Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (12): 3071-3079.doi: 10.3724/SP.J.1006.2022.14227

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Functional identification of Bna-miR171g on improving tolerance to osmotic stress in Brassica napus

YANG Wen-Jing(), LU Hai-Qin, CHEN Wu-Jun, ZENG Lei, XIE Tao, JIANG Jin-Jin(), WANG You-Ping   

  1. College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2021-12-04 Accepted:2022-03-25 Online:2022-12-12 Published:2022-04-20
  • Contact: JIANG Jin-Jin E-mail:wjyang1205@126.com;jjjiang@yzu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(31972963);National Natural Science Foundation of China(31771825);National Key Research and Development Program of China(2018YFE0108000);Graduate Training Program for Innovation and Entrepreneurship(SJCX21_1602)

Abstract:

MicroRNA171 (miR171) as a conserved miRNA family in plants, plays important roles in regulating plant growth and development. Functional researches of miR171 are mainly reported in Arabidopsis, rice, and tomato. However, the function of miR171 in Brassica napus is unclear. In the present study, we found that the seven members of Bna-miR171 were highly conserved, of which, miR171g was strongly up-regulated by osmotic stress. Under the osmotic stress of 150 mmol L-1 mannitol, the root length of rapeseed overexpressing Bna-miR171g (OE-miR171g) was significantly longer than the control (J9712). The diaminobenzidine staining revealed less H2O2 accumulation in OE-miR171g than that of J9712 after osmotic stress, indicating OE-miR171g had higher reactive oxygen species-scavenging ability than the control. The proline content, peroxidase, and superoxide dismutase activity in OE-miR171g were higher than the control, while the malondialdehyde content in OE-miR171g was lower than the control. Besides, the relative expression level of stress responsive genes (ABI5, ERD10, RAB18, OSR1, RD20, and RD29B) in OE-miR171g were higher than the control. Generally, the overexpression of Bna-miR171g improved the rapeseed tolerance to osmotic stress, and could be helpful to the improvement of abiotic stress tolerance in B. napus.

Key words: Brassica napus, Bna-miR171g, mannitol, osmotic stress

Table 1

Primers used in this study"

引物名称
Primer name
引物序列
Primer sequence (5'-3')
引物名称
Primer name
引物序列
Primer sequence (5'-3')
Q-Bna-miR171g TGATTGAGCCGCGCCAATATCT Q-RAB18-F ACTGAAACTTGCGATTTGGG
5.8S GTCTGCCTGGGTGTCACG Q-RAB18-R AGGTCGATTTCCTTAGCCC
miR171g-F GTGTCCCTCCTTTCTGCG Q-OSR1-F CAACGGCTGAGATTTGATGTC
miR171g-R GAAGGGTTGGGTGGAGGT Q-OSR1-R CGGAAGGAACGGTGGTAGA
miR171g-F (Spe I) GGACTAGTGTGTCCCTCCTTTCTGCG Q-RD20-F CACTTCCGAGTTGGTTGCC
miR171g-R (Asc I) TTGGCGCGCCGAAGGGTTGGGTGGAGGT Q-RD20-R TCCTTCGGTATCATAGGTGCTT
Q-BnABI5-F GATAACATAGGAGGACAGTAT Q-RD29B-F GTCCAAGGTTACTGATCCCACTC
Q-BnABI5-R CTCAACTACCTTCTCTACC Q-RD29B-R CTTCAGACCAAACTCATGGTTTC
Q-ERD10-F GGGAGAGGTTAAGGATCGTG BnActin-F TCTTCCTCACGCTATCCTCCG
Q-ERD10-R CTCGAGGAGAGTAGGCTTATGC BnActin-R AGCCGTCTCCAGCTCTTGC

Fig. 1

Phylogenetic analysis of Bna-miR171 sequences A: the conservation analysis of miR171 mature sequences (From top to bottom are sequences from Arabidopsis thaliana, Oryza sativa, Zea mays, Brassica rapa, Brassica oleracea, and Brassica napus); B: phylogenetic analysis of miR171 precursor sequences. Bna: Brassica napus; Ath: Arabidopsis thaliana; Osa: Oryza sativa; Zma: Zea mays; Bra: Brassica rapa; Bol: Brassica oleracea."

Fig. 2

Relative expression levels of Bna-miR171g under osmotic stress"

Fig. 3

Phenotype of Bna-miR171g overexpression plants under osmotic stress A: the phenotype of OE-miR171 and J9712 under osmotic stress; B: root length; C: hypocotyl length; D: fresh weight; E: the relative expression level of Bna-miR171g; F: DAB staining of cotyledons. Data represent the means ± standard errors, n = 20. *: P < 0.05; **: P < 0.01."

Fig. 4

Physiological indexes of Bna-miR171g overexpression plants and CK under osmotic stress MDA: malondialdehyde; Pro: proline; POD: peroxidase dismutase; SOD: superoxide dismutase. *: P < 0.05; **: P < 0.01."

Fig. 5

Relative expression level of stress-responsive genes in Bna-miR171g overexpression plants and CK"

[1] 王汉中. 以新需求为导向的油菜产业发展战略. 中国油料作物学报, 2018, 40: 613-617.
Wang H Z. New-demand oriented oilseed rape industry developing strategy. Chin J Oil Crop Sci, 2018, 40: 613-617. (in Chinese with English abstract)
[2] 刘成, 冯中朝, 肖唐华, 马晓敏, 周广生, 黄凤洪, 李加纳, 王汉中. 我国油菜产业发展现状、潜力及对策. 中国油料作物学报, 2019, 41: 485-489.
Liu C, Feng Z C, Xiao T H, Ma X M, Zhou G S, Huang F H, Li J N, Wang H Z. Development, potential and adaptation of Chinese rapeseed industry. Chin J Oil Crop Sci, 2019, 41: 485-489. (in Chinese with English abstract)
[3] Lohani N, Jain D, Singh M B, Bhalla P L. Engineering multiple abiotic stress tolerance in canola, Brassica napus. Front Plant Sci, 2020, 11: 3.
[4] Trenberth K E, Dai A, Van Der Schrier G, Jones P D, Barichivich J, Briffa K R, Sheffield J. Global warming and changes in drought. Nat Clim Change, 2014, 4: 17-22.
doi: 10.1038/nclimate2067
[5] 张树杰, 王汉中. 我国油菜生产应对气候变化的对策和措施分析. 中国油料作物学报, 2012, 34: 114-122.
Zhang S J, Wang H Z. Policies and strategies analyses of rapeseed production response to climate change in China. Chin J Oil Crop Sci, 2012, 34: 114-122. (in Chinese with English abstract)
[6] 杨真, 王宝山. 中国盐渍土资源现状及改良利用对策. 山东农业科学, 2015, 47(4): 125-130.
Yang Z, Wang B S. Present status of saline soil resources and countermeasures for improvement and utilization in China. Shandong Agric Sci, 2015, 47(4): 125-130. (in Chinese with English abstract)
[7] Zhu J K. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol, 2002, 53: 247-273.
doi: 10.1146/annurev.arplant.53.091401.143329
[8] Leung J, Bouvier-Durand M, Morris P C, Guerrier D, Chefdor F, Giraudat J. Arabidopsis ABA response gene ABI1: features of a calcium-modulated protein phosphatase. Science, 1994, 264: 1448-1452.
pmid: 7910981
[9] Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi- Shinozaki K, Shinozaki K.Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low- temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell, 1998, 10: 1391-1406.
pmid: 9707537
[10] Boudsocq M, Barbier-Brygoo H, Lauriere C. Identification of nine sucrose nonfermenting 1-related protein kinases 2 activated by hyperosmotic and saline stresses in Arabidopsis thaliana. J Biol Chem, 2004, 279: 41758-41766.
doi: 10.1074/jbc.M405259200 pmid: 15292193
[11] Monks D E, Aghoram K, Courtney P D, Dewald D B, Dewey R E. Hyperosmotic stress induces the rapid phosphorylation of a soybean phosphatidylinositol transfer protein homolog through activation of the protein kinases SPK1 and SPK2. Plant Cell, 2001, 13: 1205-1219.
doi: 10.1105/tpc.13.5.1205 pmid: 11340192
[12] Umezawa T, Yoshida R, Maruyama K, Yamaguchi-Shinozaki K, Shinozaki K. SRK2C, a SNF1-related protein kinase 2, improves drought tolerance by controlling stress-responsive gene expression in Arabidopsis thaliana. Proc Natl Acad Sci USA, 2004, 101: 17306-17311.
doi: 10.1073/pnas.0407758101
[13] Mao X, Zhang H, Tian S, Chang X, Jing R. TaSnRK2.4, an SNF1-type serine/threonine protein kinase of wheat (Triticum aestivum L.), confers enhanced multistress tolerance in Arabidopsis. J Exp Bot, 2010, 61: 683-696.
doi: 10.1093/jxb/erp331
[14] Zhang H, Mao X, Jing R, Chang X, Xie H. Characterization of a common wheat (Triticum aestivum L.) TaSnRK2.7 gene involved in abiotic stress responses. J Exp Bot, 2011, 62: 975-988.
doi: 10.1093/jxb/erq328
[15] Ying S, Zhang D F, Li H Y, Liu Y H, Shi Y S, Song Y C, Wang T Y, Li Y. Cloning and characterization of a maize SnRK2 protein kinase gene confers enhanced salt tolerance in transgenic Arabidopsis. Plant Cell Rep, 2011, 30: 1683-1699.
doi: 10.1007/s00299-011-1077-z
[16] Fujita Y, Yoshida T, Yamaguchi-Shinozaki K. Pivotal role of the AREB/ABF-SnRK2 pathway in ABRE-mediated transcription in response to osmotic stress in plants. Physiol Planta, 2013, 147: 15-27.
doi: 10.1111/j.1399-3054.2012.01635.x
[17] Wu J, Yan G, Duan Z, Wang Z, Kang C, Guo L, Liu K, Tu J, Shen J, Yi B, Fu T, Li X, Ma C, Dai C. Roles of the Brassica napus DELLA protein BnaA6.RGA, in modulating drought tolerance by interacting with the ABA signaling component BnaA10.ABF2. Front Plant Sci, 2020, 11: 577.
doi: 10.3389/fpls.2020.00577
[18] Yang M, Yang Q, Fu T, Zhou Y. Overexpression of the Brassica napus BnLAS gene in Arabidopsis affects plant development and increases drought tolerance. Plant Cell Rep, 2011, 30: 373-388.
doi: 10.1007/s00299-010-0940-7
[19] Liang Y, Kang K, Gan L, Ning S, Xiong J, Song S, Xi L, Lai S, Yin Y, Gu J, Xiang J, Li S, Wang B, Li M. Drought-responsive genes, LEA3) and vicinal oxygen chelate, function in lipid accumulation in Brassica napus and Arabidopsis mainly via enhancing photosynthetic efficiency and reducing ROS. Plant Biotechnol J, 2019, 17: 2123-2142.
doi: 10.1111/pbi.13127 pmid: 30972883
[20] Georges F, Das S, Ray H, Bock C, Nokhrina K, Kolla VA, Keller W. Over-expression of Brassica napus phosphatidylinositol-phospholipase C2 in canola induces significant changes in gene expression and phytohormone distribution patterns, enhances drought tolerance and promotes early flowering and maturation. Plant Cell Environ, 2009, 32: 1664-1681.
doi: 10.1111/j.1365-3040.2009.02027.x
[21] Li Q, Yin M, Li Y, Fan C, Yang Q, Wu J, Zhang C, Wang H, Zhou Y. Expression of Brassica napus TTG2, a regulator of trichome development, increases plant sensitivity to salt stress by suppressing the expression of auxin biosynthesis genes. J Exp Bot, 2015, 66: 5821-5836.
doi: 10.1093/jxb/erv287
[22] Xiong J L, Wang H C, Tan X Y, Zhang C L, Naeem M S. 5-aminolevulinic acid improves salt tolerance mediated by regulation of tetrapyrrole and proline metabolism in Brassica napus L. seedlings under NaCl stress. Plant Physiol Biochem, 2018, 124: 88-99.
doi: 10.1016/j.plaphy.2018.01.001
[23] Jones-Rhoades M W, Bartel D P, Bartel B. MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol, 2006, 57: 19-53.
pmid: 16669754
[24] Zhou R, Yu X, Ottosen C O, Zhang T, Wu Z, Zhao T. Unique miRNAs and their targets in tomato leaf responding to combined drought and heat stress. BMC Plant Biol, 2020, 20: 107.
doi: 10.1186/s12870-020-2313-x pmid: 32143575
[25] Liu H H, Tian X, Li Y J, Wu C A, Zheng C C. Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA, 2008, 14: 836-843.
doi: 10.1261/rna.895308
[26] Jian H, Wang J, Wang T, Wei L, Li J, Liu L. Identification of rapeseed microRNAs involved in early stage seed germination under salt and drought stresses. Front Plant Sci, 2016, 7: 658.
doi: 10.3389/fpls.2016.00658 pmid: 27242859
[27] Hwang E W, Shin S J, Yu B K, Byun M O, Kwon H B. MiR171 family members are involved in drought response in Solanum tuberosum. J Plant Biol, 2010, 54: 43-48.
doi: 10.1007/s12374-010-9141-8
[28] Liu Z, Lei X, Wang P, Wang Y, Lv J, Li X, Gao C. Overexpression of ThSAP30BP from Tamarix hispida improves salt tolerance. Plant Physiol Biochem, 2020, 146: 124-132.
doi: 10.1016/j.plaphy.2019.11.020
[29] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[30] Yang Y, Zhu K, Li H, Han S, Meng Q, Khan S U, Fan C, Xie K, Zhou Y. Precise editing of CLAVATA genes in Brassica napus L. regulates multilocular silique development. Plant Biotechnol J, 2018, 16: 1322-1335.
doi: 10.1111/pbi.12872 pmid: 29250878
[31] Li J, Lin K, Zhang S, Wu J, Fang Y, Wang Y. Genome-wide analysis of myeloblastosis-related genes in Brassica napus L. and positive modulation of osmotic tolerance by BnMRD107. Front Plant Sci, 2021, 12: 678202.
[32] Jiang J, Yuan Y, Zhu S, Fang T, Ran L, Wu J, Wang Y. Comparison of physiological and methylational changes in resynthesized Brassica napus and diploid progenitors under drought stress. Acta Physiol Plant, 2019, 41: 45.
doi: 10.1007/s11738-019-2837-6
[33] Xia L, Yang L, Sun N, Li J, Fang Y, Wang Y. Physiological and antioxidant enzyme gene expression analysis reveals the improved tolerance to drought stress of the somatic hybrid offspring of Brassica napus and Sinapis alba at vegetative stage. Acta Physiol Plant, 2016, 38: 88.
doi: 10.1007/s11738-016-2111-0
[34] Kantar M, Lucas S J, Budak H. MiRNA expression patterns of Triticum dicoccoides in response to shock drought stress. Planta, 2011, 233: 471-484.
doi: 10.1007/s00425-010-1309-4 pmid: 21069383
[35] Dalton-Morgan J, Hayward A, Alamery S, Tollenaere R, Mason A S, Campbell E, Patel D, Lorenc M T, Yi B, Long Y, Meng J, Raman R, Raman H, Lawley C, Edwards D, Batley J. A high-throughput SNP array in the amphidiploid species Brassica napus shows diversity in resistance genes. Funct Integr Genomics, 2014, 14: 643-655.
doi: 10.1007/s10142-014-0391-2
[36] Luo J, Tang S, Mei F, Peng X, Li J, Li X, Yan X, Zeng X, Liu F, Wu Y, Wu G. BnSIP1-1, a trihelix family gene, mediates abiotic stress tolerance and ABA signaling in Brassica napus. Front Plant Sci, 2017, 8: 44.
[37] Yang H, Deng L, Liu H, Fan S, Hua W, Liu J. Overexpression of BnaAOX1b confers tolerance to osmotic and salt stress in rapeseed. Gene Genom Genet, 2019, 9: 3501-3511.
[38] Liu N, Chen J, Wang T, Li Q, Cui P, Jia C, Hong Y. Overexpression of WAX INDUCER1/SHINE1 gene enhances wax accumulation under osmotic stress and oil synthesis in Brassica napus. Int J Mol Sci, 2019, 20: 4435.
doi: 10.3390/ijms20184435
[39] Chen L, Ren F, Zhou L, Wang Q Q, Zhong H, Li X B. The Brassica napus calcineurin B-like 1/CBL-interacting protein kinase 6 (CBL1/CIPK6) component is involved in the plant response to abiotic stress and ABA signalling. J Exp Bot, 2012, 63: 6211-6222.
doi: 10.1093/jxb/ers273
[40] Xie M, Zhang S, Yu B. MicroRNA biogenesis, degradation and activity in plants. Cell Mol Life Sci, 2015, 72: 87-99.
doi: 10.1007/s00018-014-1728-7 pmid: 25209320
[41] Li J, Duan Y, Sun N, Wang L, Feng S, Fang Y, Wang Y. The miR169n-NF-YA8 regulation module involved in drought resistance in Brassica napus L. Plant Sci, 2021, 313: 111062.
[42] Song X, Li Y, Cao X, Qi Y. MicroRNAs and their regulatory roles in plant-environment interactions. Annu Rev Plant Biol, 2019, 70: 489-525.
doi: 10.1146/annurev-arplant-050718-100334 pmid: 30848930
[43] Raza A, Su W, Gao A, Mehmood S S, Hussain M A, Nie W, Lv Y, Zou X, Zhang X. Catalase (CAT) gene family in rapeseed (Brassica napus L.): genome-wide analysis, identification, and expression pattern in response to multiple hormones and abiotic stress conditions. Int J Mol Sci, 2021, 22: 4281.
doi: 10.3390/ijms22084281
[44] Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci, 2002, 7: 405-410.
doi: 10.1016/s1360-1385(02)02312-9 pmid: 12234732
[45] Naheed R, Aslam H, Kanwal H, Farhat F, Gamar M I A, Al-Mushhin A A M, Jabborova D, Ansari M J, Shaheen S, Aqeel M, Noman A, Hessini K. Growth attributes, biochemical modulations, antioxidant enzymatic metabolism and yield in Brassica napus varieties for salinity tolerance. Saudi J Biol Sci, 2021, 28: 5469-5479.
doi: 10.1016/j.sjbs.2021.08.021
[46] El-Badri A M, Batool M, Mohamed I A A, Wang Z, Khatab A, Sherif A, Ahmad H, Khan M N, Hassan H M, Elrewainy I M, Kuai J, Zhou G, Wang B. Antioxidative and metabolic contribution to salinity stress responses in two rapeseed cultivars during the early seedling stage. Antioxidants, 2021, 10: 1227.
doi: 10.3390/antiox10081227
[47] Zhang Y, Yang C, Li Y, Zheng N, Chen H, Zhao Q, Gao T, Guo H, Xie Q.SDIR1 is a RING finger E3 ligase that positively regulates stress-responsive abscisic acid signaling in Arabidopsis. Plant Cell, 2007, 19: 1912-1929.
doi: 10.1105/tpc.106.048488
[48] Kovacs D, Kalmar E, Torok Z, Tompa P. Chaperone activity of ERD10 and ERD14, two disordered stress-related plant proteins. Plant Physiol, 2008, 147: 381-390.
doi: 10.1104/pp.108.118208 pmid: 18359842
[49] Aubert Y, Vile D, Pervent M, Aldon D, Ranty B, Simonneau T, Vavasseur A, Galaud J P. RD20, a stress-inducible caleosin, participates in stomatal control, transpiration and drought tolerance in Arabidopsis thaliana. Plant Cell Physiol, 2010, 51: 1975-1987.
doi: 10.1093/pcp/pcq155 pmid: 20952421
[50] Jeannette E, Rona J P, Bardat F, Cornel D, Sotta B, Miginiac E. Induction of RAB18gene expression and activation of K+outward rectifying channels depend on an extracellular perception of ABA in Arabidopsis thaliana suspension cells. Plant J, 1999, 18: 13-22.
pmid: 10341440
[51] Bihmidine S, Lin J, Stone J M, Awada T, Specht J E, Clemente T E. Activity of the Arabidopsis RD29A and RD29B promoter elements in soybean under water stress. Planta, 2013, 237: 55-64.
doi: 10.1007/s00425-012-1740-9 pmid: 22983672
[52] Lim C W, Baek W, Lee S C. Roles of pepper bZIP protein CaDILZ1 and its interacting partner RING-type E3 ligase CaDSR1 in modulation of drought tolerance. Plant J, 2018, 96: 452-467.
doi: 10.1111/tpj.14046
[1] ZHANG Chao, YANG Bo, ZHANG Li-Yuan, XIAO Zhong-Chun, LIU Jing-Sen, MA Jin-Qi, LU Kun, LI Jia-Na. Mining harvest index loci based on QTL mapping and genome-wide association study in rapessed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2022, 48(9): 2180-2195.
[2] LI Sheng-Ting, XU Yuan-Fang, CHANG Wei, LIU Ya-Jun, GU Yuan, ZHU Hong, LI Jia-Na, LU Kun. Bna.C02SWEET15 positively regulates the flowering time of rapeseed through photoperiodic pathway [J]. Acta Agronomica Sinica, 2022, 48(8): 1938-1947.
[3] ZHANG Tian-Yu, WANG Yue, LIU Ying, ZHOU Ting, YUE Cai-Peng, HUANG Jin-Yong, HUA Ying-Peng. Bioinformatics analysis and core member identification of proline metabolism gene family in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(8): 1977-1995.
[4] DAI Li-Shi, CHANG Wei, ZHANG Sai, QIAN Ming-Chao, LI Xiao-Dong, ZHANG Kai, LI Jia-Na, QU Cun-Min, LU Kun. Functional validation of Bna-novel-miR36421 regulating plant architecture and flower organ development in Arabidopsis thaliana [J]. Acta Agronomica Sinica, 2022, 48(7): 1635-1644.
[5] CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371.
[6] YUAN Da-Shuang, DENG Wan-Yu, WANG Zhen, PENG Qian, ZHANG Xiao-Li, YAO Meng-Nan, MIAO Wen-Jie, ZHU Dong-Ming, LI Jia-Na, LIANG Ying. Cloning and functional analysis of BnMAPK2 gene in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(4): 840-850.
[7] HUANG Cheng, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome wide analysis of BnAPs gene family in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(3): 597-607.
[8] WANG Rui, CHEN Xue, GUO Qing-Qing, ZHOU Rong, CHEN Lei, LI Jia-Na. Development of linkage InDel markers of the white petal gene based on whole-genome re-sequencing data in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(3): 759-769.
[9] YUE Man-Fang, ZHANG Chun, ZHENG Deng-Yu, ZOU Hua-Wen, WU Zhong-Yi. Response of maize transcriptional factor ZmbHLH91 to abiotic stress [J]. Acta Agronomica Sinica, 2022, 48(12): 3004-3017.
[10] WU Jia-Yi, YUAN Fang, MENG Li-Jiao, LI Chen-Yang, SHI Hong-Song, BAI Yan-Song, WU Xiao-Ru, LI Jia-Na, ZHOU Qing-Yuan, CUI Cui. QTL mapping and candidate genes screening of photosynthesis-related traits in Brassica napus L. during seedling stage under aluminum stress [J]. Acta Agronomica Sinica, 2022, 48(11): 2749-2764.
[11] WANG Yan-Hua, LIU Jing-Sen, LI Jia-Na. Integrating GWAS and WGCNA to screen and identify candidate genes for biological yield in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(8): 1491-1510.
[12] LI Jie-Hua, DUAN Qun, SHI Ming-Tao, WU Lu-Mei, LIU Han, LIN Yong-Jun, WU Gao-Bing, FAN Chu-Chuan, ZHOU Yong-Ming. Development and identification of transgenic rapeseed with a novel gene for glyphosate resistance [J]. Acta Agronomica Sinica, 2021, 47(5): 789-798.
[13] TANG Xin, LI Yuan-Yuan, LU Jun-Xing, ZHANG Tao. Morphological characteristics and cytological study of anther abortion of temperature-sensitive nuclear male sterile line 160S in Brassica napus [J]. Acta Agronomica Sinica, 2021, 47(5): 983-990.
[14] ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598.
[15] LI Shu-Yu, HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin, SONG Lai-Qiang. QTL mapping and candidate genes screening of earliness traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 626-637.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .