Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (12): 3080-3090.doi: 10.3724/SP.J.1006.2022.14244

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Interaction of sugarcane main facilitator superfamily member ScZIFL1 with 6K2 in response to Sugarcane mosaic virus infection

LIU Shu-Xian(), YANG Zong-Tao, CHENG Guang-Yuan, ZHANG Hai, ZHOU Ying-Shuan, SHANG He-Yang, HUANG Guo-Qiang, XU Jing-Sheng()   

  1. Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs / National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University / Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fuzhou 350002, Fujian, China
  • Received:2021-12-22 Accepted:2022-03-25 Online:2022-12-12 Published:2022-04-19
  • Contact: XU Jing-Sheng E-mail:Liushuxian1010@163.com;xujingsheng@126.com
  • Supported by:
    National Natural Science Foundation of China(31971991);Science and Technology Innovation Project of Fujian Agriculture and Forestry University(CXZX2018026)

Abstract:

The major facilitator superfamily (MFS) members are extensively distributed in the organisms. The zinc induced facilitator like proteins (ZIFL), members of the MFS, are involved in the transport of small organic molecules. In our previous study, the ZIFL homologue was screened from sugarcane (Saccharum spp. hybrid) and identified to interact with Sugarcane mosaic virus (SCMV) coding protein 6K2 by yeast two-hybrid (Y2H), then named as ScZIFL1. In the present study, the interaction of ScZIFL1 with SCMV-6K2 was further confirmed by bimolecular fluorescence complementation (BiFC) assays. Bioinformatics analysis showed that ScZIFL1 coded 484 aa, and was an unstable hydrophobic protein without signal peptide but 12 transmembrane domains. Sequences alignment revealed the conserved cysteine-containing motif, canonical MFS signature, and anti-porter signatures in ScZIFLl. Phylogenetic tree indicated that ZIFLl was divergent between monocotyledons and dicotyledons, as well as C3 and C4 plants. Subcellular localization referred that ScZIFL1 was localized in tonoplast but partially co-localized with SCMV-6K2. ScZIFL1 gene had obvious tissue specificity in sugarcane by RT-qPCR. The relative expression levels of ScZIFL1 genes were the highest in stems, followed by leaves, and the lowest in roots. Specifically, the relative expression levels of ScZIFL1 genes in the established morphogenesis and fully functional tissues such as the leaf +1 and the 8th internode were significantly higher than those in the immature tissues, i.e., leaf roll and the 3rd internode, or the fading tissues, i.e., leaf +7. Upon the infection of SCMV, ScZIFL1 was significantly up-regulated at the early stage and remained higher expression with time going on.

Key words: Sugarcane mosaic virus, 6K2, ZIFL1, protein interaction

Table 1

Primers used in this study"

引物名称
Primer name
引物序列
Primer sequence (5′-3′)
策略
Strategy
221-ScZIFL1-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGGCCGGCGGTGGCGGCGA 双分子荧光互补载体构建
221-ScZIFL1-R GGGGACCACTTTGTACAAGAAAGCTGGGTCTGAATGCCTCATTGAATTTG Vector generation for BiFC
ScZIFL1-qF TGGACGAGGCGAACGAGACC 定量PCR
ScZIFL1-qR AGCGGCGGTGAGGCAGAC Real-time qPCR
GAPDH-F CACGGCCACTGGAAGCA 内参基因
GAPDH-R TCCTCAG GGTTCCTGATGCC Reference gene
Actin-F CCTGAAGATCACCCTGTGCT 内参基因
Actin-R GCAGTCTCCAGCTCCTGTTC Reference gene
SCMV-CP-F TACAGAGAGACACACAGCTG SCMV检测
SCMV-CP-R ACGCTACACCAGAAGACACT Detection of SCMV

Fig. 1

Transmembrane domain prediction of ScZIFL1"

Fig. 2

Amino acid sequence alignment of ScZIFL1 and ZIFL1 from other plant species The cysteine-containing motif CPGC, canonical signature WG(V/M/I)(F/V/A/I)AD(K/R)(Y/I//H/L)GRKP and anti-porter signature S(x8)G(x3)GP(A/T/G)(L/I)GG (x stands for any amino acid) were in red color, and were highlighted by yellow color. Sequences in I are from monocotyledon, while sequences in II are from dicotyledon. ZmZIFL1 (NP_001141824.1): Zea mays; SbZIFL1 (XP_002457667.1): Sorghum bicolor; PhZIFL1 (XP_025817905.1): Panicum hallii; SvZIFL1 (XP_034593088.1): Setaria viridis; BdZIFL1 (XP_003567304.1): Brachypodium distachyon; HvZIFL1 (KAE8779043.1): Hordeum vulgare; TaZIFL1 (KAF7029361.1): Triticum aestivum; OsZIFL1 (XP_025880517.1): Oryza sativa; PtZIFL1 (XP_024443823.1) Populus trichocarpa; PpZIFL1 (XP_007217932.1): Prunus persica; VvZIFL1 (XP_002277598.2): Vitis vinifera; NaZIFL1 (XP_019247413.1): Nicotiana attenuate; AtZIFL1 (OAP02507.1): Arabidopsis thaliana; StZIFL1 (XP_006347685.1): Solanum tuberosum; GmZIFL1 (XP_006594342.1): Glycine max; CaZIFL1 (XP_016582203.1): Capsicum annuum."

Fig. 3

Phylogenetic tree of ScZIFL1 and ZIFL1 proteins from other plant species The red box, the green box, and the orange box indicate the subgroup I-1, the subgroup I-2, and the group II, respectively."

Fig. 4

Subcellular localization of ScZIFL1 fused with YFP in the epidermal cells of N. benthamiana A: subcellular localization of ScZIFL1-YFP; B: subcellular colocalization of ScZIFL1-YFP with 6K2-CFP. Bar: 25 μm."

Fig. 5

Protein-protein interaction between ScZIFL1 and SCMV-6K2 by BiFC assays A: the N-terminal half of YFP was fused to the N-terminal of ScZIFL1to generate ScZIFL1-YN, while the C-terminal half of YFP was fused to the C-terminal of SCMV-6K2 to generate SCMV-6K2-YC; B: the N-terminal half of YFP was fused to the N-terminal of SCMV-6K2 to generate SCMV-6K2-YN, while the C-terminal half of YFP was fused to the C-terminal of ScZIFL1 to generate ScZIFL1-YC. Plasmid’s combination of 6K2-YC plus ScZIFL1-YN (A), ScZIFL1-YC plus 6K2-YN (B) were individually co-injected into N. benthamiana leaves for transient expression. The fluorescent signal was monitored by confocal microscopy at 48 hours post infiltration. Bar: 25 μm."

Fig. 6

Tissue specific expression analysis of ScZIFL1 genes LR: leaf roll; +1 L: leaf +1; leaf +7; +3 I: the 3rd internode; +8 I: the 8th internode; R: root. The error bar represents the standard error of each treating group (n = 3). Bars superscripted by different lowercase letters are significantly different at P < 0.05."

Fig. 7

Relative expression profile of ScZIFL1 genes under the infection of SCMV The error bar represents the standard error of each treatment group (n = 3). Bars superscripted by different lowercase letters are significantly different at P < 0.05."

[1] Pao S S, Paulsen I T, Saier M H J. Major facilitator superfamily. Microbiol Mol Biol Rev, 1998, 62: 1-34.
doi: 10.1128/MMBR.62.1.1-34.1998
[2] Yan N. Structural biology of the major facilitator superfamily transporters. Annu Rev Biophys, 2015, 44: 257-283.
doi: 10.1146/annurev-biophys-060414-033901 pmid: 26098515
[3] Saier M H J, Beatty J T, Goffeau A, Harley K T, Heijne W H, Huang S C, Jack D L, Jähn P S, Lew K, Liu J, Pao S S, Paulsen I T, Tseng T T, Virk P S: The major facilitator superfamily. J Mol Microbiol Biotechnol, 1999, 1: 257-279.
[4] Ricachenevsky F K, Sperotto R A, Menguer P K, Sperb E R, Lopes K L, Fett J P. Zinc-induced facilitator-like family in plants: lineage-specific expansion in monocotyledons and conserved genomic and expression features among rice (Oryza sativa) paralogs. BMC Plant Biol, 2011, 11: 20.
doi: 10.1186/1471-2229-11-20 pmid: 21266036
[5] Reddy V S, Shlykov M A, Castillo R, Sun E I, Saier M H J. The major facilitator superfamily (MFS) revisited. FEBS J, 2012, 279: 2022-2035.
doi: 10.1111/j.1742-4658.2012.08588.x pmid: 22458847
[6] Che J, Yokosho K, Yamaji N, Ma J F. A vacuolar phytosiderophore transporter alters iron and zinc accumulation in polished rice grains. Plant Physiol, 2019, 181: 276-288.
doi: 10.1104/pp.19.00598 pmid: 31331995
[7] Eser O P, Ocak U, Sherchan P, Zhang J H, Tang J. Insights into major facilitator superfamily domain-containing protein-2a (Mfsd2a) in physiology and pathophysiology. What do we know so far? J Neurosci Res, 2020, 98: 29-41.
doi: 10.1002/jnr.24327 pmid: 30345547
[8] Diao J, Li S X, Ma L, Zhang P, Bai J Y, Wang J Q, Ma X Q, Ma W. Genome-wide analysis of major facilitator superfamily and its expression in response of poplar to Fusarium oxysporum. Front Genet, 2021, 12: 769888.
[9] Niño-González M, Novo-Uzal E, Richardson D N, Barros P M, Duque P. More transporters, more substrates: the Arabidopsis major facilitator superfamily revisited. Mol Plant, 2019, 12: 1182-1202.
doi: S1674-2052(19)30234-5 pmid: 31330327
[10] Lorca G L, Barabote R D, Zlotopolski V, Tran C, Winnen B, Hvorup R N, Stonestrom A J, Nguyen E, Huang L W, Kim D S, Saier M H J. Transport capabilities of eleven gram-positive bacteria: comparative genomic analyses. Biochim Biophys Acta, 2007, 1768: 1342-1366.
pmid: 17490609
[11] Saier M H J, Paulsen I T. Phylogeny of multidrug transporters. Semin Cell Dev Biol, 2001, 12: 205-213.
pmid: 11428913
[12] Eom J S, Chen L Q, Sosso D, Julius B T, Lin I W, Qu X Q, Braun D M, Frommer W B. SWEETs, transporters for intracellular and intercellular sugar translocation. Curr Opin Plant Biol, 2015, 25: 53-62.
doi: 10.1016/j.pbi.2015.04.005
[13] Remy E, Cabrito T R, Baster P, Batista R A, Teixeira M C, Friml J, Sá-Correia I, Duque P. A major facilitator superfamily transporter plays a dual role in polar auxin transport and drought stress tolerance in Arabidopsis. Plant Cell, 2013, 25: 901-926.
doi: 10.1105/tpc.113.110353
[14] Kathare P K, Dharmasiri S, Vincill E D, Routray P, Ahmad I, Roberts D M, Dharmasiri N. Arabidopsis PIC30 encodes a major facilitator superfamily transporter responsible for the uptake of picolinate herbicides. Plant J, 2020, 102: 18-33.
doi: 10.1111/tpj.14608
[15] Wang M, Gong J, Bhullar N K. Iron deficiency triggered transcriptome changes in bread wheat. Comput Struct Biotechnol J, 2020, 18: 2709-2722.
doi: 10.1016/j.csbj.2020.09.009
[16] Haydon M J, Cobbett C S. A novel major facilitator superfamily protein at the tonoplast influences zinc tolerance and accumulation in Arabidopsis. Plant Physiol, 2007, 143: 1705-1719.
doi: 10.1104/pp.106.092015
[17] Sharma S, Kaur G, Kumar A, Meena V, Kaur J, Pandey A K. Overlapping transcriptional expression response of wheat zinc-induced facilitator-like transporters emphasize important role during Fe and Zn stress. BMC Mol Biol, 2019, 20: 22.
doi: 10.1186/s12867-019-0139-6 pmid: 31547799
[18] 程龙军, 葛红娟. Nicotianamine (NA)在植物中的作用. 植物生理学通讯, 2009, 45: 821-826.
Cheng L J, Ge H J. Roles of nicotianamine in plants. Plant Physiol Commun, 2009, 45: 821-826. (in Chinese with English abstract)
[19] Haydon M J, Kawachi M, Wirtz M, Hillmer S, Hell R, Krämer U. Vacuolar nicotianamine has critical and distinct roles under iron deficiency and for zinc sequestration in Arabidopsis. Plant Cell, 2012, 24: 724-737.
doi: 10.1105/tpc.111.095042
[20] Nozoye T, Nagasaka S, Kobayashi T, Takahashi M, Sato Y, Sato Y, Uozumi N, Nakanishi H, Nishizawa N K. Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants. J Biol Chem, 2011, 286: 5446-5454.
doi: 10.1074/jbc.M110.180026 pmid: 21156806
[21] Nozoye T, Nagasaka S, Kobayashi T, Sato Y, Uozumi N, Nakanishi H, Nishizawa N K. The phytosiderophore efflux transporter TOM2 is involved in metal transport in rice. J Biol Chem, 2015, 290: 27688-27699.
doi: 10.1074/jbc.M114.635193 pmid: 26432636
[22] 周国辉, 许东林, 沈万宽. 甘蔗重要病害研究及防治策略. 甘蔗糖业, 2005, (1): 11-16.
Zhou G H, Xu D L, Shen W K. On sugarcane major diseases and their controlling. Sugar Canesugar, 2005, (1): 11-16. (in Chinese with English abstract)
[23] 李文凤, 丁铭, 方琦, 黄应昆, 张仲凯, 董家红, 苏晓霞, 李婷婷. 云南甘蔗花叶病病原的初步鉴定. 中国糖料, 2006, (2): 4-7.
Li W F, Ding M, Fang Q, Huang Y K, Zhang Z K, Dong J H, Su X X, Li T T. Preliminary identification of sugarcane mosaic pathogeny in Yunnan. Sugar Crops China, 2006, (2): 4-7. (in Chinese with English abstract)
[24] Wu L, Zu X, Wang S, Chen Y. Sugarcane mosaic virus - long history but still a threat to industry. Crop Prot, 2012, 42: 74-78.
[25] Putra L K, Kristini A, Achadian E M, Damayanti T A. Sugarcane streak mosaic virus in Indonesia: distribution, characterisation, yield losses and management approaches. Sugar Technol, 2014, 16: 392-399.
doi: 10.1007/s12355-013-0279-9
[26] 周丰静, 黄诚华, 李正文, 商显坤, 黄伟华, 潘雪红, 魏吉利, 林善海. 广西蔗区甘蔗花叶病病毒种群分析. 南方农业学报, 2015, 46: 609-613.
Zhou F J, Huang C H, Li Z W, Shang X S, Huang W H, Pan X H, Wei J L, Lin S H. Analysis of the virus population causing Sugarcane mosaic virus disease in sugarcane growing area of Guangxi. J South Agric, 2015, 46: 609-613. (in Chinese with English abstract)
[27] 梁姗姗, 罗群, 陈如凯, 高三基. 引起甘蔗花叶病的病原分子生物学进展. 植物保护学报, 2017, 44: 363-370.
Liang S S, Luo Q, Chen R K, Gao S J. Advances in researches on molecular biology of viruses causing sugarcane mosaic. Acta Phytophy Sin, 2017, 44: 363-370 (in Chinese with English abstract).
[28] 李文凤, 单红丽, 张荣跃, 王晓燕, 罗志明, 尹炯, 仓晓燕, 李婕, 黄应昆. 我国新育成甘蔗品种(系)对甘蔗线条花叶病毒和高粱花叶病毒的抗性评价. 植物病理学报, 2018, 48: 389-394.
Li W F, Shan H L, Zhang R Y, Wang X Y, Luo Z M, Yin J, Cang X Y, Li J, Huang Y K. Screening for resistance to Sugarcane streak mosaic virus and Sorghum mosaic virus in new elite sugarcane varieties/clones from China. Acta Phytopathol Sin, 2018, 48: 389-394. (in Chinese with English abstract)
[29] 沈林波, 吴楠楠, 冯小艳, 熊国如, 赵婷婷, 王文治, 王俊刚, 张树珍. 52个甘蔗品种在广西受病毒侵染情况. 热带作物学报, 2020, 41(1): 116-126.
Shen L B, Wu N N, Feng X Y, Xiong G R, Zhao T T, Wang W Z, Wang J G, Zhang S Z. Virus infection situation of fifty-two sugarcane varieties in Guangxi. Chin J Trop Crops, 2020, 41(1): 116-126. (in Chinese with English abstract)
[30] 杨荣仲, 周会, 肖祎, 吕达, 廖红香, 陈道德, 刘昔辉, 雷敬超, 林垠孚. 甘蔗主要亲本自然条件下抗甘蔗花叶病测定. 中国糖料, 2020, 42(2): 47-52.
Yang R Z, Zhou H, Xiao Y, Lyu D, Liao H X, Chen D D, Liu X H, Lei J C, Lin Y F. Testing on sugarcane mosaic resistance of sugarcane major parents under field conditions. Sugar Crops China, 2020, 42(2): 47-52. (in Chinese with English abstract)
[31] Akbar S, Yao W, Yu K, Qin L, Ruan M, Powell C A, Chen B, Zhang M. Photosynthetic characterization and expression profiles of sugarcane infected by Sugarcane mosaic virus (SCMV). Photosynth Res, 2020, 150: 279-294.
doi: 10.1007/s11120-019-00706-w
[32] Shukla D D, Frenkel M J, McKern N M, Ward C W, Jilka J, Tosic M, Ford R E. Present status of the sugarcane mosaic subgroup of potyviruses. Arch Virol, 1992, 5: 363-373.
[33] Shukla D D, Tosic M, Jilka J, Ford R E, Toler R W, Langham M A C. Taxonomy of potyviruses infecting maize, sorghum, and sugarcane in Australia and the United States as determined by reactivities of polyclonal antibodies directed towards virus-specific N-termini of coat proteins. Phytopathology, 1989, 79: 223-229.
doi: 10.1094/Phyto-79-223
[34] Xu D, Park J W, Mirkov T E, Zhou G. Viruses causing mosaic disease in sugarcane and their genetic diversity in southern China. Arch Virol, 2008, 153: 1031-1039.
doi: 10.1007/s00705-008-0072-3 pmid: 18438601
[35] 冯小艳, 王文治, 沈林波, 冯翠莲, 张树珍. 甘蔗线条花叶病毒研究进展. 生物技术通报, 2017, 33(7): 22-28.
doi: 10.13560/j.cnki.biotech.bull.1985.2017-0084
Feng X Y, Wang W Z, Shen L B, Feng C L, Zhang S Z. Research advances on Sugarcane streak mosaic virus. Biotechnol Bull, 2017, 33(7): 22-28. (in Chinese with English abstract)
[36] 郑艳茹, 翟玉山, 邓宇晴, 成伟, 程光远, 杨永庆, 徐景升. 甘蔗花叶病毒(SCMV)种群结构分析. 福建农林大学学报(自然科学版), 2016, 45(2): 135-140.
Zheng Y R, Zhai Y S, Deng Y Q, Cheng W, Cheng G Y, Yang Y Q, Xu J S. The population structure of Sugarcane mosaic virus (SCMV). J Fujian Agric For Univ (Nat Sci Edn), 2016, 45(2): 135-140. (in Chinese with English abstract)
[37] 翟玉山, 彭磊, 杨永庆, 邓宇晴, 程光远, 郑艳茹, 徐景升. 甘蔗条纹花叶病毒HC-ProP3N-PIPOCPVPg基因酵母双杂交诱饵表达载体的构建及自激活检测. 华北农学报, 2016, 31(1): 83-89.
doi: 10.7668/hbnxb.2016.01.014
Zhai Y S, Peng L, Yang Y Q, Deng Y Q, Cheng G Y, Zheng Y R, Xu J S. Construction and self-activated detection of the baits of HC-Pro, P3N-PIPO, CP and VPg from Sugarcane streak mosaic virus for yeast two hybrid system. Acta Agric Boreali-Sin, 2016, 31(1): 83-89. (in Chinese with English abstract)
[38] Dong M, Cheng G Y, Peng L, Xu Q, Yang Y Q, Xu J S. Transcriptome analysis of sugarcane response to the infection by Sugarcane streak mosaic virus (SCSMV). Trop Plant Biol, 2017, 10: 45-55.
doi: 10.1007/s12042-016-9183-2
[39] Zhai Y S, Deng Y Q, Cheng G Y, Peng L, Zheng Y R, Yang Y, Xu J S. Sugarcane elongin C is involved in infection by sugarcane mosaic disease pathogens. Biochem Biophys Res Commun, 2015, 466: 312-318.
doi: 10.1016/j.bbrc.2015.09.015
[40] Ward C W, Shukla D D. Taxonomy of potyviruses: current problems and some solutions. Intervirology, 1991, 32: 269-296.
pmid: 1657820
[41] Hall J S, Adams B, Parsons T J, French R, Lane L C, Jensen S G. Molecular cloning, sequencing, and phylogenetic relationships of a new Potyvirus: Sugarcane streak mosaic virus, and a reevaluation of the classification of the Potyviridae. Mol Phylogenet Evol, 1998, 10: 323-332.
pmid: 10051385
[42] Li W F, He Z, Li S F, Huang Y K, Zhang Z X, Jiang D M, Wang X Y, Luo Z M. Molecular characterization of a new strain of Sugarcane streak mosaic virus (SCSMV). Arch Virol, 2011, 156: 2101-2104.
doi: 10.1007/s00705-011-1090-0
[43] Xu D, Zhou G, Xie Y, Mock R, Li R. Complete nucleotide sequence and taxonomy of Sugarcane streak mosaic virus, member of a novel genus in the family Potyviridae. Virus Genes, 2010, 40: 432-439.
doi: 10.1007/s11262-010-0457-8 pmid: 20162446
[44] Filloux D, Fernandez E, Comstock J C, Mollov D, Roumagnac P, Rott P. Viral metagenomic-based screening of sugarcane from florida reveals occurrence of six sugarcane-infecting viruses and high prevalence of Sugarcane yellow leaf virus. Plant Dis, 2018, 102: 2317-2323.
doi: 10.1094/PDIS-04-18-0581-RE pmid: 30207899
[45] Yahaya A, Dangora D B, Kumar P L, Alegbejo M D, Gregg L, Alabi O J. Prevalence and genome characterization of field isolates of Sugarcane mosaic virus (SCMV) in Nigeria. Plant Dis, 2019, 103: 818-824.
doi: 10.1094/PDIS-08-18-1445-RE pmid: 30806574
[46] Cheng G, Dong M, Xu Q, Peng L, Yang Z T, Wei T, Xu J. Dissecting the molecular mechanism of the subcellular localization and cell-to-cell movement of the Sugarcane mosaic virus P3N-PIPO. Sci Rep, 2017, 7: 9868.
doi: 10.1038/s41598-017-10497-6
[47] Zhang H, Cheng G Y, Yang Z T, Wang T, Xu J S. Identification of sugarcane host factors interacting with the 6K2 protein of the Sugarcane mosaic virus. Int J Mol Sci, 2019, 20: 3867.
doi: 10.3390/ijms20163867
[48] 张海, 刘淑娴, 杨宗桃, 王彤, 程光远, 商贺阳, 徐景升. 甘蔗PsbS亚基应答甘蔗花叶病毒侵染及其与6K2蛋白的互作研究. 作物学报, 2020, 46: 1722-1733.
Zhang H, Liu S X, Yang Z T, Wang T, Cheng G Y, Shang H Y, Xu J S. Sugarcane PsbS subunit response to Sugarcane mosaic virus infection and its interaction with 6K2 protein. Acta Agron Sin, 2020, 46: 1722-1733. (in Chinese with English abstract)
[49] 张海, 程光远, 杨宗桃, 刘淑娴, 商贺阳, 黄国强, 徐景升. 甘蔗PsbR亚基应答SCMV侵染及其与SCMV-6K2的互作. 作物学报, 2021, 47: 1522-1530.
doi: 10.3724/SP.J.1006.2021.04194
Zhang H, Cheng G Y, Yang Z T, Liu S X, Shang H Y, Huang G Q, Xu J S. Sugarcane PsbR subunit response to SCMV infection and its interaction with SCMV-6K2. Acta Agron Sin, 2021, 47: 1522-1530. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.04194
[50] 张海, 程光远, 杨宗桃, 王彤, 刘淑娴, 商贺阳, 赵贺, 徐景升. 甘蔗ScCRT1基因克隆及其应答SCMV侵染分子机制的研究. 作物学报, 2021, 47: 94-103.
doi: 10.3724/SP.J.1006.2021.04156
Zhang H, Cheng G Y, Yang Z T, Liu S X, Shang H Y, Zhao H, Xu J S. Cloning of sugarcane ScCRT1 gene and its response to SCMV infection. Acta Agron Sin, 2021, 47: 94-103. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.04156
[51] 杨宗桃, 刘淑娴, 程光远, 张海, 周营栓, 商贺阳, 黄国强, 徐景升. 甘蔗类泛素蛋白UBL5应答SCMV侵染及其与SCMV-6K2的互作研究. 作物学报, 2022, 48: 332-341.
doi: 10.3724/SP.J.1006.2022.14001
Yang Z T, Liu S X, Cheng G Y, Zhang H, Zhou Y S, Shang H Y, Huang G Q, Xu J S. Sugarcane ubiquitin-like protein UBL5 responses to SCMV infection and interacts with SCMV-6K2. Acta Agron Sin, 2022, 48: 332-341. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.14001
[52] Grangeon R, Jiang J, Wan J, Agbeci M, Zheng H, Laliberté J F. 6K2-induced vesicles can move cell to cell during Turnip mosaic virus infection. Front Microbiol, 2013, 4: 351.
doi: 10.3389/fmicb.2013.00351 pmid: 24409170
[53] Jiang J, Patarroyo C, Garcia Cabanillas D, Zheng H, Laliberté J F. The vesicle-forming 6K2 protein of Turnip mosaic virus interacts with the COPII coatomer Sec24a for viral systemic infection. J Virol, 2015, 89: 6695-6710.
doi: 10.1128/JVI.00503-15 pmid: 25878114
[54] Lõhmus A, Varjosalo M, Mäkinen K. Protein composition of 6K2-induced membrane structures formed during Potato virus A infection. Mol Plant Pathol, 2016, 17: 943-958.
doi: 10.1111/mpp.12341
[55] Cheng G, Yang Z, Zhang H, Zhang J, Xu J. Remorin interacting with PCaP1 impairs Turnip mosaic virus intercellular movement but is antagonised by VPg. New Phytol, 2019, 225: 2122-2139.
doi: 10.1111/nph.16285
[56] Movahed N, Patarroyo C, Sun J, Vali H, Laliberté J F, Zheng H. Cytoplasmic inclusion of Turnip mosaic virus serves as a docking point for the intercellular movement of viral replication vesicles. Plant Physiol, 2017, 175: 1732-1744.
doi: 10.1104/pp.17.01484
[57] Movahed N, Sun J, Vali H, Laliberté J, Zheng H. A host ER fusogen is recruited by Turnip mosaic virus for maturation of viral replication vesicles. Plant Physiol, 2019, 179: 507-518.
doi: 10.1104/pp.18.01342
[58] Li F F, Zhang C W, Tang Z W, Zhang L R, Dai Z J, Lyu S W, Li Y Z, Hou X L, Bernards M, Wang A M. A plant RNA virus activates selective autophagy in a UPR-dependent manner to promote virus infection. New Phytol, 2020, 228: 622-639.
doi: 10.1111/nph.16716
[59] 邓宇晴, 杨永庆, 翟玉山, 程光远, 彭磊, 郑艳茹, 林彦铨, 徐景升. 甘蔗花叶病毒福州分离物全基因组克隆及种群分析. 植物病理学报, 2016, 46: 775-782.
Deng Y Q, Yang Y Q, Zhai Y S, Cheng G Y, Peng L, Zheng Y R, Lin Y Q, Xu J S. Genome cloning of two Sugarcane mosaic virus isolates from Fuzhou and phylogenetic analysis of SCMV. Acta Phytopathol Sin, 2016, 46: 775-782 (in Chinese with English abstract).
[60] Xu J, Deng Y, Cheng G, Zhai Y, Peng L, Dong M, Xu Q, Yang Y. Sugarcane mosaic virus infection of model plants Brachypodium distachyon and Nicotiana benthamiana. J Intergr Agric, 2019, 18: 2294-2301.
[61] 朱海龙, 程光远, 彭磊, 柴哲, 郭晋隆, 许莉萍, 徐景升. 甘蔗条纹花叶病毒P3蛋白与甘蔗Rubisco大亚基互作的研究. 西北植物学报, 2014, 34: 676-681.
Zhu H L, Cheng G Y, Peng L, Chai Z, Guo J L, Xu L P, Xu J S. Interaction between Sugarcane streak mosaic virus P3 and rubisco large subunit from sugarcane. Acta Bot Boreali-Occident Sin, 2014, 34: 676-681. (in Chinese with English abstract)
[62] Guo J, Ling H, Wu Q, Xu L, Que Y. The choice of reference genes for assessing gene expression in sugarcane under salinity and drought stresses. Sci Rep, 2014, 4: 7042.
doi: 10.1038/srep07042 pmid: 25391499
[63] Xu L, Zhao H Y, Wan R J, Liu Y, Xu Z, Tian W, Ruan W Y, Wang F, Deng M J, Wang J M, Dolan L, Luan S W, Xue S W, Yi K K. Identification of vacuolar phosphate efflux transporters in land plants. Nat Plants, 2019, 5: 84-94.
doi: 10.1038/s41477-018-0334-3 pmid: 30626920
[64] 郭家文, 张跃彬, 刘少春, 罗志明, 崔雄维. 硼钼锌单施及配施对甘蔗产量和品质的影响. 西南农业学报, 2009, 22: 716-720.
Guo J W, Zhang Y B, Liu S C, Luo Z M, Cui X W. Effects of sole fertilization of B, Mo, Zn and combined application on the stem yield and quality of sugarcane. J South Agric, 2009, 22: 716-720. (in Chinese with English abstract)
[65] Balafrej H, Bogusz D, Triqui Z A, Guedira A, Bendaou N, Smouni A, Fahr M. Zinc hyperaccumulation in plants: a review. Plants (Basel), 2020, 9: 562.
[66] Kaur H, Garg N. Zinc toxicity in plants: a review. Planta, 2021, 253: 129.
doi: 10.1007/s00425-021-03642-z pmid: 34043068
[67] Sinclair S A, Krämer U. The zinc homeostasis network of land plants. Biochim Biophys Acta, 2012, 1823: 1553-1567.
doi: 10.1016/j.bbamcr.2012.05.016 pmid: 22626733
[68] Yruela I. Transition metals in plant photosynthesis. Metallomics, 2013, 5: 1090-1109.
doi: 10.1039/c3mt00086a pmid: 23739807
[69] Fraile A, García-Arenal F. The coevolution of plants and viruses: resistance and pathogenicity. Adv Virus Res, 2010, 76: 1-32.
doi: 10.1016/S0065-3527(10)76001-2 pmid: 20965070
[70] Wang A. Dissecting the molecular network of virus-plant interactions: the complex roles of host factors. Annu Rev Phytopathol, 2015, 53: 45-66.
doi: 10.1146/annurev-phyto-080614-120001 pmid: 25938276
[71] 李琳, 丁峰, 潘介春, 张树伟, 黄幸, 王金英, 王颖, 李浩然, 徐炯志, 彭宏祥, 何新华. 植物锌指蛋白转录因子家族研究进展. 热带农业科学, 2020, 40(2): 65-75.
Li L, Ding F, Pan J C, Zhang S W, Huang X, Wang J Y, Wang Y, Li H R, Xu J Z, Peng H X, He X H. Research progress on family of plant Zinc-Finger protein transcription factors. Chin J Trop Crops, 2020, 40(2): 65-75. (in Chinese with English abstract)
[1] YANG Zong-Tao, LIU Shu-Xian, CHENG Guang-Yuan, ZHANG Hai, ZHOU Ying-Shuan, SHANG He-Yang, HUANG Guo-Qiang, XU Jing-Sheng. Sugarcane ubiquitin-like protein UBL5 responses to SCMV infection and interacts with SCMV-6K2 [J]. Acta Agronomica Sinica, 2022, 48(2): 332-341.
[2] XU Bin, CAO Shao-Yu, SU Tian, PENG Meng-Ling, LYU Xia, LI Zhen-Lin, ZHANG Guo-Ping, XU Jun-Qiang. Interactions between CMLs and NPG1 and related proteins in pollen germination of Brassica oleracea L. var. capitata [J]. Acta Agronomica Sinica, 2022, 48(11): 2934-2944.
[3] ZHANG Hai, CHENG Guang-Yuan, YANG Zong-Tao, LIU Shu-Xian, SHANG He-Yang, HUANG Guo-Qiang, XU Jing-Sheng. Sugarcane PsbR subunit response to SCMV infection and its interaction with SCMV-6K2 [J]. Acta Agronomica Sinica, 2021, 47(8): 1522-1530.
[4] LI Lan-Lan, MU Dan, YAN Xue, YANG Lu-Ke, LIN Wen-Xiong, FANG Chang-Xun. Effect of OsPAL2;3 in regulation of rice allopathic inhibition on barnyardgrass (Echinochloa crusgalli L.) [J]. Acta Agronomica Sinica, 2021, 47(2): 197-209.
[5] MENG Yu-Yu, WEI Chun-Ru, FAN Run-Qiao, YU Xiu-Mei, WANG Xiao-Dong, ZHAO Wei-Quan, WEI Xin-Yan, KANG Zhen-Sheng, LIU Da-Qun. TaPP2-A13 gene shows induced expression pattern in wheat responses to stresses and interacts with adaptor protein SKP1 from SCF complex [J]. Acta Agronomica Sinica, 2021, 47(2): 224-236.
[6] ZHANG Hai, CHENG Guang-Yuan, YANG Zong-Tao, WANG Tong, LIU Shu-Xian, SHANG He-Yang, ZHAO He, XU Jing-Sheng. Cloning of sugarcane ScCRT1 gene and its response to SCMV infection [J]. Acta Agronomica Sinica, 2021, 47(1): 94-103.
[7] ZHENG Qing-Lei,YU Chen-Jing,YAO Kun-Cun,HUANG Ning,QUE You-Xiong,LING Hui,XU Li-Ping. Cloning and expression analysis of sugarcane Fe/S precursor protein gene ScPetC [J]. Acta Agronomica Sinica, 2020, 46(6): 844-857.
[8] ZHANG Hai, LIU Shu-Xian, YANG Zong-Tao, WANG Tong, CHENG Guang-Yuan, SHANG He-Yang, XU Jing-Sheng. Sugarcane PsbS subunit response to Sugarcane mosaic virus infection and its interaction with 6K2 protein [J]. Acta Agronomica Sinica, 2020, 46(11): 1722-1733.
[9] YANG Sha,LI Yan,GUO Feng,ZHANG Jia-Lei,MENG Jing-Jing,LI Meng,WAN Shu-Bo,LI Xin-Guo. Screening of AhCaM-Interactive Proteins in Peanuts Using Yeast Two Hybrid System [J]. Acta Agron Sin, 2015, 41(07): 1056-1063.
[10] LIU Rong-Bang,CHEN Ming,GUO Meng-Meng,SI Qing-Lin,GAO Shi-Qing,XU Zhao-Shi,LI Lian-Cheng,MA You-Zhi,YIN Jun. Characterization and Functional Analysis of a Small GTP-binding Protein AtRAB Interacting with H+-Pyrophosphatase AVP1 in Arabidopsis thaliana [J]. Acta Agron Sin, 2014, 40(10): 1756-1766.
[11] ZHANG Xiao-Hong,XU Peng-Bo,GUO Meng-Meng,XU Zhao-Shi,LI Lian-Cheng,CHEN Ming,MA You-Zhi. Characteristic and Function Analysis of a Copper Ion Binding Protein, AtBCB Interacting with G Protein α Subunit GPA1 in Arabidopsis thaliana [J]. Acta Agron Sin, 2013, 39(11): 1952-1961.
[12] WANG Xin-Dong,CHEN Liang,ZHANG Zeng-Yan. Interaction between Wheat Resistance-related Kinase TiDPK1 and BYDV Coat Protein [J]. Acta Agron Sin, 2013, 39(10): 1720-1726.
[13] TANG Qing-Lin,XU Jun-Qiang,SONG Ming,WANG Zhi-Min. Expression of Floral Meristem Identity Gene AP1 in vitro and Validation of Interaction between AP1 and FLC in Brassica juncea Coss. (Mustard) [J]. Acta Agron Sin, 2012, 38(07): 1328-1333.
[14] YANG Hun, ZHANG He-Cui, Richard CONVERSE, SHU Li-Quan, YANG Yong-Jun, XUE Li-Yan, LUO Bing, CHANG De-Long, GAO Qi-Guo, WANG Xiao-Jia. Interaction between Two Self-incompatible Signal Elements, EXO70A1 and ARC1 [J]. Acta Agron Sin, 2011, 37(12): 2136-2144.
[15] QIU Zhi-Gang, XU Zhao-Shi, ZHENG Tian-Hui, LI Lian-Cheng, CHEN Ming, MA Wei-Zhi. Screening and Identification of Proteins Interacting with ERF Transcription Factor W17 in Wheat [J]. Acta Agron Sin, 2011, 37(05): 803-810.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[2] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[3] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[4] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[5] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .
[6] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .
[7] KE Li-Ping;ZHENG Tao;WU Xue-Long;HE Hai-Yan;CHEN Jin-Qing. Analysis of Self-Incompatibility Locus Gene in Brassica napus[J]. Acta Agron Sin, 2008, 34(05): 764 -769 .
[8] LÜ Li-Hua;TAO Hong-Bin;XIA Lai-Kun; HANG Ya-Jie;ZHAO Ming;ZHAO Jiu-Ran;WANG Pu;. Canopy Structure and Photosynthesis Traits of Summer Maize under Different Planting Densities[J]. Acta Agron Sin, 2008, 34(03): 447 -455 .
[9] LIANG Tai-Bo;YIN Yan-Ping;CAI Rui-Guo;YAN Su-Hui;LI Wen-Yang;GENG Qing-Hui;WANG Ping;WANG Zhen-Lin. Starch Accumulation and Related Enzyme Activities in Superior and Inferior Grains of Large Spike Wheat[J]. Acta Agron Sin, 2008, 34(01): 150 -156 .
[10] WANG Cheng-Zhang;HAN Jin-Feng;SHI Ying-Hua;LI Zhen-Tian;LI De-Feng. Production Performance in Alfalfa with Different Classes of Fall Dormancy[J]. Acta Agron Sin, 2008, 34(01): 133 -141 .