Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (8): 1938-1947.doi: 10.3724/SP.J.1006.2022.14155
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
LI Sheng-Ting1,**(), XU Yuan-Fang1,**(), CHANG Wei1, LIU Ya-Jun2, GU Yuan2, ZHU Hong1, LI Jia-Na1,3,4, LU Kun1,3,4,*()
[1] |
Blümel M, Dally N, Jung C. Flowering time regulation in crops- what did we learn from Arabidopsis? Curr Opin Biotechnol, 2015, 32: 121-129.
doi: 10.1016/j.copbio.2014.11.023 |
[2] |
Wahl V, Ponnu J, Schlereth A, Arrivault S, Langenecker T, Franke A, Feil R, E. Lunn J, Stitt M, Schmid M. Regulation of flowering by trehalose-6-phosphate signaling in Arabidopsis thaliana. Science, 2013, 339: 704-707.
doi: 10.1126/science.1230406 |
[3] |
Atsuko K, René R. Genetic and molecular basis of floral induction in Arabidopsis thaliana. J Exp Bot, 2020, 71: 2490-2504.
doi: 10.1093/jxb/eraa057 |
[4] |
Wang T Y, Ping X K, Cao Y R, Jian H J, Gao Y M, Wang J, Tan Y C, Xu X F, Lu K, Li J N, Liu L Z. Genome-wide exploration and characterization of miR172/euAP2 genes in Brassica napus L. for likely role in flower organ development. BMC Plant Biol, 2019, 19: 336.
doi: 10.1186/s12870-019-1936-2 |
[5] |
Rolland F, Baenagonzalez E, Sheen J. SUGAR SENSING AND SIGNALING IN PLANTS: conserved and novel mechanisms. Annu Rev Plant Biol, 2006, 57: 675-709.
pmid: 16669778 |
[6] |
Rolland F, Sheen J. Sugar sensing and signaling networks in plants. Biochem Soc Trans, 2005, 33: 269-271.
doi: 10.1042/BST0330269 |
[7] |
Smeekens S, Ma J, Hanson J, Rolland F. Sugar signals and molecular networks controlling plant growth. Curr Opin Plant Biol, 2010, 13: 273-278.
doi: 10.1016/j.pbi.2009.12.002 |
[8] | Jian H J, Lu K, Yang B, Wang T Y, Zhang L, Zhang A X, Wang J, Liu L Z, Qu C M, Li J N. Genome-wide analysis and expression profiling of the SUC and SWEET gene families of sucrose transporters in oilseed rape (Brassica napus L.). Front Plant Sci, 2016, 7: 1464. |
[9] |
López-Coria M, Sánchez-Sánchez T, Martínez-Marcelo V H, Aguilera-Alvarado G P, Flores-Barrera M, King-Díaz B, Sánchez N S. SWEET transporters for the nourishment of embryonic tissues during maize germination. Genes, 2019, 10: 780.
doi: 10.3390/genes10100780 |
[10] |
Buendía-Monreal M, Gillmor C S. Convergent repression of miR156 by sugar and the CDK8 module of Arabidopsis mediator. Dev Biol, 2017, 423: 19-23.
doi: S0012-1606(16)30267-6 pmid: 28108181 |
[11] |
Lemoine R. Sucrose transporters in plants: update on function and structure. Biochim Biophys Acta, 2000, 1465: 246-262.
pmid: 10748258 |
[12] |
Williams L E, Lemoine R, Sauer N. Sugar transporters in higher plants-a diversity of roles and complex regulation. Trends Plant Sci, 2000, 5: 283-290.
pmid: 10871900 |
[13] |
Chen L Q, Hou B H, Lalonde S, Takanaga H, Hartung M L, Qu X Q, Guo W J, Kim J G, Underwood W, Chaudhuri B, Chermak D, Antony G, White F F, Somerville S C, Mudgett M B, Frommer W B. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature, 2010, 468: 527-534.
doi: 10.1038/nature09606 |
[14] |
Chen L Q, Qu X Q, Hou B H, Sosso D, Osorio S, Fernie A R, Frommer W B. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science, 2012, 335: 207-210.
doi: 10.1126/science.1213351 |
[15] |
Talbot N J. Raiding the sweet shop. Nature, 2010, 468: 510-511.
doi: 10.1038/468510a |
[16] |
Chandran D. Co-option of developmentally regulated plant SWEET transporters for pathogen nutrition and abiotic stress tolerance. IUBMB Life, 2015, 67: 461-471.
doi: 10.1002/iub.1394 pmid: 26179993 |
[17] |
Seo P J, Ryu J, Kang S K, Park C M. Modulation of sugar metabolism by an INDETERMINATE DOMAIN transcription factor contributes to photoperiodic flowering in Arabidopsis. Plant J, 2011, 65: 418-429.
doi: 10.1111/j.1365-313X.2010.04432.x |
[18] |
Chen L Q. SWEET sugar transporters for phloem transport and pathogen nutrition. New Phytol, 2014, 201: 1150-1155.
doi: 10.1111/nph.12445 |
[19] | 张凯, 魏丝雨, 常玮, 范永海, 卢坤. 甘蓝型油菜全基因组cDNA FOX-hunting过表达文库构建. 中国油料作物学报, 2021, 43: 435-442. |
Zhang K, Wei S Y, Chang W, Fan Y H, Lu K. Construction of whole genome full-length cDNA FOX-hunting overexpression library in Brassica napus. Chin J Oil Crop Sci, 2021, 43: 435-442. (in Chinese with English abstract) | |
[20] | Lu K, Li T, He J, Chang W, Zhang R, Liu M, Yu M N, Fan Y H, Ma J Q, Sun W, Qu C M, Liu L Z, Li N N, Liang Y, Wang R, Qian W, Tang Z L, Xu X F, Lei B, Zhang K, Li J N. qPrimerDB: a thermodynamics-based gene-specific qPCR primer database for 147 organisms. Nucleic Acids Res, 2018, 46: D1229-D1236. |
[21] |
Earley K W, Haag J R, Pontes O, Opper K, Juehne T, Song K M, Pikaard C S. Gateway-compatible vectors for plant functional genomics and proteomics. Plant J, 2010, 45: 616-629.
doi: 10.1111/j.1365-313X.2005.02617.x |
[22] | 马丽娟, 冯瑜, 江丽萍, 申敏, 柴友荣. pFGC5941的改造及芸薹属透明种1基因(TT1)家族RNA干扰载体构建. 农业生物技术学报, 2010, 18: 1189-1196. |
Ma L J, Feng Y, Jiang L P, Shen M, Chai Y R. Modification of pFGC5941 and construction of RNAi vector of Brassica transparent testa 1 gene (TT1) family. J Agric Biotcchnol, 2010, 18: l189-1196. (in Chinese with English abstract) | |
[23] | 刘询, 张斌, 李浪, 刘春林, 阮颖. 甘蓝型油菜BnaLCR23基因CRISPR-Cas9表达载体的构建及遗传转化. 分子植物育种, 2017, 15: 3024-3029. |
Liu X, Zhang B, Li L, Liu C L, Ruan Y. Construction and genetic transformation of BnaLCR23 gene CRISPR-Cas9 expression vector in Brassica napus L. Mol Plant Breed, 2017, 15: 3024-3029. (in Chinese with English abstract) | |
[24] | Chao H Y, Li T, Luo C, Huang H L, Ruan Y F, Li X D, Niu Y, Fan Y H, Sun W, Zhang K, Li J N, Qu C M, Lu K. BrassicaEDB: a gene expression database for Brassica crops. Int J Mol Sci, 2020, 13: 5831. |
[25] |
Zheng Q M, Tang Z, Xu Q, Deng X X. Isolation, phylogenetic relationship and expression profiling of sugar transporter genes in sweet orange (Citrus sinensis). Plant Cell Tissue Organ Cult, 2014, 119: 609-624.
doi: 10.1007/s11240-014-0560-y |
[26] |
Kanno Y, Oikawa T, Chiba Y, Ishimaru Y, Shimizu T, Sano N, Koshiba T, Kamiya Y, Ueda M, Seoet M. AtSWEET13 and AtSWEET14 regulate gibberellin-mediated physiological processes. Nat Commun, 2016, 7: 13245.
doi: 10.1038/ncomms13245 pmid: 27782132 |
[27] |
Coneva V, Guevara D, Rothstein S J, Colasanti J. Transcript and metabolite signature of maize source leaves suggest a link between transitory starch to sucrose balance and the autonomous floral transition. J Exp Bot, 2012, 63: 5079-5092.
doi: 10.1093/jxb/ers158 |
[28] |
Klemens P A W, Patzke K, Deitmer J, Spinner L, Hir R L, Bellini C, Bedu M, Chardon F, Krapp A, Neuhaus H E. Overexpression of the vacuolar sugar carrier AtSWEET16 modifies germination, growth, and stress tolerance in Arabidopsis. Plant Physiol, 2013, 163: 1338-1352.
doi: 10.1104/pp.113.224972 |
[29] |
Chincinska I A, Liesche J, Krugel U, Michalska J, Geigenberger P, Grimm B, Kühn C. Sucrose transporter StSUT4 from potato affects flowering, tuberization, and shade avoidance response. Plant Physiol, 2008, 146: 515-528.
doi: 10.1104/pp.107.112334 pmid: 18083796 |
[30] |
Mouradov A, Cremer F, Coupland G. Control of flowering time: interacting pathways as a basis for diversity. Plant Cell, 2002, 14: S111-S130.
doi: 10.1105/tpc.001362 |
[31] |
Komeda Y. Genetic regulation of time to flower in Arabidopsis thaliana. Annu Rev Plant Biol, 2004, 55: 521-535.
doi: 10.1146/annurev.arplant.55.031903.141644 |
[32] |
Bäurle I, Dean C. The timing of developmental transitions in plants. Cell, 2006, 125: 655-664.
doi: 10.1016/j.cell.2006.05.005 |
[33] |
Flowers J M, Hanzawa Y, Hall M C, Moore R C, Purugganan M D. Population genomics of the Arabidopsis thaliana flowering time gene network. Mol Biol Evol, 2009, 26: 2475-2486.
doi: 10.1093/molbev/msp161 |
[34] |
Blackman B K, Rasmussen D A, Strasburg J L, Raduski A R, Burke J M, Knapp S J, Michaels S D, Rieseberg L H. Contributions of flowering time genes to sunflower domestication and improvement. Genetics, 2010, 187: 271-287.
doi: 10.1534/genetics.110.121327 |
[1] | ZHANG Tian-Yu, WANG Yue, LIU Ying, ZHOU Ting, YUE Cai-Peng, HUANG Jin-Yong, HUA Ying-Peng. Bioinformatics analysis and core member identification of proline metabolism gene family in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(8): 1977-1995. |
[2] | DAI Li-Shi, CHANG Wei, ZHANG Sai, QIAN Ming-Chao, LI Xiao-Dong, ZHANG Kai, LI Jia-Na, QU Cun-Min, LU Kun. Functional validation of Bna-novel-miR36421 regulating plant architecture and flower organ development in Arabidopsis thaliana [J]. Acta Agronomica Sinica, 2022, 48(7): 1635-1644. |
[3] | CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371. |
[4] | XU Xin, QIN Chao, ZHAO Tao, LIU Bin, LI Hong-Yu, LIU Jun. Function analysis of GmELF3s in regulating soybean flowering time and circadian rhythm [J]. Acta Agronomica Sinica, 2022, 48(4): 812-824. |
[5] | YUAN Da-Shuang, DENG Wan-Yu, WANG Zhen, PENG Qian, ZHANG Xiao-Li, YAO Meng-Nan, MIAO Wen-Jie, ZHU Dong-Ming, LI Jia-Na, LIANG Ying. Cloning and functional analysis of BnMAPK2 gene in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(4): 840-850. |
[6] | QIN Qin, TAO You-Feng, HUANG Bang-Chao, LI Hui, GAO Yun-Tian, ZHONG Xiao-Yuan, ZHOU Zhong-Lin, ZHU Li, LEI Xiao-Long, FENG Sheng-Qiang, WANG Xu, REN Wan-Jun. Characteristics of panicle stem growth and flowering period of the parents of hybrid rice in machine-transplanted seed production [J]. Acta Agronomica Sinica, 2022, 48(4): 988-1004. |
[7] | HUANG Cheng, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome wide analysis of BnAPs gene family in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(3): 597-607. |
[8] | WANG Rui, CHEN Xue, GUO Qing-Qing, ZHOU Rong, CHEN Lei, LI Jia-Na. Development of linkage InDel markers of the white petal gene based on whole-genome re-sequencing data in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(3): 759-769. |
[9] | WANG Yan-Hua, LIU Jing-Sen, LI Jia-Na. Integrating GWAS and WGCNA to screen and identify candidate genes for biological yield in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(8): 1491-1510. |
[10] | LI Jie-Hua, DUAN Qun, SHI Ming-Tao, WU Lu-Mei, LIU Han, LIN Yong-Jun, WU Gao-Bing, FAN Chu-Chuan, ZHOU Yong-Ming. Development and identification of transgenic rapeseed with a novel gene for glyphosate resistance [J]. Acta Agronomica Sinica, 2021, 47(5): 789-798. |
[11] | TANG Xin, LI Yuan-Yuan, LU Jun-Xing, ZHANG Tao. Morphological characteristics and cytological study of anther abortion of temperature-sensitive nuclear male sterile line 160S in Brassica napus [J]. Acta Agronomica Sinica, 2021, 47(5): 983-990. |
[12] | ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598. |
[13] | LI Shu-Yu, HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin, SONG Lai-Qiang. QTL mapping and candidate genes screening of earliness traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 626-637. |
[14] | TANG Jing-Quan, WANG Nan, GAO Jie, LIU Ting-Ting, WEN Jing, YI Bin, TU Jin-Xing, FU Ting-Dong, SHEN Jin-Xiong. Bioinformatics analysis of SnRK gene family and its relation with seed oil content of Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(3): 416-426. |
[15] | MENG Jiang-Yu, LIANG Guang-Wei, HE Ya-Jun, QIAN Wei. QTL mapping of salt and drought tolerance related traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(3): 462-471. |
|