yang Z, Liu M, Ding S, Zhang Y, Yang H, Wen X, Chi W, Lu C, Lu Q. Plastid deficient 1 is essential for the accumulation of plastid-encoded RNA polymerase core subunit β and chloroplast development in Arabidopsis. Int J Mol Sci, 2021, 22: 13648.
doi: 10.3390/ijms222413648
[25] Liu T T, Tao B L, Wu H F, Wen J, Yi B, Ma C Z, Tu J X, Fu T D, Zhu L X, Shen J X. Bn.YCO affects chloroplast development in Brassica napus L. Crop J, 2021, 9: 992-1002.
doi: 10.1016/j.cj.2020.10.015
[26] Zhang H Y, Li X T, Yang Y B T, Hu K N, Zhou X M, Wen J, Yi B, Shen J X, Ma C Z, Fu T D, Tu J X. BnaA02.YTG1, encoding a tetratricopeptide repeat protein, is required for early chloroplast biogenesis in Brassica napus. Crop J, 2022, 10: 597-610.
doi: 10.1016/j.cj.2021.06.010
[27] 孙璇. 一种叶色黄绿白菜型油菜突变体性状研究. 山西农业大学硕士学位论文, 山西太谷, 2018.
Sun X. Study on the Character of a Yellow-green Leaf Mutant in Brassica napus. MS Thesis of Shanxi Agricultural University, Taigu, Shanxi, China, 2018 (in Chinese with English abstract).
[28] 李玉荣. BSR-Seq方法定位玉米黄化突变基因. 华中农业大学硕士学位论文, 湖北武汉, 2014.
Li Y R. Etiolation Mutant Gene Mapping via Bulked Segregant RNA-Seq (BSR-Seq) Method in Maize. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2014. (in Chinese with English abstract)
[29] Duy D, Wanner G, Meda A R, von Wirén N, Soll J, Philippar K. PIC1, an ancient permease in Arabidopsis chloroplasts, mediates iron transport. Plant Cell, 2007, 19: 986-1006.
doi: 10.1105/tpc.106.047407
[30] Jeong J, Cohu C, Kerkeb L, Pilon M, Connolly E L, Guerinot M L. Chloroplast Fe (III) chelate reductase activity is essential for seedling viability under iron limiting conditions. Proc Natl Acad Sci USA, 2008, 105: 10619-10624.
doi: 10.1073/pnas.0708367105
[31] Shimoni-Shor E, Hassidim M, Yuval-Naeh N, Keren N. Disruption of Nap14, a plastid-localized non-intrinsic ABC protein in Arabidopsis thaliana results in the over-accumulation of transition metals and in aberrant chloroplast structures. Plant Cell Environ, 2010, 33: 1029-1038.
doi: 10.1111/j.1365-3040.2010.02124.x
[32] Zeng X, Tang R, Guo H, Ke S, Teng B, Hung Y H, Xu Z, Xie X M, Hsieh T F, Zhang X Q. A naturally occurring conditional albino mutant in rice caused by defects in the plastid-localized OsABCI8 transporter. Plant Mol Biol, 2017, 94: 137-148.
doi: 10.1007/s11103-017-0598-4 pmid: 28285416
[1] BAI Cheng-Cheng, YAO Xiao-Yao, WANG Yu-Lu, WANG Sai-Yu, LI Jin-Ying, JIANG You-Wei, JIN Shu-Rong, CHEN Chun-Jie, LIU Yu, WEI Xing-Yue, XU Xin-Fu, LI Jia-Na, NI Yu. Cloning of genes involved in cuticular very-long-chain alkane synthesis and its interaction with BnCER1-2 in Brassica napus [J]. Acta Agronomica Sinica, 2023, 49(4): 1016-1027.
[2] CHEN Hui, XIAO Qin, WANG Hua-Dong, WEN Jing, MA Chao-Zhi, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, YI Bin. Identification of SUMO protein family members and functional study of Bna.SUMO1.C08 gene in Brassica napus [J]. Acta Agronomica Sinica, 2023, 49(4): 917-925.
[3] WANG Zhen, ZHANG Xiao-Li, LIU Miao, YAO Meng-Nan, MENG Xiao-Jing, QU Cun-Min, LU Kun, LI Jia-Na, LIANG Ying. Transcriptional differential expression analysis between BnMAPK1-overexpression and Zhongyou 821 rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2023, 49(3): 856-868.
[4] ZHANG Wen-Xuan, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome editing of BnaMPK6 gene by CRISPR/Cas9 for loss of salt tolerance in Brassica napus L. [J]. Acta Agronomica Sinica, 2023, 49(2): 321-331.
[5] MA Li, BAI Jing, ZHAO Yu-Hong, SUN Bo-Lin, HOU Xian-Fei, FANG Yan, WANG Wang-Tian, PU Yuan-Yuan, LIU Li-Jun, XU Jia, TAO Xiao-Lei, SUN Wan-Cang, WU Jun-Yan. Protein and physiological differences under cold stress, and identification and analysis of BnGSTs in Brassica napus L. [J]. Acta Agronomica Sinica, 2023, 49(1): 153-166.
[6] ZHANG Chao, YANG Bo, ZHANG Li-Yuan, XIAO Zhong-Chun, LIU Jing-Sen, MA Jin-Qi, LU Kun, LI Jia-Na. Mining harvest index loci based on QTL mapping and genome-wide association study in rapessed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2022, 48(9): 2180-2195.
[7] ZHANG Tian-Yu, WANG Yue, LIU Ying, ZHOU Ting, YUE Cai-Peng, HUANG Jin-Yong, HUA Ying-Peng. Bioinformatics analysis and core member identification of proline metabolism gene family in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(8): 1977-1995.
[8] LI Sheng-Ting, XU Yuan-Fang, CHANG Wei, LIU Ya-Jun, GU Yuan, ZHU Hong, LI Jia-Na, LU Kun. Bna.C02SWEET15 positively regulates the flowering time of rapeseed through photoperiodic pathway [J]. Acta Agronomica Sinica, 2022, 48(8): 1938-1947.
[9] DAI Li-Shi, CHANG Wei, ZHANG Sai, QIAN Ming-Chao, LI Xiao-Dong, ZHANG Kai, LI Jia-Na, QU Cun-Min, LU Kun. Functional validation of Bna-novel-miR36421 regulating plant architecture and flower organ development in Arabidopsis thaliana [J]. Acta Agronomica Sinica, 2022, 48(7): 1635-1644.
[10] CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371.
[11] YUAN Da-Shuang, DENG Wan-Yu, WANG Zhen, PENG Qian, ZHANG Xiao-Li, YAO Meng-Nan, MIAO Wen-Jie, ZHU Dong-Ming, LI Jia-Na, LIANG Ying. Cloning and functional analysis of BnMAPK2 gene in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(4): 840-850.
[12] HUANG Cheng, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome wide analysis of BnAPs gene family in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(3): 597-607.
[13] WANG Rui, CHEN Xue, GUO Qing-Qing, ZHOU Rong, CHEN Lei, LI Jia-Na. Development of linkage InDel markers of the white petal gene based on whole-genome re-sequencing data in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(3): 759-769.
[14] YANG Wen-Jing, LU Hai-Qin, CHEN Wu-Jun, ZENG Lei, XIE Tao, JIANG Jin-Jin, WANG You-Ping. Functional identification of Bna-miR171g on improving tolerance to osmotic stress in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(12): 3071-3079.
[15] WU Jia-Yi, YUAN Fang, MENG Li-Jiao, LI Chen-Yang, SHI Hong-Song, BAI Yan-Song, WU Xiao-Ru, LI Jia-Na, ZHOU Qing-Yuan, CUI Cui. QTL mapping and candidate genes screening of photosynthesis-related traits in Brassica napus L. during seedling stage under aluminum stress [J]. Acta Agronomica Sinica, 2022, 48(11): 2749-2764.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!