Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (1): 153-166.doi: 10.3724/SP.J.1006.2023.14207

• CROP GENETICS & BREEDING ·GERMPLASM RESOURCES ·MOLECULAR GENETICS • Previous Articles     Next Articles

Protein and physiological differences under cold stress, and identification and analysis of BnGSTs in Brassica napus L.

MA Li1(), BAI Jing2, ZHAO Yu-Hong3, SUN Bo-Lin3, HOU Xian-Fei4, FANG Yan1, WANG Wang-Tian1, PU Yuan-Yuan1, LIU Li-Jun1, XU Jia1, TAO Xiao-Lei1, SUN Wan-Cang1,*(), WU Jun-Yan1,*()   

  1. 1State Key Laboratory of Aridland Crop Science / Gansu Research Center of Rapeseed Engineering and Technology / College of Agronomy, Gansu Agricultural University, Lanzhou 730070, Gansu, China
    2Zhangye Academy of Agricultural Sciences, Zhangye 734000, Gansu, China
    3Gansu Yasheng Agricultural Research Institute Co. Ltd, Lanzhou 730030, Gansu, China
    4Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, Xinjiang, China
  • Received:2021-11-04 Accepted:2022-05-05 Online:2023-01-12 Published:2022-05-19
  • Contact: SUN Wan-Cang,WU Jun-Yan E-mail:mal@gsau.edu.cn;wujuny@gsau.edu.cn;18293121851@163.com
  • Supported by:
    Gansu Provincial Youth Science & Technology Department(21JR7RA835);Research Program Sponsored by State Key Laboratory of Aridland Crop Science (Gansu Agricultural University)(GSCS-2020-06);China Agriculture Research System of MOF and MARA(CARS-12)

Abstract:

Glutathione S-transferases (GST) are involved in regulating many aspects of plant growth, development, and response to adversity stress. In this study, the differentially expressed proteins of ‘16VHNTS309’ under cold stress were analyzed using bidirectional electrophoresis and mass spectrometry, and proteins involved in the cold stress response, such as BE, APX, SOD, and GST, were identified based on GO and KEGG analyses. The key protein GST was identified using qRT-PCR and physiological indicators in response to cold stress, and the GST gene of ‘16VHNTS309’ was cloned using homologous cloning. This gene CDS length was 642 bp, and encoded 213 amino acids, which was an unstable protein and belonged to the GST_N_3 glutathione S-transferase family. The sequence similarity with Brassica napus ‘ZS11’ was 99.22%, and a comparison of the amino acid sequences of both ‘ZS11’ and ‘Vision’ revealed a mutation from leucine (L) to proline (P) at position 127. The gene family analysis showed that 153 BnGSTs members were identified in Brassica napus and were classified into seven main types according to their functions: Zeta, Phi, Theta, CHQ, DHAR, Lambda, and Tau. Most BnGSTs belonged to Phi and Tau types. Phylogeny divided BnGSTs into 12 subfamilies, subfamilies I and VIII contained more members. BnGSTs were unevenly distributed on 18 chromosomes, and the number of BNGSTs genes on C06 chromosome was the largest, it contained 10 conserved protein motifs. There were 99 pairs of genes in the BnGSTs gene family that were colinearly related, 131 genes from gene duplication events, and segmental duplication events played an important role in the evolution of BnGSTs genes. Significantly higher expression of BnaA02g35760D, BnaC06g20450D, BnaC06g35490D, BnaA02g03230D, and BnaA02g35980D in strong cold-resistant varieties was 7-12 times higher than that in weak cold-resistant varieties under cold stress. And the strong cold-resistant varieties had higher physiological enzyme activities. In addition, a number of key candidate genes were identified for transient and sustained expression under freezing stress. This result lays the foundation for further studies on the molecular regulation of BnGSTs genes for cold resistance in strong cold resistant for Brassica napus.

Key words: winter Brassica napus L., cold stress, protein mass spectrometry, GST gene family, expression pattern

Table 1

Primers for qRT-PCR used in this study"

基因名称
Gene name
引物序列
Primer sequence (5'-3')
产物大小
Product size (bp)
BE F: GATGGAACCCAGAACGAG; R: GGAATGCCACTGACAACG 110
SPI F: CCCCTCTTTATCGGACAG; R: GGAACGAACCCAACTCTA 89
APX F: GAGCGGTGAGAAGGAAGG; R: CTCGTCAGCAGCGTATTT 100
SOD F: GCCACATTTCAACCCTAACA; R: ACCACAAAGGCTCTTCCAAC 174
GST F: ATCAACATCTCCGACAAACC; R: CGTCAGAATCAGACACCCAC 100
RBP F: CGTGTTTATGTCGGCAATC; R: GCCACTGTCCCTGTCGTAG 114
β-Actin F: TGGGTTTGCTGGTGACGAT; R: TGCCTAGGACGACCAACAATACT 63

Fig. 1

Identification of differentially expressed proteins under cold stress A: CK; B: 4℃ for 24 hours. Arrows indicate 25 protein spots that are positively identified at P ≤ 0.05."

Fig. S1

Enlarged view of protein spot in ‘16VHNTS309’"

Table S1

Identification of differential proteins in response to cold stress in winter Brassica napus"

蛋白点编号
Spot number
基因登录号
Accession number
蛋白质名称
Protein name
分子质量
Molecular weight (kD)
等电点
pI
亚细胞定位
Cellular location
差异倍数
Fold change
2 XP_013688985.1 RNA-binding protein CP29B 31,076 4.82 叶绿体Chloroplast NDT
3 XP_013656707.1 glycine-rich RNA-binding protein 10-like 16,038 5.24 微体Microbody 1.87±0.06
4 XP_013656707.1 glycine-rich RNA-binding protein 10-like 16,038 5.24 微体Microbody 0.49±0.01
6 XP_013687602.1 bifunctional enolase 2/transcriptional activator 47,556 5.56 内质网
Endoplasmic reticulum
1.99±0.09
8 XP_013713332.1 oxygen-evolving enhancer protein 1-1 35,164 5.55 叶绿体Chloroplast 2.54±0.03
9 XP_013688985.1 RNA-binding protein CP29B 31,076 4.82 叶绿体Chloroplast NDT
11 XP_013649537.1 cysteine protease inhibitor WSCP 23,891 8.66 细胞外Extracellular 1.9±0.04
12 XP_013673398.1 ATP synthase subunit beta-2 53,800 5.39 细胞质Cytoplasm 2.52±0.06
13 XP_013659948.1 cysteine protease inhibitor WSCP-like 24,956 6.52 细胞外Extracellular NDC
14 XP_013678556.1 actin-7 41,665 5.31 细胞质Cytoplasm 2.01±0.11
15 XP_013641139.1 L-ascorbate peroxidase 1, cytosolic-like isoform X3 27,594 5.58 微体Microbody 2.63±0.06
16 XP_013697709.1 probable phospholipid hydroperoxide glutathione peroxidase 6 25,260 9.2 线粒体Mitochondrial 2.08±0.18
17 AIF75338.1 chloroplast ribulose 1,5-bisphosphate carboxylase/oxygenase small subunit 19,852 7.59 细胞外Extracellular 2.21±0.05
18 XP_013720130.1 PREDICTED: superoxide dismutase [Cu-Zn] 2 21,343 6.79 细胞外Extracellular 2.75±0.11
19 XP_013649537.1 cysteine protease inhibitor WSCP 23,891 8.66 细胞外Extracellular 3.01±0.05
20 XP_013649391.1 nucleoside diphosphate kinase 1 16,384 6.29 微体Microbody 1.94±0.04
21 XP_013712048.1 CBS domain-containing protein CBSX3 22,650 8.71 线粒体Mitochondrial NDC
23 AIF75338.1 chloroplast ribulose 1,5-bisphosphate carboxylase/oxygenase small subunit 19,852 7.59 细胞外Extracellular 3.33±0.39
24 XP_013649614.1 kunitz trypsin inhibitor 1-like 23,553 6.6 细胞外Extracellular NDC
25 XP_013641139.1 L-ascorbate peroxidase 1, cytosolic-like isoform X3 27,594 5.58 微体Microbody 3.41±0.22
26 AIF75338.1 chloroplast ribulose 1,5-bisphosphate carboxylase/oxygenase small subunit 19,852 7.59 细胞外Extracellular 3.11±0.29
27 XP_013641880.1 glutathione S-transferase DHAR1, mitochondrial 23,533 5.76 细胞质Cytoplasm 2.1±0.1
28 XP_013666490.1 malate dehydrogenase 1, cytoplasmic-like 35,695 6.11 细胞外Extracellular 3.12±0.06
29 XP_013666490.1 malate dehydrogenase 1, cytoplasmic-like 35,695 6.11 细胞外Extracellular 2.91±0.21
30 XP_013649614.1 kunitz trypsin inhibitor 1-like 23,553 6.6 细胞外Extracellular NDC

Fig. 2

Functional and pathway annotation of differential protein in ‘16VHNTS309’ under cold stress A: cellular component; B: molecular function; C: biological process; D: KEGG annotations."

Fig. 3

Differential protein and gene expression patterns and physiological indicators under cold stress. A: protein expression profiling and clustering analysis; B: six DEPs with drastic changes in gene expression levels revealed by qRT-PCR; C: the patterns of physiological changes under cold stress. Lowercase letters indicate significance difference at P ≤ 0.05 among all varieties and treatments."

Fig. 4

Sequence alignment of ‘16VHNTS309’ GST gene Black: the amino acid sequences of 3 varieties are consistent; red: the amino acid sequences of 2 varieties are consistent; white: the amino acid sequences are not consistent with the other 2 varieties."

Fig. S2

Basic Physicochemical Properties of GST Protein. A: transmembrane helix; B: hydrophobicity; C: signal peptide; D: phosphorylation site; E: domain; F: tertiary structure; G: amino acid sequence."

Fig. 5

Chromosome distribution of GST genes in Brassica napus"

Fig. 6

Phylogenetic tree of GST proteins in Brassica napus and Arabidopsis thaliana Subfamilies I-XVII are marked with different colors. Green triangles represent Arabidopsis thaliana, and yellow stars represent Brassica napus."

Fig. 7

Phylogenetic, motif composition, and gene structure analysis of BnGSTs in Brassica napus"

Fig. 8

Colinearity analysis of BnGSTs in Brassica napus"

Fig. 9

Relative expression patterns of BnGSTs genes under low temperature stress"

[1] 孙万仓, 刘海卿, 刘自刚, 武军艳, 李学才, 方彦, 曾秀存, 许耀照, 张亚宏, 董云. 北方寒旱区白菜型冬油菜安全越冬的临界指标分析. 作物学报, 2016, 42: 609-618.
Sun W C, Liu H Q, Liu Z G, Wu J Y, Li X C, Fang Y, Zeng X C, Xu Y Z, Zhang Y H, Dong Y. Critical index analysis of safe over-wintering rate of winter rapeseed (Brassica rapa) in cold and arid region in north China. Acta Agron Sin, 2016, 42: 609-618. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2016.00609
[2] 刘自刚, 孙万仓, 杨宁宁, 王月, 何丽, 赵彩霞, 史鹏飞, 杨刚, 李学才, 武军艳, 方彦, 曾秀存. 冬前低温胁迫下白菜型冬油菜抗寒性的形态及生理特征. 中国农业科学, 2013, 46: 4679-4687.
Liu Z G, Sun W C, Yang N N, Wang Y, He L, Zhao C X, Shi P F, Yang G, Li X C, Wu J Y, Fang Y, Zeng X C. Morphology and physiological characteristics of cultivars with different levels of cold-resistance in winter rapeseed (Brassica campestris L.) during cold acclimation. Sci Agric Sin, 2013, 46: 4679-4687. (in Chinese with English abstract)
[3] 蒲媛媛, 赵玉红, 武军艳, 刘丽君, 白静, 马骊, 牛早霞, 金姣姣, 方彦, 李学才, 孙万仓. 北方强冬性甘蓝型冬油菜品种(系)抗寒性评价. 中国农业科学, 2019, 52: 3291-3308.
Pu Y Y, Zhao Y H, Wu J Y, Liu L J, Bai J, Ma L, Niu Z X, Jin J J, Fang Y, Li X C, Sun W C. Comprehensive assessment on cold tolerance of the strong winter Brassica napus L. cultivated in northern China. Sci Agric Sin, 2019, 52: 3291-3308. (in Chinese with English abstract)
[4] 曹小东, 刘自刚, 米文博, 徐春梅, 邹娅, 徐明霞, 郑国强, 方新玲, 崔小茹, 董小云, 米超, 陈其鲜. 甘蓝型冬油菜北移种植的适应性分析. 中国农业科学, 2020, 53: 4164-4176.
Cao X D, Liu Z G, Mi W B, Xu C M, Zou Y, Xu M X, Zheng G Q, Fang X L, Cui X R, Dong X Y, Mi C, Chen Q X. Analysis on the adaptability of northward planting of Brassica napus. Sci Agric Sin, 2020, 53: 4164-4176. (in Chinese with English abstract)
[5] Li L J, Lu X C, Ma H Y, Lyu D G. Comparative proteomic analysis reveals the roots response to low root-zone temperature in Malus baccata. J Plant Res, 2018, 131: 865-878.
doi: 10.1007/s10265-018-1045-6 pmid: 29855747
[6] Xuan J P, Song Y F, Zhang H X, Liu J X, Guo Z R, Hua Y L. Comparative proteomic analysis of the stolon cold stress response between the C4 perennial grass species Zoysia japonica and Zoysia metrella. PLoS One, 2013, 8: e75705.
doi: 10.1371/journal.pone.0075705
[7] Wang J C, Meng Y X, Li B C, Ma X L, Lai Y, Si E J, Yang K, Xu X L, Shang X W, Wang H J, Wang D. Physiological and proteomic analyses of salt stress response in the halophyte Halogeton glomeratus. Plant Cell Environ, 2015, 38: 655-669.
doi: 10.1111/pce.12428
[8] 张雪, 陶磊, 乔晟, 杜秉昊, 郭长虹. 谷胱甘肽转移酶在植物抵抗非生物胁迫方面的角色. 中国生物工程杂志, 2017, 37(3): 92-98.
Zhang X, Tao L, Qiao S, Du B H, Guo C H. Roles of glutathione S-transferase in plant tolerance to abiotic. China Biotechnol, 2017, 37(3): 92-98. (in Chinese with English abstract)
[9] Lan T, Yang Z L, Yang X, Liu Y J, Wang X R, Zeng Q Y. Extensive functional diversification of the populus glutathione S-transferase supergene family. Plant Cell, 2009, 21: 3749-3766.
doi: 10.1105/tpc.109.070219
[10] Anderson J V, Davis D G. Abiotic stress alters transcript profiles and activity of glutathione S-transferase, glutathione peroxidase, and glutathione reductase in Euphorbia esula. Physiol Planta, 2004, 120: 421-433.
doi: 10.1111/j.0031-9317.2004.00249.x
[11] Dmitriev A A, Krasnov G S, Rozhmina T A, Kishlyan N V, Zyablitsin A V, Sadritdinova A F, Snezhkina A V, Fedorova M S, Yurkevich O Y, Muravenko O V, Bolsheva N L, Kudryavtseva A V, Melnikova N V. Glutathione S-transferases and UDP-glycosyltransferases are involved in response to aluminum stress in flax. Front Plant Sci, 2016, 7: 1920.
doi: 10.3389/fpls.2016.01920 pmid: 28066475
[12] Yang G Y, Chen S W, Li D P, Gao X Q, Su L Y, Peng S B, Zhai M Z. Multiple transcriptional regulation of walnut JrGSTTau1 gene in response to osmotic stress. Physiol Plant, 2019, 166: 748-761.
[13] Wang Z, Huang S Z, Jia C H, Liu J H, Zhang J B, Xu B Y, Jin Z Q. Molecular cloning and expression of five glutathione S-transferase (GST) genes from Banana (Musa acuminata L. AAA group, cv. Cavendish). Plant Cell Rep, 2013, 32: 1373-1380.
doi: 10.1007/s00299-013-1449-7
[14] Jha B, Sharma A, Mishra A. Expression of SbGSTU (tau class glutathione S-transferase) gene isolated from Salicornia brachiata in tobacco for salt tolerance. Mol Biol Rep, 2011, 38: 4823-4832.
doi: 10.1007/s11033-010-0625-x
[15] 杨宁宁, 孙万仓, 刘自刚, 史鹏辉, 方彦, 武军艳, 曾秀存, 孔德晶, 鲁美宏, 王月. 北方冬油菜抗寒性的形态与生理机制. 中国农业科学, 2014, 47: 452-461.
Yang N N, Sun W C, Liu Z G, Shi P H, Fang Y, Wu J Y, Zeng X C, Kong D J, Lu M H, Wang Y. Morphological characters and physiological mechanisms of cold resistance of winter rapeseed in northern China. Sci Agric Sin, 2014, 47: 452-461. (in Chinese with English abstract)
[16] Sheffield J, Taylor N, Fauquet C, Chen S X. The cassava (Manihot esculenta Crantz) root proteome: Protein identification and differential expression. Proteomics, 2006, 6: 1588-1598.
pmid: 16421938
[17] Mistry J, Finn R D, Eddy S R, Bateman A, Punta M. Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Res, 2013, 41: e121.
doi: 10.1093/nar/gkt263
[18] Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol, 2016, 33: 1870-1874.
doi: 10.1093/molbev/msw054 pmid: 27004904
[19] Bailey T L, Boden M, Buske F A, Frith M, Grant C E, Clementi L, Ren J Y, Li W W, Noble W S. MEME suite: Tools for motif discovery and searching. Nucleic Acids Res, 2009, 37: W202-W208.
doi: 10.1093/nar/gkp335
[20] Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190
[21] Bustin S A, Benes V, Nolan T, Pfaffl M W. Quantitative real-time RT-PCR: a perspective. J Mol Endocrinol, 2005, 34: 597-601.
pmid: 15956331
[22] Pu Y Y, Liu L J, Wu J Y, Zhao Y H, Bai J, Ma L, Yue J L, Jin J J, Niu Z X, Fang Y, Sun W C. Transcriptome profile analysis of winter rapeseed (Brassica napus L.) in response to freezing stress, reveal potentially connected events to freezing stress. Int J Mol Sci, 2019, 20: 2771.
doi: 10.3390/ijms20112771
[23] Zhang L, Tian L H, Zhao J F, Song Y, Zhang C J, Guo Y. Identification of an apoplastic protein involved in the initial phase of salt stress response in rice root by two-dimensional electrophoresis. Plant Physiol, 2009, 149: 916-928.
doi: 10.1104/pp.108.131144 pmid: 19036832
[24] Wang X Q, Liu Y L, Yang P F. Proteomic studies of the abiotic stresses response in model moss-Physcomitrella patens. Front Plant Sci, 2012, 3: 258.
[25] He C Y, Gao G R, Zhang J G. Proteome profiling reveals insights into cold-tolerant growth in sea buckthorn. Proteome Sci, 2016, 14: 14.
pmid: 27761102
[26] Kong F J, Oyanagi A, Komatsu S. Cell wall proteome of wheat roots under flooding stress using gel-based and LC MS/MS-based proteomics approaches. Biochim Biophys Acta Proteins Prot, 2010, 1804: 124-136.
[27] Tian X, Liu Y, Huang Z G, Duan H P, Tong J H, He X L, Gu W H, Ma H, Xiao L T. Comparative proteomic analysis of seedling leaves of cold-tolerant and -sensitive spring soybean cultivars. Mol Biol Rep, 2015, 42: 581-601.
doi: 10.1007/s11033-014-3803-4
[28] Liu Z G, Sun W C, Zhao Y N, Li X C, Fang Y, Wu J Y, Zeng X C, Yang N N, Wang Y, He L. Effects of low nocturnal temperature on photosynthetic characteristics and chloroplast ultrastructure of winter rapeseed. Russ J Plant Physiol, 2016, 63: 451-460.
doi: 10.1134/S1021443716040099
[29] Jędrzejuk A, Rabiza-świder J, Skutnik E, Łukaszewska A. Growing conditions and preservatives affect longevity, soluble protein, H2O2 and MDA contents, activity of antioxidant enzymes and DNA degradation in cut lilacs. Sci Hortic, 2018, 228: 122-131.
doi: 10.1016/j.scienta.2017.10.026
[30] Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol, 2004, 55: 373-399.
pmid: 15377225
[31] Cao Y Y, Yang M T, Li X, Zhou Z Q, Wang X J, Bai J G. Exogenous sucrose increases chilling tolerance in cucumber seedlings by modulating antioxidant enzyme activity and regulating proline and soluble sugar contents. Sci Hortic, 2014, 179: 67-77.
doi: 10.1016/j.scienta.2014.09.016
[32] Yan S P, Zhang Q Y, Tang Z C, Su W A, Sun W N. Comparative proteomic analysis provides new insights into chilling stress responses in rice. Mol Cel Proteomics, 2006, 5: 484-496.
doi: 10.1074/mcp.M500251-MCP200
[33] Sappl P G, Oñate-sánchez L, Singh K B, Millar H. Proteomic analysis of glutathione S-transferases of Arabidopsis thaliana reveals differential salicylic acid-induced expression of the plant- specific phi and tau classes. Plant Mol Biol, 2004, 54: 205-219.
doi: 10.1023/B:PLAN.0000028786.57439.b3
[34] Vision T J, Brown D G, Tanksley S D. The origins of genomic duplications in Arabidopsis. Science, 2000, 290: 2114-2117.
doi: 10.1126/science.290.5499.2114
[35] Wei L J, Zhu Y, Liu R Y, Zhang A X, Zhu M C, Xu W, Lin A, Lu K, Li J N. Genome wide identification and comparative analysis of glutathione transferases (GST) family genes in Brassica napus. Sci Rep, 2019, 9: 9196.
doi: 10.1038/s41598-019-45744-5
[36] He G, Guan C N, Chen Q X, Gou X J, Liu W, Zeng Q Y, Lan T. Genome-wide analysis of the glutathione S-transferase gene family in Capsella rubella: identification, expression, and biochemical functions. Front Plant Sci, 2016, 7: 1325.
[37] Islam S, Sajib S D, Jui Z S, Arabia S, Islam T, Ghosh A. Genome-wide identification of glutathione S-transferase gene family in pepper, its classification, and expression profiling under different anatomical and environmental conditions. Sci Rep, 2019, 9: 9101.
doi: 10.1038/s41598-019-45320-x pmid: 31235811
[38] Song W, Zhou F K, Shan C H, Zhang Q, Ning M, Liu X M, Zhao X X, Cai W C, Yang X Q, Hao G F, Tang F X. Identification of glutathione S-transferase genes in hami melon (Cucumis melo var. saccharinus) and their expression analysis under cold stress. Front Plant Sci, 2021, 12: 672017.
doi: 10.3389/fpls.2021.672017
[39] Yang G Y, Xu Z G, Peng S B, Sun Y D, Jia C X, Zhai M Z. In planta characterization of a tau class glutathione S-transferase gene from Juglans regia (JrGSTTau1) involved in chilling tolerance. Plant Cell Rep, 2016, 35: 681-692.
doi: 10.1007/s00299-015-1912-8
[40] Pagter M, Alpers J, Erban A, Kopka J, Zuther E, Hincha D K. Rapid transcriptional and metabolic regulation of the deacclimation process in cold acclimated Arabidopsis thaliana. BMC Genomics, 2017, 18: 731.
doi: 10.1186/s12864-017-4126-3
[41] Du C F, Hu K N, Xian S S, Liu C Q, Fan J C, Tu J X, Fu T D. Dynamic transcriptome analysis reveals AP2/ERF transcription factors responsible for cold stress in rapeseed (Brassica napus L.). Mol Genet Genomics, 2016, 291: 1053-1067.
doi: 10.1007/s00438-015-1161-0
[42] Jeon J, Kim J. Cold stress signaling networks in Arabidopsis. J Plant Biol, 2013, 56: 69-76.
doi: 10.1007/s12374-013-0903-y
[43] Li N N, Yue C, Cao H L, Qian W J, Hao X Y, Wang Y C, Wang L, Ding C Q, Wang X C, Yang Y J. Transcriptome sequencing dissection of the mechanisms underlying differential cold sensitivity in young and mature leaves of the tea plant (Camellia sinensis). J Plant Physiol, 2018, 224-225: 144-155.
[44] Zhu H S, Yu X J, Xu T, Wang T L, Du L X, Ren G H, Dong K H. Transcriptome profiling of cold acclimation in bermudagrass (Cynodon dactylon). Sci Hortic, 2015, 194: 230-236.
doi: 10.1016/j.scienta.2015.08.024
[45] Carvajal F, Rosales R, Palma F, Manzano S, Cañizares J, Jamilena M, Garridp D. Transcriptomic changes in Cucurbita pepo fruit after cold storage: Differential response between two cultivars contrasting in chilling sensitivity. BMC Genomics, 2018, 19: 125.
doi: 10.1186/s12864-018-4500-9 pmid: 29415652
[46] Basnet R K, Moreno P N, Lin K, Bucher J, Visser R G F, Maliepaard C, Bonnema G. Genome-wide analysis of coordinated transcript abundance during seed development in different Brassica rapa morphotypes. BMC Genomics, 2013, 14: 840.
doi: 10.1186/1471-2164-14-840 pmid: 24289287
[47] Kayum M A, Nath U K, Park J I, Biswas M K, Choi E K, Song J Y, Kim H T, Nou I S. Genome-wide identification, characterization, and expression profiling of glutathione S-transferase (GST) family in pumpkin reveals likely role in cold-stress tolerance. Genes, 2018, 9: 84.
doi: 10.3390/genes9020084
[1] YANG Jia-Bao, ZHANG Zhan, ZHOU Zhi-Ming, LYU Xin-Hua, SUN Li. Cloning and function analysis of a HaLACS9 gene in Helianthus annuus L. [J]. Acta Agronomica Sinica, 2023, 49(2): 426-437.
[2] WANG Heng-Bo, ZHANG Chang, WU Ming-Xing, LI Xiang, JIANG Zhong-Li, LIN Rong-Xiao, GUO Jin-Long, QUE You-Xiong. Genome-wide identification of NAC transcription factors ATAF subfamily in Sacchrum spontaneum and functional analysis of its homologous gene ScNAC2 in sugarcane cultivar [J]. Acta Agronomica Sinica, 2023, 49(1): 46-61.
[3] BAI Dong-Mei, XUE Yun-Yun, HUANG Li, HUAI Dong-Xin, TIAN Yue-Xia, WANG Peng-Dong, ZHANG Xin, ZHANG Hui-Qi, LI Na, JIANG Hui-Fang, LIAO Bo-Shou. Assessment of cold tolerance of different peanut varieties and screening of evaluation indexes at germination stage [J]. Acta Agronomica Sinica, 2022, 48(8): 2066-2079.
[4] CHEN Chi, CHEN Dai-Bo, SUN Zhi-Hao, PENG Ze-Qun, Adil Abbas, HE Deng-Mei, ZHANG Ying-Xin, CHENG Hai-Tao, YU Ping, MA Zhao-Hui, SONG Jian, CAO Li-Yong, CHENG Shi-Hua, SUN Lian-Ping, ZHAN Xiao-Deng, LYU Wen-Yan. Characterization and genetic mapping of a classic-abortive-type recessive genic-male-sterile mutant ap90 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(7): 1569-1582.
[5] YUAN Da-Shuang, DENG Wan-Yu, WANG Zhen, PENG Qian, ZHANG Xiao-Li, YAO Meng-Nan, MIAO Wen-Jie, ZHU Dong-Ming, LI Jia-Na, LIANG Ying. Cloning and functional analysis of BnMAPK2 gene in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(4): 840-850.
[6] HUANG Cheng, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome wide analysis of BnAPs gene family in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(3): 597-607.
[7] YU Hui-Fang, ZHANG Wei-Na, KANG Yi-Chen, FAN Yan-Ling, YANG Xin-Yu, SHI Ming-Fu, ZHANG Ru-Yan, ZHANG Jun-Lian, QIN Shu-Hao. Genome-wide identification and expression patterns in response to signals from Phytophthora infestans of CrRLK1Ls gene family in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 249-258.
[8] JIAN Hong-Ju, SHANG Li-Na, JIN Zhong-Hui, DING Yi, LI Yan, WANG Ji-Chun, HU Bai-Geng, Vadim Khassanov, LYU Dian-Qiu. Genome-wide identification and characterization of PIF genes and their response to high temperature stress in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 86-98.
[9] SHI Lei, MIAO Li-Juan, HUANG Bing-Yan, GAO Wei, ZHANG Zong-Xin, QI Fei-Yan, LIU Juan, DONG Wen-Zhao, ZHANG Xin-You. Characterization of the promoter and 5'-UTR intron in AhFAD2-1 genes from peanut and their responses to cold stress [J]. Acta Agronomica Sinica, 2021, 47(9): 1703-1711.
[10] XUE Xiao-Meng, WU JIE, WANG Xin, BAI Dong-Mei, HU Mei-Ling, YAN Li-Ying, CHEN Yu-Ning, KANG Yan-Ping, WANG Zhi-Hui, HUAI Dong-Xin, LEI Yong, LIAO Bo-Shou. Effects of cold stress on germination in peanut cultivars with normal and high content of oleic acid [J]. Acta Agronomica Sinica, 2021, 47(9): 1768-1778.
[11] HUANG Xing, XI Jin-Gen, CHEN Tao, QIN Xu, TAN Shi-Bei, CHEN He-Long, YI Ke-Xian. Identification and expression of PAL genes in sisal [J]. Acta Agronomica Sinica, 2021, 47(6): 1082-1089.
[12] MENG Yu-Yu, WEI Chun-Ru, FAN Run-Qiao, YU Xiu-Mei, WANG Xiao-Dong, ZHAO Wei-Quan, WEI Xin-Yan, KANG Zhen-Sheng, LIU Da-Qun. TaPP2-A13 gene shows induced expression pattern in wheat responses to stresses and interacts with adaptor protein SKP1 from SCF complex [J]. Acta Agronomica Sinica, 2021, 47(2): 224-236.
[13] GAO Yun, ZHANG Yu-Xue, MA Quan, SU Sheng-Nan, LI Chun-Yan, DING Jin-Feng, ZHU Min, ZHU Xin-Kai, GUO Wen-Shan. Effects of low temperature in spring on fertility of pollen and formation of grain number in wheat [J]. Acta Agronomica Sinica, 2021, 47(1): 104-115.
[14] HENG You-Qiang,YOU Xi-Long,WANG Yan. Pathogenesis-related protein gene SfPR1a from Salsola ferganica enhances the resistances to drought, salt and leaf spot disease in transgenic tobacco [J]. Acta Agronomica Sinica, 2020, 46(4): 503-512.
[15] LI Xu-Kai,LI Ren-Jian,ZHANG Bao-Jun. Identification of rice stress-related gene co-expression modules by WGCNA [J]. Acta Agronomica Sinica, 2019, 45(9): 1349-1364.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .