Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (8): 1938-1947.doi: 10.3724/SP.J.1006.2022.14155

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Bna.C02SWEET15 positively regulates the flowering time of rapeseed through photoperiodic pathway

LI Sheng-Ting1,**(), XU Yuan-Fang1,**(), CHANG Wei1, LIU Ya-Jun2, GU Yuan2, ZHU Hong1, LI Jia-Na1,3,4, LU Kun1,3,4,*()   

  1. 1College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
    2Agricultural Technology Extension Station in Lincang City, Lincang 677099, Yunnan, China
    3Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
    4Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
  • Received:2021-08-26 Accepted:2021-11-29 Online:2022-08-12 Published:2021-12-16
  • Contact: LU Kun E-mail:lishengting0123@163.com;1095245283@qq.com;1095245283@qq.com;drlukun@swu.edu.cn
  • About author:First author contact:

    ** Contributed equally to this work

  • Supported by:
    National Natural Science Foundation of China(31871653);National Key Research and Development Program of China(2018YFD0100500);Project of Intellectual Base for Discipline Innovation in Colleges and Universities(B12006);Key Project of Chongqing Natural Science Foundation(cstc2021ycjh-bgzxm0033);Chongqing Postgraduate Research Innovation Project(CYB21115);Germplasm Creation Special Program of Southwest University

Abstract:

Flowering time, an important agronomic index of crops, is related to the growth cycle and the yield of crops. Sugar transporters are important carbohydrate transporters in plants, whereas there are few reports on the effect of sugar transporters on flowering time in rapeseed (Brassica napus). In this study, sucrose transporter Bna.C02SWEET15 related to flowering in rapeseed were screened and identified from Fox-Hunting library, whose biological function and regulation mechanism were further characterized through expression pattern and subcellular localization analysis, phenotype analysis in transgenic plants and mutant, detection of marker genes expression related to flowering. Bna.C02SWEET15 could be identified in all tissues of Brassica napus, and the relative expression level was the most significant in seeds at 30 days after flowering. Bna.C02SWEET15 was located in cell membrane, and the promoter activity was mainly in anther and seed at 30 days after flowering. Overexpression of Bna.C02SWEET15 in Arabidopsis resulted in flowering in advance and increased the expression of photoperiod key genes CO, FT, and LFY, while decreased the expression of negative regulation gene FLC. In addition, the flowering time of atsweet15a and transgenic RNAi-Bna.C02SWEET15 were later. We proposed that Bna.C02SWEET15 could positively regulate the flowering time through photoperiod pathway, thus affecting the growth cycle and final yield in rapeseed. These results provide important basis for understanding the regulatory role of sugar transporters in crops and lay a theoretical foundation for understanding the regulatory role of sugar transporters in crops.

Key words: Brassica napus, Bna.C02SWEET15, photoperiod, flowering

Table S1

Primers used in this study"

引物名称
Prime name
引物序列
Primer sequences (5'-3')
26S-F rRNA CACAATGATAGGAAGAGCCGAC
26S-R rRNA CAAGGGAACGGG CTTGGCAGAATC
BnaActin7-F TGGGTTTGCTGGTGACGAT
BnaActin7-R TGCCTAGGACGACCAACAATACT
qRT F-BnaSWEET15 TCCTTGTATTCCTCGCTCCC
qRT R-BnaSWEET15 CAGCCGAAAGAGTTGATGGT
OV-SWEET15 F CACCATGAGTTTGGCACACCAAAT
OV-SWEET15 R ATGCCTGAGAGCTTCTTGCAC
Bna.C02SWEET15-PRO-F acctgcaggcatgcaACAGACCTCGTTTCTATAGCTATCT
Bna.C02SWEET15-PRO-R taccctcagatctaccatggAAACTAATGAGTCTCAGGTGGTGT
F Hyg CTATTTCTTTGCCCTCGGACGA
R Hyg ATGAAAAAGCCTGAACTCACCGCG
F35S3ND GGAAGTTCATTTCATTTGGAGAG
OCS5ND CGATCATAGGCGTCTCGCATATCTC
F Bar CGACATCCGCCGTGCCACCGA
R Bar GTACCGGCAGGCTGAAGTCCAGC
Actin real F GGTAACATTGTGCTCAGTGGTGG
Actin real R AACGACCTTAATCTTCATGCTGC
qRT F-AtSWEET15 CATAGCCATGTTCTTCGCTTAC
qRT R-AtSWEET15 CTTTGTCTTTATCACACGAGCC
M13pF ACACAGGAAACAGCTATGACCAT
M13pR GGGTCCTAACCAAGAAAATGAA
RNAi-SWEET15-F GGATCCGACGTCTCTCCCATACCAACATTCATAACA
RNAi-SWEET15-R TCTAGACCATGGATAGTATAAGCTGTACTACT
BnaPAP2-F GGATCCACCTAAGCATGCATTTGAAAA
BnaPAP2-R ATTTAAATGACGTCAGGTTTACATTCAAGACACA
引物名称
Prime name
引物序列
Primer sequences (5'-3')
F35S3N GGAAGTTCATTTCATTTGGAGAG
ROCST5N GCTCAGGTTTTTTACAACGTGCAC
CO real F GCCATCAGCGAGTTCCAATTCTAC
CO real R CCTTCCTCTTGATCCACCACCAG
FLC real F CGTCGCTCTTCTCGTCGTCTC
FLC real R TTCGGTCTTCTTGGCTCTAGTCAC
FT real R GCCTGCCAAGCTGTCGAAACAATA
FT real F TCCCTGCTACAACTGGAACAACCT
LFY real F TCCACTGCCTAGACGAAGAAGC
LFY real R TCCCAGCCATGACGACAAGC
N674321-LP CAGCCGAGTACAGAGACTTGG
N674321-RP TTTCCTCGCTTTTATCTTCGG
LBb1.3 ATTTTGCCGATTTCGGAAC

Fig. 1

Relative expression pattern of Bna.C02SWEET15 in Brassica napus A: the expression pattern of Bna.C02SWEET15 in Brassica napus using qRT-PCR. R: root; St: stem; L: leaf; F: flowers; MB: main bud; 5D-S, 10D-S: silique at 5 days and 10 days after flowering; 15D-SE, 21D-SE, 30D-SE: seeds at 15, 21, and 30 days after flowering; 15D-SW, 21D-SW, 30D-SW: seed pericarp at 15, 21, and 30 days after flowering; B: histochemical staining of proBna.C02WEET15::GUS. a: seed pericarp after germination; b: young seedling; c: rosette; d: stem leaf; e: anther; f: silique; g: root; h: seed at 30 days after flowering."

Fig. 2

Subcellular localization of Bna.C02SWEET15-YFP protein Bar: 20 μm."

Fig. 3

Phenotypic observation and marker gene expression detection of Bna.C02SWEET15 overexpressed transgenic plants A: phenotypic observation in overexpressed transgenic plants; bar: 1 cm. B: the expression level of Bna.C02SWEET15 in transgenic seedlings using qRT-PCR; C: flowering time of Bna.C02SWEET15 transgenic plants; D: marker genes expression in flowering pathway. * and ** represent significant difference at the 0.05 and 0.01 probability levels, respectively."

Fig. 4

Phenotypic observation of Arabidopsis thaliana mutant atsweet15 A: sequence similarity between AtSWEET15 and Bna.C02SWEET15; B: map of mutant insertion sites; C: phenotypic observation of atsweet15a; D: the expression level of AtSWEET15 in atsweet15a. Bar: 1 cm. ** represents significant difference at the 0.01 probability level. "

Fig. 5

Phenotypic observation of transgenic RNAi-Bna.C02SWEET15 A: phenotypic observation of RNAi-Bna.C02SWEET15; B: gene expression level in transgenic seedlings; C: flowering time of RNAi-Bna.C02SWEET15 transgenic plants; bar: 10 cm. ** represents significant difference at the 0.01 probability level."

[1] Blümel M, Dally N, Jung C. Flowering time regulation in crops- what did we learn from Arabidopsis? Curr Opin Biotechnol, 2015, 32: 121-129.
doi: 10.1016/j.copbio.2014.11.023
[2] Wahl V, Ponnu J, Schlereth A, Arrivault S, Langenecker T, Franke A, Feil R, E. Lunn J, Stitt M, Schmid M. Regulation of flowering by trehalose-6-phosphate signaling in Arabidopsis thaliana. Science, 2013, 339: 704-707.
doi: 10.1126/science.1230406
[3] Atsuko K, René R. Genetic and molecular basis of floral induction in Arabidopsis thaliana. J Exp Bot, 2020, 71: 2490-2504.
doi: 10.1093/jxb/eraa057
[4] Wang T Y, Ping X K, Cao Y R, Jian H J, Gao Y M, Wang J, Tan Y C, Xu X F, Lu K, Li J N, Liu L Z. Genome-wide exploration and characterization of miR172/euAP2 genes in Brassica napus L. for likely role in flower organ development. BMC Plant Biol, 2019, 19: 336.
doi: 10.1186/s12870-019-1936-2
[5] Rolland F, Baenagonzalez E, Sheen J. SUGAR SENSING AND SIGNALING IN PLANTS: conserved and novel mechanisms. Annu Rev Plant Biol, 2006, 57: 675-709.
pmid: 16669778
[6] Rolland F, Sheen J. Sugar sensing and signaling networks in plants. Biochem Soc Trans, 2005, 33: 269-271.
doi: 10.1042/BST0330269
[7] Smeekens S, Ma J, Hanson J, Rolland F. Sugar signals and molecular networks controlling plant growth. Curr Opin Plant Biol, 2010, 13: 273-278.
doi: 10.1016/j.pbi.2009.12.002
[8] Jian H J, Lu K, Yang B, Wang T Y, Zhang L, Zhang A X, Wang J, Liu L Z, Qu C M, Li J N. Genome-wide analysis and expression profiling of the SUC and SWEET gene families of sucrose transporters in oilseed rape (Brassica napus L.). Front Plant Sci, 2016, 7: 1464.
[9] López-Coria M, Sánchez-Sánchez T, Martínez-Marcelo V H, Aguilera-Alvarado G P, Flores-Barrera M, King-Díaz B, Sánchez N S. SWEET transporters for the nourishment of embryonic tissues during maize germination. Genes, 2019, 10: 780.
doi: 10.3390/genes10100780
[10] Buendía-Monreal M, Gillmor C S. Convergent repression of miR156 by sugar and the CDK8 module of Arabidopsis mediator. Dev Biol, 2017, 423: 19-23.
doi: S0012-1606(16)30267-6 pmid: 28108181
[11] Lemoine R. Sucrose transporters in plants: update on function and structure. Biochim Biophys Acta, 2000, 1465: 246-262.
pmid: 10748258
[12] Williams L E, Lemoine R, Sauer N. Sugar transporters in higher plants-a diversity of roles and complex regulation. Trends Plant Sci, 2000, 5: 283-290.
pmid: 10871900
[13] Chen L Q, Hou B H, Lalonde S, Takanaga H, Hartung M L, Qu X Q, Guo W J, Kim J G, Underwood W, Chaudhuri B, Chermak D, Antony G, White F F, Somerville S C, Mudgett M B, Frommer W B. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature, 2010, 468: 527-534.
doi: 10.1038/nature09606
[14] Chen L Q, Qu X Q, Hou B H, Sosso D, Osorio S, Fernie A R, Frommer W B. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science, 2012, 335: 207-210.
doi: 10.1126/science.1213351
[15] Talbot N J. Raiding the sweet shop. Nature, 2010, 468: 510-511.
doi: 10.1038/468510a
[16] Chandran D. Co-option of developmentally regulated plant SWEET transporters for pathogen nutrition and abiotic stress tolerance. IUBMB Life, 2015, 67: 461-471.
doi: 10.1002/iub.1394 pmid: 26179993
[17] Seo P J, Ryu J, Kang S K, Park C M. Modulation of sugar metabolism by an INDETERMINATE DOMAIN transcription factor contributes to photoperiodic flowering in Arabidopsis. Plant J, 2011, 65: 418-429.
doi: 10.1111/j.1365-313X.2010.04432.x
[18] Chen L Q. SWEET sugar transporters for phloem transport and pathogen nutrition. New Phytol, 2014, 201: 1150-1155.
doi: 10.1111/nph.12445
[19] 张凯, 魏丝雨, 常玮, 范永海, 卢坤. 甘蓝型油菜全基因组cDNA FOX-hunting过表达文库构建. 中国油料作物学报, 2021, 43: 435-442.
Zhang K, Wei S Y, Chang W, Fan Y H, Lu K. Construction of whole genome full-length cDNA FOX-hunting overexpression library in Brassica napus. Chin J Oil Crop Sci, 2021, 43: 435-442. (in Chinese with English abstract)
[20] Lu K, Li T, He J, Chang W, Zhang R, Liu M, Yu M N, Fan Y H, Ma J Q, Sun W, Qu C M, Liu L Z, Li N N, Liang Y, Wang R, Qian W, Tang Z L, Xu X F, Lei B, Zhang K, Li J N. qPrimerDB: a thermodynamics-based gene-specific qPCR primer database for 147 organisms. Nucleic Acids Res, 2018, 46: D1229-D1236.
[21] Earley K W, Haag J R, Pontes O, Opper K, Juehne T, Song K M, Pikaard C S. Gateway-compatible vectors for plant functional genomics and proteomics. Plant J, 2010, 45: 616-629.
doi: 10.1111/j.1365-313X.2005.02617.x
[22] 马丽娟, 冯瑜, 江丽萍, 申敏, 柴友荣. pFGC5941的改造及芸薹属透明种1基因(TT1)家族RNA干扰载体构建. 农业生物技术学报, 2010, 18: 1189-1196.
Ma L J, Feng Y, Jiang L P, Shen M, Chai Y R. Modification of pFGC5941 and construction of RNAi vector of Brassica transparent testa 1 gene (TT1) family. J Agric Biotcchnol, 2010, 18: l189-1196. (in Chinese with English abstract)
[23] 刘询, 张斌, 李浪, 刘春林, 阮颖. 甘蓝型油菜BnaLCR23基因CRISPR-Cas9表达载体的构建及遗传转化. 分子植物育种, 2017, 15: 3024-3029.
Liu X, Zhang B, Li L, Liu C L, Ruan Y. Construction and genetic transformation of BnaLCR23 gene CRISPR-Cas9 expression vector in Brassica napus L. Mol Plant Breed, 2017, 15: 3024-3029. (in Chinese with English abstract)
[24] Chao H Y, Li T, Luo C, Huang H L, Ruan Y F, Li X D, Niu Y, Fan Y H, Sun W, Zhang K, Li J N, Qu C M, Lu K. BrassicaEDB: a gene expression database for Brassica crops. Int J Mol Sci, 2020, 13: 5831.
[25] Zheng Q M, Tang Z, Xu Q, Deng X X. Isolation, phylogenetic relationship and expression profiling of sugar transporter genes in sweet orange (Citrus sinensis). Plant Cell Tissue Organ Cult, 2014, 119: 609-624.
doi: 10.1007/s11240-014-0560-y
[26] Kanno Y, Oikawa T, Chiba Y, Ishimaru Y, Shimizu T, Sano N, Koshiba T, Kamiya Y, Ueda M, Seoet M. AtSWEET13 and AtSWEET14 regulate gibberellin-mediated physiological processes. Nat Commun, 2016, 7: 13245.
doi: 10.1038/ncomms13245 pmid: 27782132
[27] Coneva V, Guevara D, Rothstein S J, Colasanti J. Transcript and metabolite signature of maize source leaves suggest a link between transitory starch to sucrose balance and the autonomous floral transition. J Exp Bot, 2012, 63: 5079-5092.
doi: 10.1093/jxb/ers158
[28] Klemens P A W, Patzke K, Deitmer J, Spinner L, Hir R L, Bellini C, Bedu M, Chardon F, Krapp A, Neuhaus H E. Overexpression of the vacuolar sugar carrier AtSWEET16 modifies germination, growth, and stress tolerance in Arabidopsis. Plant Physiol, 2013, 163: 1338-1352.
doi: 10.1104/pp.113.224972
[29] Chincinska I A, Liesche J, Krugel U, Michalska J, Geigenberger P, Grimm B, Kühn C. Sucrose transporter StSUT4 from potato affects flowering, tuberization, and shade avoidance response. Plant Physiol, 2008, 146: 515-528.
doi: 10.1104/pp.107.112334 pmid: 18083796
[30] Mouradov A, Cremer F, Coupland G. Control of flowering time: interacting pathways as a basis for diversity. Plant Cell, 2002, 14: S111-S130.
doi: 10.1105/tpc.001362
[31] Komeda Y. Genetic regulation of time to flower in Arabidopsis thaliana. Annu Rev Plant Biol, 2004, 55: 521-535.
doi: 10.1146/annurev.arplant.55.031903.141644
[32] Bäurle I, Dean C. The timing of developmental transitions in plants. Cell, 2006, 125: 655-664.
doi: 10.1016/j.cell.2006.05.005
[33] Flowers J M, Hanzawa Y, Hall M C, Moore R C, Purugganan M D. Population genomics of the Arabidopsis thaliana flowering time gene network. Mol Biol Evol, 2009, 26: 2475-2486.
doi: 10.1093/molbev/msp161
[34] Blackman B K, Rasmussen D A, Strasburg J L, Raduski A R, Burke J M, Knapp S J, Michaels S D, Rieseberg L H. Contributions of flowering time genes to sunflower domestication and improvement. Genetics, 2010, 187: 271-287.
doi: 10.1534/genetics.110.121327
[1] ZHANG Tian-Yu, WANG Yue, LIU Ying, ZHOU Ting, YUE Cai-Peng, HUANG Jin-Yong, HUA Ying-Peng. Bioinformatics analysis and core member identification of proline metabolism gene family in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(8): 1977-1995.
[2] DAI Li-Shi, CHANG Wei, ZHANG Sai, QIAN Ming-Chao, LI Xiao-Dong, ZHANG Kai, LI Jia-Na, QU Cun-Min, LU Kun. Functional validation of Bna-novel-miR36421 regulating plant architecture and flower organ development in Arabidopsis thaliana [J]. Acta Agronomica Sinica, 2022, 48(7): 1635-1644.
[3] CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371.
[4] XU Xin, QIN Chao, ZHAO Tao, LIU Bin, LI Hong-Yu, LIU Jun. Function analysis of GmELF3s in regulating soybean flowering time and circadian rhythm [J]. Acta Agronomica Sinica, 2022, 48(4): 812-824.
[5] YUAN Da-Shuang, DENG Wan-Yu, WANG Zhen, PENG Qian, ZHANG Xiao-Li, YAO Meng-Nan, MIAO Wen-Jie, ZHU Dong-Ming, LI Jia-Na, LIANG Ying. Cloning and functional analysis of BnMAPK2 gene in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(4): 840-850.
[6] QIN Qin, TAO You-Feng, HUANG Bang-Chao, LI Hui, GAO Yun-Tian, ZHONG Xiao-Yuan, ZHOU Zhong-Lin, ZHU Li, LEI Xiao-Long, FENG Sheng-Qiang, WANG Xu, REN Wan-Jun. Characteristics of panicle stem growth and flowering period of the parents of hybrid rice in machine-transplanted seed production [J]. Acta Agronomica Sinica, 2022, 48(4): 988-1004.
[7] HUANG Cheng, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome wide analysis of BnAPs gene family in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(3): 597-607.
[8] WANG Rui, CHEN Xue, GUO Qing-Qing, ZHOU Rong, CHEN Lei, LI Jia-Na. Development of linkage InDel markers of the white petal gene based on whole-genome re-sequencing data in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(3): 759-769.
[9] WANG Yan-Hua, LIU Jing-Sen, LI Jia-Na. Integrating GWAS and WGCNA to screen and identify candidate genes for biological yield in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(8): 1491-1510.
[10] LI Jie-Hua, DUAN Qun, SHI Ming-Tao, WU Lu-Mei, LIU Han, LIN Yong-Jun, WU Gao-Bing, FAN Chu-Chuan, ZHOU Yong-Ming. Development and identification of transgenic rapeseed with a novel gene for glyphosate resistance [J]. Acta Agronomica Sinica, 2021, 47(5): 789-798.
[11] TANG Xin, LI Yuan-Yuan, LU Jun-Xing, ZHANG Tao. Morphological characteristics and cytological study of anther abortion of temperature-sensitive nuclear male sterile line 160S in Brassica napus [J]. Acta Agronomica Sinica, 2021, 47(5): 983-990.
[12] ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598.
[13] LI Shu-Yu, HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin, SONG Lai-Qiang. QTL mapping and candidate genes screening of earliness traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 626-637.
[14] TANG Jing-Quan, WANG Nan, GAO Jie, LIU Ting-Ting, WEN Jing, YI Bin, TU Jin-Xing, FU Ting-Dong, SHEN Jin-Xiong. Bioinformatics analysis of SnRK gene family and its relation with seed oil content of Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(3): 416-426.
[15] MENG Jiang-Yu, LIANG Guang-Wei, HE Ya-Jun, QIAN Wei. QTL mapping of salt and drought tolerance related traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(3): 462-471.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[4] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .
[5] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .
[6] ZHENG Yong-Mei;DING Yan-Feng;WANG Qiang-Sheng;LI Gang-Hua;WANG Hui-Zhi;WANG Shao-Hua. Effect of Nitrogen Applied before Transplanting on Tillering and Nitrogen Utilization in Rice[J]. Acta Agron Sin, 2008, 34(03): 513 -519 .
[7] QIN En-Hua;YANG Lan-Fang;. Selenium Content in Seedling and Selenium Forms in Rhizospheric Soil of Nicotiana tabacum L.[J]. Acta Agron Sin, 2008, 34(03): 506 -512 .
[8] LÜ Li-Hua;TAO Hong-Bin;XIA Lai-Kun; HANG Ya-Jie;ZHAO Ming;ZHAO Jiu-Ran;WANG Pu;. Canopy Structure and Photosynthesis Traits of Summer Maize under Different Planting Densities[J]. Acta Agron Sin, 2008, 34(03): 447 -455 .
[9] Zhang Shubiao;Yang Rencui. Some Biological Character of eui-hybrid Rice[J]. Acta Agron Sin, 2003, 29(06): 919 -924 .
[10] SHAO Rui-Xin;SHANG-GUAN Zhou-Ping. Effects of Exogenous Nitric Oxide Donor Sodium Nitroprusside on Photosynthetic Pigment Content and Light Use Capability of PS II in Wheat under Water Stress[J]. Acta Agron Sin, 2008, 34(05): 818 -822 .