Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (12): 3091-3107.doi: 10.3724/SP.J.1006.2022.11113

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Association analysis of agronomic traits of tartary buckwheat germplasm resources with SSR markers

LI Xiao-Yu(), FANG Xiao-Mei(), WU Hao-Tian, WANG Ying-Qian, LIU Yang, TANG Tian, WANG Yu-Dong, WU Yin-Huan, YUE Lin-Qing, ZHANG Rui-Feng, CUI Jing-Bin, ZHANG Jian, YI Ze-Lin()   

  1. College of Agronomy and Biotechnology, Southwest University / Chongqing Buckwheat Industry System Innovation Team, Chongqing 400715, China
  • Received:2021-12-22 Accepted:2022-03-25 Online:2022-12-12 Published:2022-04-19
  • Contact: YI Ze-Lin E-mail:lxy9508@163.com;swufxm@swu.edu.cn;yzlin@swu.edu.cn
  • About author:First author contact:

    **Contributed equally to this work

  • Supported by:
    China Postdoctoral Science Foundation(2017M622944);Chongqing Buckwheat Technology Industry System(20170249);Chongqing Natural Science Foundation(cstc2018jcyjAX0394)

Abstract:

The analysis of the genetic diversity and population genetic structure of Fagopyrum tataricum germplasm resources and the molecular markers associated with the agronomic traits and seed-related traits of Fagopyrum tataricum could provide a theoretical basis and reference for the hybrid combinations and molecular marker assisted breeding of Tartary buckwheat. In this study, 318 Tartary buckwheat germplasms were used as materials. A total of 11 traits, including thousand-grain weight (TGW), grain length (GL), grain width (GW), grain length-to-width ratio (L/W), grain area (GA), grain perimeter (GP), grain diameter (GD), roundness of grain (GR), plant height (PH), branch number of main stem (BN), and the node pod number of main stem (PN), were investigated in two years of 2019-2020, and the phenotypic data were analyzed by BLUP. A total of 293 loci were detected by 77 SSR markers with good polymorphism in the tested Tartary buckwheat accessions. The average gene diversity coefficient was 0.52, and the average PIC value was 0.46. 318 Tartary buckwheat resources were divided into 4 groups with an average genetic distance of 0.44 by cluster analysis and it had no obvious correspondence with geographical origin. Genetic structure analysis revealed that the tested group could be divided into two subgroups. There were detected extremely 54 significant loci at P < 0.01 associated with 11 traits with the explanation rate ranging from 1.77% to 16.40% by association study. Among these markers, 47SSRmarker could be detected by two or more traits at the same time and 25SSRmarker could be detected under 2019, 2020, and BLUP, simultaneously. These results will be of great significance for candidate gene mining for related traits and molecular marker-assisted breeding of high-yield Tartary buckwheat.

Key words: Tartary buckwheat, agronomic traits, seed-related traits, SSR markers, association analysis

Table S1

Name and Source of Tartary Buckwheat Germplasm Resources and cluster analysis"

编号
ID.
类群
Group
名称
Name
来源
Source
编号
ID.
类群
Group
名称
Name
来源
Source
1 纯提001 重庆 160 国KQ12 陕西
2 苦荞(24) 重庆 161 云南凤庆苦荞-3 云南
3 大苦荞2号 贵州 162 黔苦3号 贵州
4 黔威2号 贵州 163 信农1号中苦荞 日本
5 172 四川 164 巫溪苦荞 重庆
6 么站苦荞 四川 165 藏苦12高株 西藏
7 210 四川 166 大苦荞 贵州
8 芍白 四川 167 06—10 北京
9 g4 陕西 168 盐源苦荞中黑籽 四川
10 苦荞(6) 重庆 169 黔苦荞3号 贵州
11 藏苦6号 西藏 170 国KQ13 陕西
12 盐源苦荞选 四川 171 黔苦荞1号 贵州
13 姑苦荞 四川 172 云南凤庆苦荞-6 云南
14 苦荞16 重庆 173 云荞1号 云南
15 刺苦荞 贵州 174 云荞2号 云南
16 可苦荞 山西 175 昭苦1号 云南
17 藏苦11号 西藏 176 昭苦2号 云南
18 136 重庆 177 苦荞(1) 重庆
19 额拉6 四川 178 达苦荞 贵州
20 榆林苦荞 陕西 179 86-39 北京
21 织金白花荞 贵州 180 额曲瓦子-2 四川
22 和平村苦荞 云南 181 KXCML2 四川
23 苦荞83 重庆 182 KXCML1 四川
24 金苦荞 贵州 183 KXCML3 四川
25 黔威1号 贵州 184 西昌依额 四川
26 德昌苦荞 四川 185 韩国苦荞KHJF1 韩国
27 300R 重庆 186 KCQ1XC 四川
28 藏苦7号 西藏 187 KXQ1XC 四川
29 川荞2号 四川 188 KXCZJ3 四川
30 威苦02-286 贵州 189 KXCZJ8 四川
31 四川甘洛县苦荞-1 四川 190 KXCZJ1 四川
32 四川甘洛县苦荞-2 四川 191 KXCZJ4 四川
33 基苦荞 重庆 192 KXCZJ6 四川
34 石柱苦荞4号 重庆 193 KXCZJ5 四川
35 石柱苦荞6号 重庆 194 KXCZY7 四川
36 石柱苦荞7号 重庆 195 KXCZJ2 四川
37 86-38 北京 196 TQ148选苦荞 重庆
38 庄苦荞 四川 197 苦荞选1 重庆
39 2011-146 重庆 198 苦荞选2黑长粒 重庆
40 苦荞(5) 重庆 199 苦荞选7 长粒 重庆
41 石柱苦荞-1 重庆 200 高楠镇苦荞 重庆
42 国KQ2 陕西 201 城口县高燕镇苦荞 重庆
43 西荞—1选强杆株 四川 202 城口县农技站苦荞 重庆
44 川荞5号 四川 203 城口县修齐镇苦荞 重庆
45 黔苦荞4号 贵州 204 17GQ02 重庆
46 野鸡苦荞 贵州 205 2K4 贵州
47 酉荞1号 重庆 206 17GQ013 重庆
48 西荞2号 四川 207 17短枝梗-1 重庆
49 TBW3 北京 208 西昌农家品种苦荞33 四川
50 国KQ10-1 山西 209 西昌农家品种苦荞11 四川
51 国KQ9 陕西 210 西昌农家品种苦荞15 四川
52 额角瓦齿 四川 211 九苦选灰 江西
53 藏苦4号 西藏 212 17GQ08 重庆
54 08—1 北京 213 17GQ12 重庆
55 凤庆苦荞-1 云南 214 西昌农家品种苦荞18 四川
56 06—13 北京 215 17GQ07 重庆
57 S312017 陕西 216 西昌农家品种苦荞7 四川
58 10—3 北京 217 短枝梗-2 重庆
59 S312015 陕西 218 西昌农家品种苦荞21 四川
60 06—12 北京 219 西荞5号 四川
61 永善县连峰镇 云南 220 西昌农家品种苦荞10 四川
62 九江苦荞选黑粒 江西 221 西昌农家品种苦荞19 四川
63 藏苦8号 西藏 222 西昌农家品种苦荞5 四川
64 09—2 北京 223 西昌农家品种苦荞32 四川
65 S312019 陕西 224 17GQ001 重庆
66 细白苦荞 贵州 225 A1-284 北京
67 1期4 重庆 226 A1-286 北京
68 石柱苦荞-2 重庆 227 A1-287 北京
69 川荞4号 四川 228 A1-289 北京
70 国KQ11 陕西 229 A1-290 北京
71 藏苦10号 西藏 230 A1-291 北京
72 青皮荞 贵州 231 A1-292 北京
73 额拉 四川 232 A1-297 北京
74 云南禾朴农业 云南 233 A1-507 北京
75 S312012 陕西 234 A1-509 北京
76 西大花荞选苦荞-1 重庆 235 A1-510 北京
77 藏苦9号高株 西藏 236 A1-511 北京
78 云南苦荞 云南 237 A1-512 北京
79 国KQ3 山西 238 A1-515 北京
80 六苦荞1号 贵州 239 A1-516 北京
81 S312009 陕西 240 A1-518 北京
82 西大花荞选苦荞-2 重庆 241 A1-522 北京
83 08—1混株 重庆 242 A1-526 北京
84 06—6 北京 243 A1-543 北京
85 榆T04-02 陕西 244 A1-549 北京
86 海子鸽苦荞 四川 245 A1-550 北京
87 S312002 陕西 246 A1-551 北京
88 06—7-1 北京 247 A1-555 北京
89 九江苦荞 江西 248 A1-568 北京
90 西荞-3 四川 249 A1-569 北京
91 晋苦荞2号 山西 250 A1-570 北京
92 S312014 陕西 251 A1-571 北京
93 彭水苦荞-1 重庆 252 A1-572 北京
94 川荞3号 四川 253 A1-573 北京
95 藏苦1号 西藏 254 A1-574 北京
96 盐源苦荞 四川 255 A1-575 北京
97 1期7 重庆 256 A1-576 北京
98 S312021 陕西 257 A1-578 北京
99 06—8 北京 258 A1-580 北京
100 06—7-2 北京 259 A1-581 北京
101 TBW2-1 北京 260 A1-582 北京
102 永善先连峰镇苦荞 云南 261 A1-583 北京
103 六苦3号 云南 262 A1-584 北京
104 664小荞麦 四川 263 A1-586 北京
105 西荞-1硬秆短粒 四川 264 A1-587 北京
106 云南禾卜农业苦荞 云南 265 A1-588 北京
107 四川甘洛县苦荞 四川 266 A1-589 北京
108 藏苦2号高 西藏 267 A1-590 北京
109 国KQ4 陕西 268 A1-591 北京
110 S312007 陕西 269 A1-592 北京
111 云苦2号 云南 270 A1-593 北京
112 807 贵州 271 A1-595 北京
113 酉阳苦荞 重庆 272 A1-596 北京
114 S312008 陕西 273 A1-598 北京
115 TBW2-2 北京 274 A1-599 北京
116 S312001 陕西 275 ZIM00242抗倒伏 北京
117 额曲瓦子-1 四川 276 品苦1号 山西
118 安哈农家品种黑荞 四川 277 贵黑米30 贵州
119 云南凤庆苦荞-1 云南 278 川荞1号 四川
120 藏苦2号矮 西藏 279 贵多苦 选 贵州
121 06—16 北京 280 额乌 2009-05 四川
122 S312013 陕西 281 人杂 2011-3-6 四川
123 大安本苦荞 贵州 282 TBZ-01 北京
124 酉苦1号 重庆 283 TBZ-02 北京
125 1期8优 重庆 284 YQ1 重庆
126 S312016 陕西 285 酉荞5号 重庆
127 S312006 陕西 286 贵黑米15 贵州
128 黔苦荞5号 贵州 287 贵米苦1812-623 贵州
129 云南混苦荞-1 云南 288 贵米苦1812-621 贵州
130 TBW4 北京 289 山西农大-易裂壳 山西
131 德昌苦荞选 四川 290 ZIM00291中抗倒伏 北京
132 川苦2号 四川 291 ZIM00307高抗倒伏 北京
133 06—15 北京 292 ZIM00020高抗倒伏 北京
134 S312020 陕西 293 ZIM00312易倒伏 北京
135 安哈农家品种灰荞 四川 294 ZIM00267易倒伏 北京
136 国KQ8 陕西 295 品苦1号 选5 山西
137 国KQ10-2 陕西 296 品苦1号 选1 山西
138 西荞—2单脱迟株 四川 297 品苦1号 茎秆浅绿 山西
139 赿面苦荞 云南 298 品苦1号 选3-1 山西
140 酉阳酒厂苦荞 重庆 299 品苦1号 选4 山西
141 云南凤庆苦荞-2 云南 300 品苦1号 选6 山西
142 云南混苦荞-2 云南 301 品苦1号 选3-2 山西
143 凤庆苦荞-2 云南 302 品苦1号 选9 山西
144 藏苦12号 西藏 303 品苦1号 选8茎红 山西
145 06—9 北京 304 贵多苦243 贵州
146 云南混苦荞-3 云南 305 米苦 四川
147 晋苦荞6号 山西 306 贵黑米248 贵州
148 西荞-1 四川 307 贵多苦477 贵州
149 彭水苦荞-2 重庆 308 贵黑米16号 贵州
150 S312018 陕西 309 贵黑米30号 贵州
151 S312022 陕西 310 贵黑米18号 贵州
152 S312010 陕西 311 贵黑米23号 贵州
153 无名 重庆 312 贵黑米3号 贵州
154 藏苦5号 西藏 313 黑苦荞 四川
155 S312011 陕西 314 1K5 贵州
156 国KQ1 陕西 315 定西农家品种苦荞 甘肃
157 藏苦12变异 西藏 316 贵多苦1808-10 贵州
158 国KQ6 陕西 317 贵多苦1808-02 贵州
159 永善县水竹方 云南 318 贵多苦1808-1 贵州

Table S2

77 pairs of SSR primer information"

Primer name ID Forward Reverse Start of amplification End of amplification Amplified fragment
SWU_Ft005 Ft1 TCAGGTCCTTTGGAATCTCA TGCTGATAGTTTTGCCGAAG 4055703 4055935 232
TatG0142 Ft1 CGACAATCTTAACCATCCGTGC ACCGTTGGATTGTCGAGTGA 8330224 8329905 319
S6785 Ft1 GGTTCGGAGAACTGAGCCAA AGTTCGGACAATCCAAGTGC 11323982 11324169 187
SWU_Ft013 Ft1 CATCTATTGAGAACGGAGGGA TGAGCGGATGAGAGTTTTTG 12717090 12717361 271
SWU_Ft023 Ft1 GACACTCATCGTCGGAGAAA CCCTAATTGAGAATAACGGAGG 22306772 22307028 256
S5176 Ft1 GCTTTGGAGAAGGGACTTTTGC GATCGAAGGACCAAGCCCTTA 25318153 25317974 179
SWU_Ft029 Ft1 GGTGCACGTTCTAAATATCGG GCTTGGTTGATACCATGCTG 28178061 28178357 296
S6763 Ft1 GCAGCTAGCATCAAGTGTGG GATCAATCATGCACCCCGGA 35519564 35519687 123
SWU_Ft037 Ft1 CGTGTACATTGTTGGCCATT CGAACTGAAAAATACGCCAC 36463364 36463603 239
TatG0156 Ft1 GGCAACCGCAAGTAGCTTTC TGATTCGGATCACTTGAAGACCA 37933004 37932724 280
TatG0155 Ft1 TCCGGTCGTGCTTGTATACG AAAGTCCGACTTGCTAGCCC 37962985 37962800 185
SWU_Ft042 Ft1 GTCTCGGGTTTAAGCCTCTG TGGACAGGTTTGCTCAGTCT 41022270 41022508 238
SWU_Ft062 Ft1 GCCTCCTTACATAGGCCTAAAA CGTTCATTGCTCAGGATCAG 61786151 61786329 178
SWU_Ft073 Ft2 CCTCCAAAAACCTACCCAAA TCGTGAGTTTGAGTCTTCGG 4145379 4145629 250
SWU_Ft078 Ft2 AGAGGCATCCAATCTCATCC TGAGAACCGTACAACTGCTTC 9435561 9435696 135
S5172 Ft2 AGCCTGAAGTCATTCGGAGC TGTCGATCCTCGTGCTTTGA 14183956 14184156 200
SWU_Ft083 Ft2 AAGTTGGGGAGCTACCTTCA TCCAACGGCTATAAGTCCCT 14512611 14512828 217
SWU_Ft101 Ft2 GGTTATCCCGGAATTTCTTG CCTTTTCTGCTTGGCTCAGT 32271074 32271371 297
SWU_Ft103 Ft2 GAACCTACAACGCGTAATCTGA GTGGCACAACCTAAAGACGA 34134571 34134804 233
TatG0164 Ft2 TCTTCATGACGTCCCTTGGC TGTACAAACGTATGTATGAACGTAC 39917395 39917164 231
TatG0163 Ft2 AGAAAAAGACTGGCTGGTGGT TCAAGGAGCGTCGAGGAGTA 39918273 39918061 212
SWU_Ft124 Ft2 TCCCAAAACCTTTTCTGACC AACCACCATAACATGCTTGC 55263781 55263995 214
SWU_Ft133 Ft3 TTGCTTCAGATCTTCATCGC AGGTGACACACAATTACGCA 3827308 3827585 277
TatG0209 Ft3 CCCCCTTCTAAACACGTGGA TTGAAAATGCCCCTTAAGTTGTT 4737164 4737335 171
TatG0206 Ft3 TCACCCCTCTCACACAATGC GTCAACAAAGTCGGCTGCAG 16131143 16131347 204
SWU_Ft158 Ft3 TAAACTTGGTTTCAGGCTCG ACACCGCGTTAATCACAAAC 30744121 30744394 273
SWU_Ft169 Ft3 CCCCACGTAGTAGGGTCAGT GGGGGTATTTCAGGCTTTCT 42514919 42515127 208
SWU_Ft174 Ft3 TGCAATGCATAGGAGGAAAG ATGGACATGAGAATGGGGAT 47907657 47907794 137
S2206 Ft3 TGTCCCCTTGGGCAATAATAGT GAGCGCTATGGGCCTTGTAT 48990837 48991007 170
SWU_Ft177 Ft3 ATGGGTAATTTCTTGCAGGC CGGATCTTAGAGGTTCCTACA 50079245 50079416 171
SWU_Ft184 Ft4 TAGCCACGTGCAACCTTAAC GATATTCTCGCATGTTCCGA 337652 337872 220
S2216 Ft4 TTTTCCACCTCAGAGGGCAG TTGCACATTGTCGTTTCCCA 850119 850282 163
SWU_Ft186 Ft4 ATCTCTTTGAGGTTGGGGAA CCGACAGCTGGACAGAACTA 2389573 2389757 184
TatG0184 Ft4 GGGAACAACCAATGGCCTCA TGCATATCCGGATCCTCCCT 4558246 4558398 152
TatG0187 Ft4 GCAATTGCTTTTATAGGGAACCA GCTTCGAGAAACGTGGGTGT 4610513 4610759 246
TatG0188 Ft4 TTCGATCAAAGGTTTATTGTCTCTT CACGATCGCGCACCTTTTTA 4633655 4633829 174
SWU_Ft191 Ft4 AAGGCGGGTACATCTAGGAA GAAAGTTGATCGGGGGTAGA 7406344 7406620 276
SWU_Ft215 Ft4 TGCCTGACCTTTTGAGTGTT CCCCAAGTCCCAAGTCTTT 31718033 31718308 275
SWU_Ft221 Ft4 TGAATGCCAAGTCTTTCTGC CCCGCAAATGTCTTCTAGGT 38214651 38214906 255
TatG0097 Ft4 GTTGGTGATGCATTTCGGGC TGTGCTAGGGTTCTTCGTCG 39890357 39890629 272
TatG0100 Ft4 GAGAGAGTTGTGTGGGGGTG ACAAAAAGGCACAAGTCGGC 39910168 39910449 281
TatG0101 Ft4 TGAAGACACTGCATGAGGGT TGGGTTCACGAGAAAAGGCA 39926517 39926686 169
SWU_Ft224 Ft4 CGATCGATTAGAACAGGCAA TCAAACACATGCAGACCTGA 41949520 41949686 166
SWU_Ft225 Ft4 TAGCGATTTGAAGGGGACTT CGTAACAATGGTCGTTACTCG 42408830 42409048 218
TatG0057 Ft5 TTTTGCTGGGGCGATTTTGG AGCCCTCTTTCGTGTTCTTCA 3798384 3798160 224
SWU_Ft244 Ft5 GGCAATTGATCCAGTTGATG AGTCCCCCAATTCCCAATAG 6805475 6805760 285
SWU_Ft259 Ft5 TATGAGACGTGCAAGGGTTG GGCACAAGGTTGAGGAAAAT 21984372 21984666 294
SWU_Ft282 Ft5 CCACATAAAGCTTGGTTGAG CCCCGTAGGTACCATCTTGT 46924258 46924548 290
SWU_Ft283 Ft5 TGCACGATTCCACCACTTAT TGACAATGAGGCATAGGCAA 47246745 47247012 267
S5194 Ft6 ATTGAAGGGTGGTAGGAAACAC GAGCCTTGATTGCTTTGATTCT 4166269 4166483 214
SWU_Ft302 Ft6 CGAGTGAATCGGAGTTACCA ATGCTACGCGAGCAAGTAAA 13098303 13098601 298
S6855 Ft6 TGTACGTACGCTGGAGAAACT CAAGAGCTGGCAAGGTTAGC 28314187 28314314 127
TatG0023 Ft6 GGACGTTCCCAATGCTCACA AGGGCGGAGTGACAAATCAG 41777737 41777526 211
TatG0131 Ft6 ACAAACCACTCAAGACGCCA ACTCGGATTTTAATCGCACACA 43972175 43972452 277
S5202 Ft6 GGTTCTGCGGTTCGTTTAATAG TACTTCGGTACGATCAATCCCT 50232538 50232301 237
SWU_Ft348 Ft7 ACGGACACATCGTAGAGCAA TGCCACACCATAAAGACTAAGG 8914447 8914745 298
SWU_Ft350 Ft7 GGCAGGTTTAAGAGCTCGAC CTGTTGATGCTGGCGTTAGT 10057861 10057995 134
TatG0038 Ft7 GCGGACGGGTATGAACATCA CGGGCCGATTATAGGGTTCA 10943865 10944137 272
SWU_Ft354 Ft7 CAACTACCCATGTACGCACC CAATTTCCTCGCTCCTCTTC 14531178 14531369 191
TatG0085 Ft7 TGCAGGCCAGTAGTGTGAAG ACGGCGGTTATTGTCGGTTA 15771867 15771618 249
S1367 Ft7 TTTCACAGAGGAAGGGAG CCGTTACAGAGCCAATCA 22608312 22608025 287
TatG0136 Ft7 GCAGTAGATAACCAATAAATGTTCACA ACCTTGCCAAACACACCCTT 32137579 32137822 243
TatG0200 Ft7 TGCTTGTCCTAGGGAAGCTT GCAATCAACATGATTTTTCGCCA 37390744 37390584 160
SWU_Ft381 Ft7 GTGCTATTAATCGGTCATCCTC TTAGGGATGCTATCACTGCG 42033936 42034098 162
SWU_Ft384 Ft7 CGAAATACTGCTTCCACGG CGTGGAAATAAGGCTTAGGG 44549122 44549282 160
SWU_Ft385 Ft7 CTTCCCTCTCGTGGTTTCAT GGGACATCGGTCGAATCTAT 45133579 45133808 229
SWU_Ft390 Ft7 GCAAGTTAATGCGTTTGCG AATAAACTAGCCACCCCTGC 50359081 50359317 236
SWU_Ft394 Ft8 AACAATCCCATGAAAGTCCC ACTTATGGCCATCTCCAACC 3407886 3408114 228
SWU_Ft399 Ft8 CTGGTTGGCATCTCAGTGTC CAAATCCTGTGTAAGGCACG 8848226 8848499 273
SWU_Ft402 Ft8 TTTGAGTGTCGCCATCTTTG GTATCCGCAAGCGTTAGGTT 11448622 11448917 295
SWU_Ft404 Ft8 AACGAGGGTACTAACCGGAA CCCCAGCTGTAAAACAATCA 13792929 13793217 288
S6827 Ft8 AAACCACGAGCTTCCTCTCC AGAATTTGCGGGAAGGGTGA 14853315 14853450 135
S6789 Ft8 GGTTGTGGTTTCCTGACGTTG CCGTAACCCCAGTTCGTAGT 18096922 18097109 187
TatG0052 Ft8 TGTGAAAACCATGTTAGGTCAACT TGGTATGTCAGTGTCAGGAGTG 19684842 19684567 275
SWU_Ft412 Ft8 CCAACGGCTATTATAAGTCCCT GCACAATCACACACCAATGA 21858737 21859005 268
SWU_Ft415 Ft8 GAGACAATCGGCGTATGATG AATTTCCGCAGAGGGAACTA 24553938 24554197 259
SWU_Ft420 Ft8 GAAGCAAGGGCATGTTAAGC GCAGGTCTCAAGACACTTAATC 29258074 29258259 185

Fig. S1

Comparison results between the average value and BLUP value of each character"

Table 1

Variation of agronomic characters in buckwheat germplasm"

性状
Trait
年份
Year
最大值
Max.
最小值
Min.
平均值
Mean
极差
Range
标准差
SD
变异系数
CV (%)
偏度
Skewness
峰度
Kurtosis
PH 2020S 161.67 77.00 123.35 84.67 16.00 12.97 -0.38 0.24
BN 2020S 9.33 2.00 5.51 6.67 1.48 26.85 -0.05 -0.47
PN 2020S 21.00 10.33 15.14 10.67 1.68 11.08 0.59 1.03
TGW 2019A 28.88 10.57 19.77 18.31 2.14 10.82 -0.24 4.84
2020S 30.81 9.91 20.39 20.90 2.57 12.63 -0.47 2.63
GL 2019A 7.13 4.15 5.79 2.98 0.54 9.34 -0.96 0.56
2020S 7.11 4.41 5.84 2.70 0.48 8.23 -0.82 0.71
GW 2019A 4.37 2.90 3.47 1.47 0.21 6.12 1.18 2.70
2020S 4.91 3.11 3.61 1.81 0.20 5.53 1.32 5.76
L / W 2019A 2.27 1.17 1.68 1.10 0.20 12.04 -0.97 0.11
2020S 1.94 1.18 1.62 0.76 0.16 9.96 -1.06 0.54
GA 2019A 20.67 9.38 14.12 11.29 1.37 9.73 0.30 3.29
2020S 22.31 10.30 14.67 12.01 1.48 10.12 0.65 3.21
GP 2019A 22.20 12.09 15.61 10.11 1.21 7.72 1.42 7.69
2020S 22.06 13.45 16.53 8.61 1.06 6.40 0.71 4.51
GD 2019A 4.96 3.45 4.23 1.51 0.21 4.85 -0.17 2.43
2020S 5.26 3.62 4.31 1.64 0.21 4.89 0.08 1.55
GR 2019A 0.89 0.49 0.62 0.40 0.09 15.24 1.37 0.58
2020S 0.90 0.52 0.64 0.38 0.08 12.55 1.56 1.70

Table 2

Genetic diversity of 77 SSR primers"

引物名称
Primer name
条带数
No. of strips
多态性条带数
No. of polymorphic bands
等位变异数
No. of allelic variations
主要等位变异频率
Major allele
frequency
基因多样性
Gene diversity
多态性信息含量
PIC
SWU_Ft005 7 2 4 0.26 0.75 0.70
SWU_Ft013 5 3 3 0.54 0.50 0.38
SWU_Ft023 4 3 3 0.57 0.53 0.43
SWU_Ft029 10 8 6 0.22 0.82 0.80
SWU_Ft037 4 3 3 0.65 0.51 0.46
SWU_Ft042 10 3 3 0.80 0.33 0.31
SWU_Ft062 9 2 2 0.55 0.49 0.37
SWU_Ft073 8 2 6 0.35 0.72 0.67
SWU_Ft078 6 2 2 0.62 0.47 0.36
SWU_Ft083 6 2 4 0.26 0.75 0.70
SWU_Ft101 7 2 10 0.22 0.82 0.79
SWU_Ft103 5 3 4 0.46 0.67 0.61
SWU_Ft124 9 3 8 0.36 0.72 0.68
SWU_Ft133 8 2 6 0.44 0.61 0.53
SWU_Ft158 9 3 4 0.37 0.66 0.59
SWU_Ft169 7 2 3 0.94 0.11 0.11
SWU_Ft174 9 2 3 0.90 0.18 0.17
SWU_Ft177 11 2 6 0.24 0.80 0.77
SWU_Ft184 7 2 4 0.49 0.53 0.42
SWU_Ft186 8 3 3 0.95 0.10 0.10
SWU_Ft191 4 2 3 0.96 0.07 0.07
SWU_Ft215 8 3 7 0.34 0.74 0.70
SWU_Ft221 9 3 2 0.52 0.50 0.37
SWU_Ft224 6 2 6 0.28 0.75 0.71
SWU_Ft225 8 3 4 0.44 0.61 0.53
SWU_Ft244 8 3 2 0.66 0.45 0.35
SWU_Ft259 6 3 2 0.94 0.11 0.11
SWU_Ft282 5 3 2 0.76 0.36 0.30
SWU_Ft283 9 2 2 0.68 0.44 0.34
SWU_Ft302 10 3 5 0.47 0.56 0.46
SWU_Ft348 8 2 2 0.66 0.45 0.35
SWU_Ft350 5 2 2 0.99 0.02 0.02
SWU_Ft354 10 5 4 0.50 0.60 0.52
SWU_Ft381 9 3 3 0.51 0.51 0.40
SWU_Ft384 6 2 4 0.29 0.74 0.69
SWU_Ft385 7 2 4 0.27 0.75 0.70
SWU_Ft390 7 2 2 0.74 0.39 0.31
SWU_Ft394 10 2 4 0.42 0.63 0.55
SWU_Ft399 8 2 4 0.41 0.65 0.58
SWU_Ft402 5 2 2 0.62 0.47 0.36
SWU_Ft404 4 2 3 0.61 0.55 0.49
SWU_Ft412 6 2 6 0.29 0.78 0.74
SWU_Ft415 8 2 3 0.74 0.42 0.38
SWU_Ft420 12 2 7 0.30 0.82 0.80
S1367 6 2 3 0.53 0.52 0.40
S2206 6 2 6 0.47 0.55 0.45
S2216 4 2 6 0.43 0.62 0.55
S5172 6 2 2 0.61 0.48 0.36
S5176 5 2 3 0.61 0.49 0.39
S5194 5 3 2 0.80 0.33 0.27
S5202 4 2 2 0.87 0.23 0.20
S6763 5 2 2 0.77 0.36 0.29
S6785 5 2 3 0.78 0.35 0.30
S6789 7 2 2 0.87 0.23 0.20
S6827 5 2 2 0.79 0.33 0.27
S6855 6 2 5 0.31 0.74 0.69
TatG0023 10 2 5 0.26 0.78 0.75
TatG0038 9 2 3 0.50 0.60 0.52
TatG0052 7 3 3 0.64 0.52 0.47
TatG0057 9 3 3 0.92 0.16 0.14
TatG0085 9 2 2 0.99 0.02 0.02
TatG0097 13 3 4 0.32 0.73 0.68
TatG0100 9 4 4 0.51 0.62 0.55
TatG0101 5 2 3 0.98 0.04 0.04
TatG0131 7 2 3 0.83 0.28 0.25
TatG0136 6 2 6 0.36 0.72 0.68
TatG0142 9 3 6 0.22 0.82 0.79
TatG0155 12 4 4 0.43 0.62 0.54
TatG0156 7 2 6 0.29 0.78 0.75
TatG0163 7 3 5 0.51 0.63 0.56
TatG0164 6 2 2 0.53 0.50 0.37
TatG0184 8 4 3 0.74 0.40 0.33
TatG0187 10 2 2 0.84 0.27 0.24
TatG0188 5 4 8 0.24 0.82 0.80
TatG0200 6 3 3 0.50 0.59 0.51
TatG0206 8 2 4 0.35 0.71 0.65
TatG0209 5 3 4 0.48 0.65 0.59
平均值Mean 7.25 2.53 3.81 0.56 0.52 0.46

Fig. 1

Clustering analysis of SSR markers of 318 Tartary buckwheat germplasms I: Group 1; II: Group 2; III: Group 3; IV: Group 4."

Fig. 2

K-value and population structure of 318 Tartary buckwheat germplasms A, B: K-value of 318 Tartary buckwheat germplasms; C: the population structure of 318 Tartary buckwheat germplasms."

Table 3

General overview of SSR markers significantly associated with 11 agronomic traits"

性状
Trait
关联位点个数
No. of associated loci
同时在2个环境下
检测到的位点数
No. of associated loci under
two environments
同时在3个环境下
检测到的位点数
No. of associated loci under
three environments
表型变异解释率范围
Range of R2 (%)
千粒重TGW 29 12 3 1.77-14.56
籽粒长度GL 32 9 18 2.19-14.78
籽粒宽度GW 27 17 4 2.01-15.64
长宽比L/W 31 8 16 2.33-11.66
籽粒面积GA 30 19 8 2.16-16.4
籽粒周长GP 33 14 11 2.00-14.4
籽粒直径GD 31 16 11 2.05-15.5
籽粒圆度GR 30 7 14 2.13-10.78
株高PH 15 / / 2.29-7.55
主茎分枝数BN 8 / / 2.15-4.27
主茎节数PN 5 / / 2.19-6.53

Table 4

Association analysis of phenotypic traits and markers under two or three environments"

性状
Trait
标记
Marker
2019 2020 BLUP
Q-value R2 (%) Q-value R2 (%) Q-value R2 (%)
千粒重 FT124 2.53 2.78 2.24 1.97 3.08 3.14
1000-grain weight FT244 2.00 2.09 2.29 2.02 2.36 2.30
FT354 2.64 2.92 2.58 2.34 3.89 4.10
FT013 3.02 3.44 2.58 2.58
FT174 2.98 3.36 2.82 2.84
FT177 3.45 4.06 2.65 2.70
FT394 2.06 2.20 2.40 2.38
FT415 2.27 2.43 2.26 2.18
S2206 11.57 14.56 8.82 10.00
S2216 2.37 2.58 2.90 2.94
S6789 4.25 5.02 3.56 3.69
TatG0052 2.88 3.22 3.14 3.20
TatG0184 5.94 7.34 6.82 7.64
FT184 2.36 2.15 2.72 2.77
FT282 3.90 3.89 2.64 2.70
TatG0163 3.30 3.10 2.16 2.06
粒长 FT005 7.58 9.81 5.30 6.54 7.12 9.10
Grain length FT013 4.41 5.31 4.00 4.63 5.19 6.29
FT023 2.42 2.63 2.76 3.00 2.81 3.11
FT073 3.47 4.22 2.24 2.42 2.97 3.47
FT103 7.27 9.03 5.33 6.33 6.85 8.42
FT158 3.44 4.03 4.16 4.88 3.76 4.42
FT244 5.72 6.96 4.53 5.27 5.67 6.85
FT259 8.83 11.05 8.42 10.27 8.89 11.04
FT282 10.84 13.88 9.83 12.28 11.65 14.78
FT283 4.29 5.13 4.20 4.91 4.68 5.60
FT354 9.85 12.30 8.38 10.19 10.65 13.19
FT381 2.63 2.92 2.60 2.80 2.47 2.69
FT384 2.59 2.86 4.21 4.86 3.27 3.71
FT385 3.59 4.28 2.06 2.18 2.67 3.03
FT404 3.70 4.38 3.36 3.83 4.01 4.75
S2206 3.78 4.48 2.23 2.35 4.26 5.07
TatG0057 2.17 2.32 3.45 3.90 3.00 3.38
TatG0100 2.44 2.68 2.20 2.32 2.68 2.98
FT042 2.43 2.71 2.45 2.71
FT415 2.23 2.38 2.14 2.25
S6789 2.88 3.23 2.80 3.10
TatG0131 3.39 3.90 2.63 2.88
TatG0136 3.20 3.64 2.61 2.85
TatG0163 2.25 2.41 2.49 2.70
FT302 2.17 2.25 2.68 2.94
TatG0184 3.19 3.58 2.43 2.65
TatG0187 2.03 2.11 2.18 2.34
粒宽 FT402 2.99 3.34 2.23 2.26 3.75 4.20
Grain width TatG0052 2.50 2.70 2.31 2.35 3.45 3.83
TatG0163 5.39 6.46 3.91 4.34 6.64 7.85
TatG0164 5.08 6.31 2.20 2.32 5.57 6.79
FT078 3.39 3.92 2.80 3.06
FT124 4.04 4.73 4.47 5.14
FT133 4.64 5.66 3.55 4.09
FT177 3.77 4.45 3.53 4.01
FT186 3.85 4.46 3.60 4.02
FT381 2.72 3.02 2.74 2.95
FT384 2.51 2.71 2.06 2.08
FT404 2.77 3.10 2.66 2.87
FT415 3.06 3.43 3.04 3.30
S2206 11.36 14.22 12.89 15.64
S2216 3.38 3.87 2.86 3.10
S6789 4.36 5.12 3.89 4.38
TatG0023 2.60 2.90 3.13 3.50
TatG0097 2.71 3.03 2.83 3.09
TatG0155 4.90 5.87 4.18 4.78
TatG0184 10.50 13.15 9.62 11.71
FT385 2.86 3.12 2.29 2.45
长/宽 FT005 5.47 6.91 3.67 4.47 4.52 5.62
Grain length-to-width ratio FT013 2.04 2.16 2.76 3.12 2.21 2.39
FT078 3.10 3.56 2.48 2.76 3.58 4.21
FT103 3.74 4.38 4.73 5.72 3.96 4.67
FT158 2.62 2.94 4.53 5.52 3.94 4.71
FT244 5.32 6.42 4.09 4.83 4.58 5.47
FT259 7.53 9.34 7.60 9.50 7.76 9.66
FT282 8.99 11.46 9.02 11.58 9.12 11.66
FT283 4.82 5.82 4.43 5.34 4.68 5.64
FT354 5.28 6.38 6.10 7.52 5.72 6.98
FT381 5.05 6.11 3.85 4.55 4.93 5.97
FT385 4.78 5.87 4.16 5.10 4.57 5.62
FT404 3.56 4.17 3.77 4.49 3.51 4.12
TatG0057 3.33 3.83 3.68 4.32 4.04 4.79
TatG0163 2.48 2.69 2.83 3.17 3.64 4.22
TatG0184 5.55 6.84 2.73 3.09 5.22 6.41
FT124 2.39 2.60 2.07 2.19
FT133 2.81 3.24 2.30 2.55
FT186 2.70 2.98 2.23 2.38
FT384 3.33 3.81 4.21 4.98
FT402 2.46 2.67 2.62 2.89
S6763 2.47 2.70 2.26 2.44
TatG0136 3.13 3.55 2.50 2.73
FT023 2.72 3.03 2.14 2.27
FT302 3.39 3.92 2.40 2.60
面积 FT005 3.81 4.63 3.89 4.45 0 5.69
Grain area FT013 3.59 4.19 2.05 2.03 0 5.31
FT103 4.76 5.70 2.32 2.35 0 4.87
FT259 3.05 3.45 3.18 3.40 0 3.62
FT282 4.24 5.13 4.90 5.67 0 6.57
FT354 6.27 7.66 4.21 4.67 0 8.42
TatG0100 3.42 3.96 2.15 2.16 0 4.77
TatG0184 7.91 9.87 2.19 2.20 0 6.79
FT023 2.00 2.08 0 2.84
FT042 3.22 3.74 0 3.55
FT124 2.68 2.96 0 2.81
FT177 4.93 6.04 0 4.60
FT184 2.13 2.28 0 2.70
FT394 2.70 3.02 0.01 2.41
FT404 2.24 2.42 0 3.26
FT415 4.44 5.25 0 4.58
S1367 2.04 2.16 0.01 2.05
S2206 13.11 16.40 0 16.26
S6789 6.88 8.42 0 6.58
TatG0097 3.30 3.82 0 3.82
TatG0131 4.31 5.07 0 4.53
TatG0163 2.44 2.63 0.01 2.15
TatG0164 3.17 3.73 0.01 2.38
FT420 2.04 2.06 0.01 2.21
周长 FT005 5.08 6.38 4.43 5.22 5.69 7.01
Grain perimeter FT013 4.20 5.01 3.25 3.56 5.47 6.50
FT023 2.21 2.36 2.41 2.48 2.90 3.15
FT103 6.09 7.47 3.77 4.19 5.84 6.94
FT244 3.23 3.68 3.71 4.09 4.21 4.82
FT259 4.55 5.45 5.58 6.47 5.10 6.00
FT282 6.45 8.11 6.60 7.92 7.81 9.64
FT354 8.20 10.17 6.32 7.36 9.36 11.32
S2206 10.89 13.71 2.32 2.40 11.57 14.14
TatG0100 3.34 3.86 2.80 2.99 4.20 4.86
TatG0184 4.98 6.06 2.68 2.84 3.32 3.72
FT042 3.36 3.94 3.55 4.08
FT073 3.31 3.97 2.66 2.97
FT177 4.69 5.73 4.08 4.78
FT184 2.03 2.16 2.02 2.09
FT394 2.39 2.62 2.03 2.10
FT404 2.87 3.26 3.39 3.84
FT415 3.87 4.51 3.87 4.39
S2216 2.98 3.37 2.59 2.78
S6789 5.92 7.20 5.19 6.07
TatG0097 2.62 2.92 2.80 3.07
TatG0131 4.06 4.77 3.51 3.93
FT283 2.35 2.44 2.56 2.75
TatG0163 2.31 2.36 2.07 2.11
直径 FT005 4.08 5.01 3.69 4.06 4.92 5.85
Grain diameter FT013 3.87 4.57 2.70 2.74 5.09 5.88
FT103 5.09 6.15 2.48 2.43 4.76 5.43
FT244 2.23 2.37 2.33 2.27 2.92 3.11
FT244 2.23 2.37 2.33 2.27 2.92 3.11
FT259 3.36 3.87 3.41 3.58 3.60 3.99
FT282 4.46 5.44 5.25 5.93 5.93 7.06
FT354 6.75 8.30 4.88 5.32 7.69 9.06
S2206 11.77 14.79 2.26 2.22 13.04 15.55
TatG0100 3.48 4.04 2.49 2.49 4.29 4.88
TatG0163 2.11 2.22 2.12 2.04 2.06 2.05
FT023 2.12 2.23 2.55 2.65
FT042 3.03 3.49 3.20 3.54
FT073 3.05 3.60 2.20 2.31
FT124 2.38 2.58 2.53 2.64
FT177 4.84 5.93 4.02 4.60
FT394 2.74 3.08 2.48 2.62
FT404 2.33 2.54 3.01 3.27
FT415 4.15 4.87 3.81 4.22
S2216 3.50 4.06 3.44 3.78
S6789 6.10 7.42 5.67 6.54
TatG0097 3.16 3.64 3.30 3.64
TatG0131 4.10 4.81 4.13 4.62
TatG0155 2.18 2.33 2.28 2.34
TatG0164 2.83 3.28 2.26 2.39
TatG0184 6.90 8.58 5.31 6.16
FT420 2.11 2.06 2.14 2.22
TatG0052 2.04 1.94 3.08 3.31
圆度 FT005 4.89 6.12 3.11 3.70 3.83 4.68
Grain roundness FT103 3.71 4.34 4.09 4.86 3.57 4.16
FT158 2.83 3.22 4.23 5.12 3.86 4.61
FT244 5.21 6.26 3.30 3.80 4.06 4.78
FT259 7.48 9.26 7.69 9.63 7.72 9.61
FT282 8.48 10.78 7.61 9.73 8.05 10.26
FT283 4.62 5.55 3.91 4.64 4.26 5.09
FT354 4.71 5.63 5.72 7.01 5.07 6.13
FT381 5.05 6.10 2.97 3.38 4.34 5.18
FT384 3.67 4.25 2.96 3.35 3.49 4.03
FT385 4.73 5.80 3.67 4.43 4.22 5.14
FT404 3.60 4.23 4.11 4.94 3.74 4.43
TatG0057 2.96 3.35 3.05 3.49 3.47 4.03
TatG0184 6.21 7.70 3.00 3.45 5.69 7.03
FT078 3.09 3.55 3.21 3.71
FT124 2.72 3.02 2.29 2.48
S6763 2.67 2.96 2.13 2.27
TatG0136 3.17 3.59 2.27 2.44
TatG0163 2.30 2.46 2.99 3.38
FT013 2.78 3.15 2.11 2.26
FT302 3.58 4.16 2.32 2.51

Table S3

Results of association analysis between phenotypic traits and markers"

表型
Trait
标记
Marker
年份
Year
Q值 R2 表型
Trait
标记
Marker
年份
Year
Q值 R2
株高 SWU_Ft013 2020 4.68 5.46% 面积 SWU_Ft005 2019 3.81 4.63%
Plant height SWU_Ft023 2020 3.26 3.59% Grain area 2020 3.89 4.45%
SWU_Ft042 2020 2.19 2.30% BLUP 4.76 5.69%
SWU_Ft103 2020 5.8 6.82% SWU_Ft013 2019 3.59 4.19%
SWU_Ft158 2020 3.78 4.33% 2020 2.05 2.03%
SWU_Ft184 2020 2.59 2.79% BLUP 4.6 5.31%
SWU_Ft259 2020 4.73 5.47% SWU_Ft023 2019 2 2.08%
SWU_Ft354 2020 6.38 7.55% BLUP 2.68 2.84%
SWU_Ft384 2020 3.81 4.29% SWU_Ft042 2019 3.22 3.74%
SWU_Ft415 2020 3.31 3.65% BLUP 3.18 3.55%
S5176 2020 2.46 2.57% SWU_Ft073 2019 2.74 3.17%
TatG0057 2020 2.59 2.76% SWU_Ft103 2019 4.76 5.70%
TatG0097 2020 2.62 2.83% 2020 2.32 2.35%
TatG0155 2020 2.21 2.29% BLUP 4.28 4.87%
TatG0163 2020 2.51 2.65% SWU_Ft124 2019 2.68 2.96%
分枝数 SWU_Ft177 2020 3.79 4.27% BLUP 2.64 2.81%
Main stem SWU_Ft354 2020 2.44 2.50% SWU_Ft174 2019 2.09 2.20%
branching SWU_Ft384 2020 3.15 3.36% SWU_Ft177 2019 4.93 6.04%
number SWU_Ft385 2020 2.51 2.64% BLUP 4 4.60%
SWU_Ft402 2020 2.54 2.61% SWU_Ft184 2019 2.13 2.28%
TatG0057 2020 2.5 2.58% BLUP 2.53 2.70%
TatG0163 2020 2.16 2.15% SWU_Ft244 2020 2.39 2.42%
TatG0164 2020 2.76 2.99% BLUP 2.49 2.60%
主茎节数 SWU_Ft103 2020 5.6 6.53% SWU_Ft259 2019 3.05 3.45%
Main stem SWU_Ft158 2020 2.44 2.59% 2020 3.18 3.40%
pitch number SWU_Ft215 2020 2.17 2.19% BLUP 3.28 3.62%
SWU_Ft259 2020 3.69 4.12% SWU_Ft282 2019 4.24 5.13%
S5176 2020 3.9 4.36% 2020 4.9 5.67%
千粒重 SWU_Ft005 BLUP 2.56 2.63% BLUP 5.5 6.57%
Thousand SWU_Ft013 2019 3.02 3.44% SWU_Ft354 2019 6.27 7.66%
grain weight BLUP 2.58 2.58% 2020 4.21 4.67%
SWU_Ft023 BLUP 2.37 2.30% BLUP 7.12 8.42%
SWU_Ft042 BLUP 2.32 2.30% SWU_Ft394 2019 2.7 3.02%
SWU_Ft078 2020 2.58 2.38% BLUP 2.3 2.41%
SWU_Ft103 BLUP 2.23 2.16% SWU_Ft404 2019 2.24 2.42%
SWU_Ft124 2019 2.53 2.78% BLUP 2.98 3.26%
2020 2.24 1.97% SWU_Ft415 2019 4.44 5.25%
BLUP 3.08 3.14% BLUP 4.07 4.58%
SWU_Ft174 2019 2.98 3.36% SWU_Ft420 2020 2.04 2.06%
BLUP 2.82 2.84% BLUP 2.12 2.21%
SWU_Ft177 2019 3.45 4.06% S1367 2019 2.04 2.16%
BLUP 2.65 2.70% BLUP 2.02 2.05%
SWU_Ft184 2020 2.36 2.15% S2206 2019 13.11 16.40%
BLUP 2.72 2.77% BLUP 13.54 16.26%
SWU_Ft186 2019 2.67 2.94% S2216 2019 3.81 4.45%
SWU_Ft244 2019 2 2.09% BLUP 3.49 3.88%
2020 2.29 2.02% S6789 2019 6.88 8.42%
BLUP 2.36 2.30% BLUP 5.66 6.58%
SWU_Ft282 2020 3.9 3.89% TatG0052 BLUP 3.13 3.40%
BLUP 2.64 2.70% TatG0097 2019 3.3 3.82%
SWU_Ft283 2020 2.77 2.57% BLUP 3.43 3.82%
SWU_Ft354 2019 2.64 2.92% TatG0100 2019 3.42 3.96%
2020 2.58 2.34% 2020 2.15 2.16%
BLUP 3.89 4.10% BLUP 4.18 4.77%
SWU_Ft384 2020 3.76 3.60% TatG0131 2019 4.31 5.07%
SWU_Ft394 2019 2.06 2.20% BLUP 4.03 4.53%
BLUP 2.4 2.38% TatG0155 2019 2.78 3.10%
SWU_Ft415 2019 2.27 2.43% BLUP 2.52 2.66%
BLUP 2.26 2.18% TatG0163 2019 2.44 2.63%
S1367 BLUP 2.49 2.49% BLUP 2.12 2.15%
S2206 2019 11.57 14.56% TatG0164 2019 3.17 3.73%
BLUP 8.82 10.00% BLUP 2.24 2.38%
S2216 2019 2.37 2.58% TatG0184 2019 7.91 9.87%
BLUP 2.9 2.94% 2020 2.19 2.20%
S6789 2019 4.25 5.02% BLUP 5.77 6.79%
BLUP 3.56 3.69% 周长 SWU_Ft005 2019 5.08 6.38%
S6827 2020 2.22 1.99% Grain 2020 4.43 5.22%
TatG0052 2019 2.88 3.22% perimeter BLUP 5.69 7.01%
BLUP 3.14 3.20% SWU_Ft013 2019 4.2 5.01%
TatG0057 2020 2.04 1.77% 2020 3.25 3.56%
TatG0163 2020 3.3 3.10% BLUP 5.47 6.50%
TatG0164 BLUP 2.07 2.03% SWU_Ft023 2019 2.21 2.36%
TatG0184 2019 5.94 7.34% 2020 2.41 2.48%
BLUP 6.82 7.64% BLUP 2.9 3.15%
TatG0206 2020 3.75 3.65% SWU_Ft042 2019 3.36 3.94%
粒长 SWU_Ft005 2019 7.58 9.81% BLUP 3.55 4.08%
Grain 2020 5.3 6.54% SWU_Ft073 2019 3.31 3.97%
length BLUP 7.12 9.10% BLUP 2.66 2.97%
SWU_Ft013 2019 4.41 5.31% SWU_Ft103 2019 6.09 7.47%
2020 4 4.63% 2020 3.77 4.19%
BLUP 5.19 6.29% BLUP 5.84 6.94%
SWU_Ft023 2019 2.42 2.63% SWU_Ft158 2020 2.46 2.60%
2020 2.76 3.00% BLUP 2.18 2.29%
BLUP 2.81 3.11% SWU_Ft174 2019 2.52 2.77%
SWU_Ft042 2019 2.43 2.71% SWU_Ft177 2019 4.69 5.73%
BLUP 2.45 2.71% BLUP 4.08 4.78%
SWU_Ft073 2019 3.47 4.22% SWU_Ft184 2019 2.03 2.16%
2020 2.24 2.42% BLUP 2.02 2.09%
BLUP 2.97 3.47% SWU_Ft244 2019 3.23 3.68%
SWU_Ft078 2020 2.25 2.38% 2020 3.71 4.09%
SWU_Ft103 2019 7.27 9.03% BLUP 4.21 4.82%
2020 5.33 6.33% SWU_Ft259 2019 4.55 5.45%
BLUP 6.85 8.42% 2020 5.58 6.47%
SWU_Ft158 2019 3.44 4.03% BLUP 5.1 6.00%
2020 4.16 4.88% SWU_Ft282 2019 6.45 8.11%
BLUP 3.76 4.42% 2020 6.6 7.92%
SWU_Ft174 2019 2.58 2.85% BLUP 7.81 9.64%
SWU_Ft177 2019 2.04 2.19% SWU_Ft283 2020 2.35 2.44%
SWU_Ft244 2019 5.72 6.96% BLUP 2.56 2.75%
2020 4.53 5.27% SWU_Ft354 2019 8.2 10.17%
BLUP 5.67 6.85% 2020 6.32 7.36%
SWU_Ft259 2019 8.83 11.05% BLUP 9.36 11.32%
2020 8.42 10.27% SWU_Ft384 2020 3.21 3.47%
BLUP 8.89 11.04% SWU_Ft394 2019 2.39 2.62%
SWU_Ft282 2019 10.84 13.88% BLUP 2.03 2.10%
2020 9.83 12.28% SWU_Ft404 2019 2.87 3.26%
BLUP 11.65 14.78% BLUP 3.39 3.84%
SWU_Ft283 2019 4.29 5.13% SWU_Ft415 2019 3.87 4.51%
2020 4.2 4.91% BLUP 3.87 4.39%
BLUP 4.68 5.60% SWU_Ft420 BLUP 2.02 2.12%
SWU_Ft302 2020 2.17 2.25% S1367 2019 2.01 2.13%
BLUP 2.68 2.94% S2206 2019 10.89 13.71%
SWU_Ft354 2019 9.85 12.30% 2020 2.32 2.40%
2020 8.38 10.19% BLUP 11.57 14.14%
BLUP 10.65 13.19% S2216 2019 2.98 3.37%
SWU_Ft381 2019 2.63 2.92% BLUP 2.59 2.78%
2020 2.6 2.80% S6789 2019 5.92 7.20%
BLUP 2.47 2.69% BLUP 5.19 6.07%
SWU_Ft384 2019 2.59 2.86% TatG0052 BLUP 2.4 2.52%
2020 4.21 4.86% TatG0057 2020 2.01 2.00%
BLUP 3.27 3.71% TatG0097 2019 2.62 2.92%
SWU_Ft385 2019 3.59 4.28% BLUP 2.8 3.07%
2020 2.06 2.18% TatG0100 2019 3.34 3.86%
BLUP 2.67 3.03% 2020 2.8 2.99%
SWU_Ft404 2019 3.7 4.38% BLUP 4.2 4.86%
2020 3.36 3.83% TatG0131 2019 4.06 4.77%
BLUP 4.01 4.75% BLUP 3.51 3.93%
SWU_Ft415 2019 2.23 2.38% TatG0136 2019 2.28 2.43%
BLUP 2.14 2.25% TatG0163 2020 2.31 2.36%
SWU_Ft420 2019 2.54 2.86% BLUP 2.07 2.11%
S2206 2019 3.78 4.48% TatG0164 2019 2.19 2.42%
2020 2.23 2.35% TatG0184 2019 4.98 6.06%
BLUP 4.26 5.07% 2020 2.68 2.84%
S6763 2019 2.1 2.23% BLUP 3.32 3.72%
S6789 2019 2.88 3.23% 直径 SWU_Ft005 2019 4.08 5.01%
BLUP 2.8 3.10% Grain 2020 3.69 4.06%
TatG0057 2019 2.17 2.32% diameter BLUP 4.92 5.85%
2020 3.45 3.90% SWU_Ft013 2019 3.87 4.57%
BLUP 3 3.38% 2020 2.7 2.74%
TatG0100 2019 2.44 2.68% BLUP 5.09 5.88%
2020 2.2 2.32% SWU_Ft023 2019 2.12 2.23%
BLUP 2.68 2.98% BLUP 2.55 2.65%
TatG0131 2019 3.39 3.90% SWU_Ft042 2019 3.03 3.49%
BLUP 2.63 2.88% BLUP 3.2 3.54%
TatG0136 2019 3.2 3.64% SWU_Ft073 2019 3.05 3.60%
BLUP 2.61 2.85% BLUP 2.2 2.31%
TatG0163 2019 2.25 2.41% SWU_Ft103 2019 5.09 6.15%
BLUP 2.49 2.70% 2020 2.48 2.43%
TatG0184 2020 3.19 3.58% BLUP 4.76 5.43%
BLUP 2.43 2.65% SWU_Ft124 2019 2.38 2.58%
TatG0187 2020 2.03 2.11% BLUP 2.53 2.64%
BLUP 2.18 2.34% SWU_Ft174 2019 2.49 2.72%
粒宽 SWU_Ft029 2019 2.83 3.18% SWU_Ft177 2019 4.84 5.93%
Grain SWU_Ft078 2019 3.39 3.92% BLUP 4.02 4.60%
width BLUP 2.8 3.06% SWU_Ft184 BLUP 2.23 2.31%
SWU_Ft103 2019 2.81 3.14% SWU_Ft244 2019 2.23 2.37%
SWU_Ft124 2019 4.04 4.73% 2020 2.33 2.27%
BLUP 4.47 5.14% BLUP 2.92 3.11%
SWU_Ft133 2019 4.64 5.66% SWU_Ft259 2019 3.36 3.87%
BLUP 3.55 4.09% 2020 3.41 3.58%
SWU_Ft177 2019 3.77 4.45% BLUP 3.6 3.99%
BLUP 3.53 4.01% SWU_Ft282 2019 4.46 5.44%
SWU_Ft186 2019 3.85 4.46% 2020 5.25 5.93%
BLUP 3.6 4.02% BLUP 5.93 7.06%
SWU_Ft354 2020 3.49 3.83% SWU_Ft283 BLUP 2.04 2.05%
SWU_Ft381 2019 2.72 3.02% SWU_Ft354 2019 6.75 8.30%
BLUP 2.74 2.95% 2020 4.88 5.32%
SWU_Ft384 2019 2.51 2.71% BLUP 7.69 9.06%
BLUP 2.06 2.08% SWU_Ft384 2020 2.2 2.12%
SWU_Ft385 2020 2.86 3.12% SWU_Ft394 2019 2.74 3.08%
BLUP 2.29 2.45% BLUP 2.48 2.62%
SWU_Ft390 BLUP 2 2.01% SWU_Ft404 2019 2.33 2.54%
SWU_Ft402 2019 2.99 3.34% BLUP 3.01 3.27%
2020 2.23 2.26% SWU_Ft415 2019 4.15 4.87%
BLUP 3.75 4.20% 2019 4.15 4.87%
SWU_Ft404 2019 2.77 3.10% BLUP 3.81 4.22%
BLUP 2.66 2.87% SWU_Ft420 2020 2.11 2.06%
SWU_Ft415 2019 3.06 3.43% BLUP 2.14 2.22%
BLUP 3.04 3.30% S2206 2019 11.77 14.79%
S2206 2019 11.36 14.22% 2020 2.26 2.22%
BLUP 12.89 15.64% BLUP 13.04 15.55%
S2216 2019 3.38 3.87% S2216 2019 3.5 4.06%
BLUP 2.86 3.10% BLUP 3.44 3.78%
S6789 2019 4.36 5.12% S6789 2019 6.1 7.42%
BLUP 3.89 4.38% BLUP 5.67 6.54%
S6855 BLUP 2.62 2.94% TatG0052 2020 2.04 1.94%
TatG0023 2019 2.6 2.90% BLUP 3.08 3.31%
BLUP 3.13 3.50% TatG0097 2019 3.16 3.64%
TatG0052 2019 2.5 2.70% BLUP 3.3 3.64%
2020 2.31 2.35% TatG0100 2019 3.48 4.04%
BLUP 3.45 3.83% 2020 2.49 2.49%
TatG0097 2019 2.71 3.03% BLUP 4.29 4.88%
BLUP 2.83 3.09% TatG0131 2019 4.1 4.81%
TatG0155 2019 4.9 5.87% BLUP 4.13 4.62%
BLUP 4.18 4.78% TatG0155 2019 2.18 2.33%
TatG0163 2019 5.39 6.46% BLUP 2.28 2.34%
2020 3.91 4.34% TatG0163 2019 2.11 2.22%
BLUP 6.64 7.85% 2020 2.12 2.04%
TatG0164 2019 5.08 6.31% BLUP 2.06 2.05%
2020 2.2 2.32% TatG0164 2019 2.83 3.28%
BLUP 5.57 6.79% BLUP 2.26 2.39%
TatG0184 2019 10.5 13.15% TatG0184 2019 6.9 8.58%
BLUP 9.62 11.71% BLUP 5.31 6.16%
TatG0206 2020 2.12 2.15% 圆度 SWU_Ft005 2019 4.89 6.12%
长/宽 SWU_Ft005 2019 5.47 6.91% Grain 2020 3.11 3.70%
Grain 2020 3.67 4.47% roundness BLUP 3.83 4.68%
length-to-width BLUP 4.52 5.62% SWU_Ft013 2020 2.78 3.15%
ratio SWU_Ft013 2019 2.04 2.16% BLUP 2.11 2.26%
2020 2.76 3.12% SWU_Ft023 2020 2.03 2.14%
BLUP 2.21 2.39% SWU_Ft078 2019 3.09 3.55%
SWU_Ft023 2020 2.72 3.03% BLUP 3.21 3.71%
BLUP 2.14 2.27% SWU_Ft103 2019 3.71 4.34%
SWU_Ft073 2020 2.43 2.79% 2020 4.09 4.86%
SWU_Ft078 2019 3.1 3.56% BLUP 3.57 4.16%
2020 2.48 2.76% SWU_Ft124 2019 2.72 3.02%
BLUP 3.58 4.21% BLUP 2.29 2.48%
SWU_Ft103 2019 3.74 4.38% SWU_Ft133 2019 2.75 3.16%
2020 4.73 5.72% SWU_Ft158 2019 2.83 3.22%
BLUP 3.96 4.67% 2020 4.23 5.12%
SWU_Ft124 2019 2.39 2.60% BLUP 3.86 4.61%
BLUP 2.07 2.19% SWU_Ft186 2019 2.24 2.38%
SWU_Ft133 2019 2.81 3.24% SWU_Ft244 2019 5.21 6.26%
BLUP 2.3 2.55% 2020 3.3 3.80%
SWU_Ft158 2019 2.62 2.94% BLUP 4.06 4.78%
2020 4.53 5.52% SWU_Ft259 2019 7.48 9.26%
BLUP 3.94 4.71% 2020 7.69 9.63%
SWU_Ft186 2019 2.7 2.98% BLUP 7.72 9.61%
BLUP 2.23 2.38% SWU_Ft282 2019 8.48 10.78%
SWU_Ft225 2019 2.16 2.40% 2020 7.61 9.73%
SWU_Ft244 2019 5.32 6.42% BLUP 8.05 10.26%
2020 4.09 4.83% SWU_Ft283 2019 4.62 5.55%
BLUP 4.58 5.47% 2020 3.91 4.64%
SWU_Ft259 2019 7.53 9.34% BLUP 4.26 5.09%
2020 7.6 9.50% SWU_Ft302 2020 3.58 4.16%
BLUP 7.76 9.66% BLUP 2.32 2.51%
SWU_Ft282 2019 8.99 11.46% SWU_Ft354 2019 4.71 5.63%
2020 9.02 11.58% 2020 5.72 7.01%
BLUP 9.12 11.66% BLUP 5.07 6.13%
SWU_Ft283 2019 4.82 5.82% SWU_Ft381 2019 5.05 6.10%
2020 4.43 5.34% 2020 2.97 3.38%
BLUP 4.68 5.64% BLUP 4.34 5.18%
SWU_Ft302 2020 3.39 3.92% SWU_Ft384 2019 3.67 4.25%
BLUP 2.4 2.60% 2020 2.96 3.35%
SWU_Ft354 2019 5.28 6.38% BLUP 3.49 4.03%
2020 6.1 7.52% SWU_Ft385 2019 4.73 5.80%
BLUP 5.72 6.98% 2020 3.67 4.43%
SWU_Ft381 2019 5.05 6.11% BLUP 4.22 5.14%
2020 3.85 4.55% SWU_Ft390 2019 2.22 2.37%
BLUP 4.93 5.97% SWU_Ft402 2019 2.04 2.13%
SWU_Ft384 2019 3.33 3.81% SWU_Ft404 2019 3.6 4.23%
BLUP 4.21 4.98% 2020 4.11 4.94%
SWU_Ft385 2019 4.78 5.87% BLUP 3.74 4.43%
2020 4.16 5.10% SWU_Ft420 2019 2.02 2.17%
BLUP 4.57 5.62% S6763 2019 2.67 2.96%
SWU_Ft390 2019 2.24 2.39% BLUP 2.13 2.27%
SWU_Ft402 2019 2.46 2.67% TatG0057 2019 2.96 3.35%
BLUP 2.62 2.89% 2020 3.05 3.49%
SWU_Ft404 2019 3.56 4.17% BLUP 3.47 4.03%
2020 3.77 4.49% TatG0136 2019 3.17 3.59%
BLUP 3.51 4.12% BLUP 2.27 2.44%
SWU_Ft412 2019 2.15 2.33% TatG0155 2019 2.73 3.05%
S6763 2019 2.47 2.70% TatG0163 2019 2.3 2.46%
BLUP 2.26 2.44% BLUP 2.99 3.38%
TatG0057 2019 3.33 3.83% TatG0164 BLUP 2.23 2.48%
2020 3.68 4.32% TatG0184 2019 6.21 7.70%
BLUP 4.04 4.79% 2020 3 3.45%
TatG0136 2019 3.13 3.55% BLUP 5.69 7.03%
TatG0155 2019 2.28 2.46% TatG0187 2019 2.15 2.31%
TatG0163 2019 2.48 2.69%
2020 2.83 3.17%
BLUP 3.64 4.22%
TatG0164 BLUP 2.53 2.90%
TatG0184 2019 5.55 6.84%
2020 2.73 3.09%
BLUP 5.22 6.41%

Table 5

Markers associated with multiple effect traits"

标记
Marker
千粒重TGW 粒长
GL
粒宽
GW
长宽比L/W 籽粒面积
GA
籽粒周长
GP
籽粒直径
GD
籽粒圆度
GR
株高
PH
分枝数BN 主茎节数
PN
SWU_Ft005
SWU_Ft013
SWU_Ft023
SWU_Ft042
SWU_Ft073
SWU_Ft078
SWU_Ft103
SWU_Ft124
SWU_Ft133
SWU_Ft158
SWU_Ft174
SWU_Ft177
SWU_Ft184
SWU_Ft186
SWU_Ft244
SWU_Ft259
SWU_Ft282
SWU_Ft283
SWU_Ft302
SWU_Ft354
SWU_Ft381
SWU_Ft384
SWU_Ft385
SWU_Ft390
SWU_Ft394
SWU_Ft402
SWU_Ft404
SWU_Ft415
SWU_Ft420
S1367
S2206
S2216
S5176
S6763
S6789
TatG0052
TatG0057
TatG0097
TatG0100
TatG0131
TatG0136
TatG0155
TatG0163
TatG0164
TatG0184
TatG0187
TatG0206
[1] 丁颖. 中国作物原始. 农声, 1921, 82-85.
Ding Y. Chinese crop primitiveness. Agric Inform, 1921, 82-85. (in Chinese with English abstract)
[2] 黄凯丰, 李振宙, 王炎, 周良, 吴兴慧, 李振东. 我国荞麦高产栽培生理研究进展. 贵州师范大学学报(自然科学版), 2019, 37(1): 115-120.
Huang K F, Li Z Z, Wang Y, Zhou L, Wu X H, Li Z D. Research progress on physiology of buckwheat under high-yield cultivation. J Guizhou Norm Univ (Nat Sci Edn), 2019, 37(1): 115-120. (in Chinese with English abstract)
[3] 范昱, 丁梦琦, 张凯旋, 杨克理, 唐宇, 张宗文, 方沩, 严俊, 周美亮. 荞麦种质资源概况. 植物遗传资源学报, 2019, 20: 813-828.
Fan Y, Ding M Q, Zhang K X, Yang K L, Tang Y, Zhang Z W, Fang W, Yan J, Zhou M L. Germplasm resource of the genus Fagopyrum Mill. J Plant Genet Resour, 2019, 20: 813-828. (in Chinese with English abstract)
[4] Kishore G, Gupta S, Pandey A. Assessment of population genetic diversity of Fagopyrum tataricum using SSR molecular marker. Biochem System Ecol, 2012, 43: 32-41.
doi: 10.1016/j.bse.2012.02.018
[5] 杨学文, 丁素荣, 胡陶, 刘迎春, 张晓荣, 生国利. 104份苦荞种质的遗传多样性分析. 作物杂志, 2013, (6): 13-17.
Yang X W, Ding S R, Hu T. Liu Y C, Zhang X R, Sheng G L. Genetic diversity of 104 Tatary buckwheat accessions. Crops, 2013, (6): 13-17. (in Chinese with English abstract)
[6] 杜晓磊. 苦荞SSR和AFLP遗传图谱构建及其重要农艺性状的QTL分析. 山西大学硕士学位论文, 山西太原, 2013.
Du X L. Construction of Tartary Buckwheat Genetic Map with SSR and AFLP Markers and QTL Analysis for Important Agronomic Traits. MS Thesis of Shanxi University, Taiyuan, Shanxi, China, 2013. (in Chinese with English abstract)
[7] Hou S Y, Sun Z X, Ling H B, Xu B, Zhang B, Wang X C, Han Y H, Zhang L J, Qiao Z J, Li H Y. Genetic diversity of buckwheat cultivars (Fagopyrum tartaricum Gaertn.) assessed with SSR markers developed from genome survey sequences. Plant Mol Biol Rep, 2016, 34: 233-241.
doi: 10.1007/s11105-015-0907-5
[8] 马名川, 张丽君, 刘璋, 刘龙龙. 基于SSR标记的山西省不同地区苦荞遗传多样性分析. 山西农业大学学报(自然科学版), 2021, 41(3): 25-31.
Ma M C, Zhang L J, Liu Z, Liu L L. Analysis of genetic diversity of tartary buckwheat from different regions of Shanxi province based on SSR marker. J Shanxi Agric Univ (Nat Sci Edn), 2021, 41(3): 25-31. (in Chinese with English abstract)
[9] Zhao S J, Zhu H J, Lu X Q, Lu X Q, He N, Liu W G. Studies on DNA finger-printing and genetic diversity of seedless watermelon (Citrullus lanatus) varieties using core simple sequence repeat (SSR) markers. J Agric Biotechnol, 2014, 22: 188-194.
[10] Flint-Garcia S A, Thomsberry J M, Buckler E S. Structure of linkage disequilibrium in plants. Annu Rev Plant Biol, 2003, 54: 357-374.
pmid: 14502995
[11] Lu H, Zhang D, Zhang L J, Wang R J, Shang X D, Tan Q. Association analysis of five agronomic traits with SSR markers in Flammulina velutipes germplasm. J Agric Biotechnol, 2015, 23: 96-106.
[12] Thornsberry J M, Goodman M M, Doebley J, Kresovich S, Nielsen D, Buckler E S. Dwarf 8 polymorphisms associate with variation in flowering time. Nat Genet, 2001, 28: 286-289.
pmid: 11431702
[13] Aranzana M J, Kim S, Zhao K, Bakker E, Horton M, Jakob K, Lister C, Molitor J, Shindo C, Tang C L, Toomajian C, Traw B, Zheng H G, Bergelson J, Dean C, Marjoram P, Nordborg M. Genome-wide association mapping in Arabidopsis identifies previously known flowering time and pathogen resistance genes. PLoS Genet, 2005, 1: 60.
pmid: 16292355
[14] Agrama H A, Eizenga G C, Yan W. Association mapping of yield and its components in rice cultivars. Mol Breed, 2007, 19: 341-356.
doi: 10.1007/s11032-006-9066-6
[15] 张军, 赵团结, 盖钧镒. 大豆育成品种农艺性状 QTL与SSR 标记的关联分析. 作物学报, 2008, 34: 2059-2069.
doi: 10.3724/SP.J.1006.2008.02059
Zhang J, Zhao T J, Gai J Y. Association analysis of agronomic trait QTLs with SSR markers in released soybean cultivars. Acta Agron Sin, 2008, 34: 2059-2069 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2008.02059
[16] 徐芦, 高金锋, 王鹏科, 高小丽, 冯佰利. 灰色关联分析在苦荞区试产量性状上的应用. 种子, 2010, 29(6): 64-66.
Xu L, Gao J F, Wang P K, Gao X L, Feng B L. Application of gray correlation analysis on yield characters in regional trials of buckwheat. Seed, 2010, 29(6): 64-66. (in Chinese with English abstract)
[17] 张智峰, 韩小平, 秦刚. 近红外光谱结合主成分分析和灰色关联分析的苦荞产地溯源. 食品与发酵工业, 2019, 45(19): 266-269.
Zhang Z F, Han X P, Qin G. Origin tracing of tartary buckwheat by near infrared spectroscopy combined with principal component analysis and grey relational analysis. Food Ferment Indust, 2019, 45(19): 266-269. (in Chinese with English abstract)
[18] 吕丹. 苦荞种质资源产量性状和籽粒黄酮含量与SSR标记的关联分析. 贵州师范大学硕士学位论文, 贵州贵阳, 2020.
Lyu D. Association Analysis of Yield Traits and Flavonoids Content in Grains with SSR Markers in Tartary Buckwheat Germplasms. MS Thesis of Guizhou Normal University, Guiyang, Guizhou, China, 2020. (in Chinese with English abstract)
[19] Zhang K X, He M, Fan Y, Zhao H, Gao B, Yang K L, Li F L, Tang Y, Gao Q, Lin T, Quinet M, Janovská D, Meglič V, Kwiatkowski J, Romanova O, Chrungoo N, Suzuki T, Luthar Z, Germ M, Woo S H, Georgiev M I, Zhou M L. Resequencing of global Tartary buckwheat accessions reveals multiple domestication events and key loci associated with agronomic traits. Genom Biol, 2021, 22: 23.
doi: 10.1186/s13059-020-02217-7
[20] 张宗文, 林汝法. 荞麦种质资源描述规范和数据标准. 北京: 中国农业出版社, 2007.
Zhang Z W, Lin R F. Description Specification and Data Standard for Buckwheat Germplasm Resources. Beijing: China Agriculture Press, 2007.
[21] Zhang Z S, Xiao Y H, Luo M, Li X B, Luo X Y, Hou L, Li D M, Pei Y. Construction of a genetic linkage map and QTL analysis of fiber-related traits in upland cotton (Gossypium hirsutum L.). Euphytica, 2005, 144: 91-99.
doi: 10.1007/s10681-005-4629-x
[22] Fang X M, Huang K H, Nie J, Zhang Y L, Zhang Y K, Li Y S, Wang W W, Xu X, Ruan R W, Yuan X H, Zhang Z S, Yi Z L. Genome-wide mining, characterization, and development of microsatellite markers in tartary buckwheat (Fagopyrum tataricum Garetn.). Euphytica, 2019, 215: 183.
doi: 10.1007/s10681-019-2502-6
[23] 梁龙兵. 苦荞遗传群体主要农艺性状的遗传及其SSR分子标记研究. 贵州师范大学硕士学位论文, 贵州贵阳, 2016.
Liang L B. The Study of Main Agronomic Traits and SSR Molecular Markers in Genetic Population of Tartary Buckwheat. MS Thesis of Guizhou Normal University, Guiyang, Guizhou, China, 2016 (in Chinese with English abstract)
[24] Bates D, Machler M, Bolker B M, Walker S C. Fitting linear mixed-effects models using lme4. J Stat Softw, 2015, 67: 1-48.
[25] Liu K, Muse S. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics, 2005, 21: 2128-2129.
pmid: 15705655
[26] Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol, 2018, 35: 1547-1549.
doi: 10.1093/molbev/msy096 pmid: 29722887
[27] Hubisz M J, Daniel F, Matthew S, Pritchard J. Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour, 2010, 9: 1322-1332.
doi: 10.1111/j.1755-0998.2009.02591.x
[28] Earl D A, Vonholdt B M. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour, 2012, 4: 359-361.
doi: 10.1007/s12686-011-9548-7
[29] Bradbury P J, Zhang Z W, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 2007, 23: 2633-2635.
pmid: 17586829
[30] Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol, 2005, 14: 2611-2620.
pmid: 15969739
[31] 周长军. 大豆有性杂交F2产量性状的遗传力分析. 黑龙江农业科学, 2006, 6(6): 14-15.
Zhou C J. The heritability analysis and genetic correlation for yield traits in hybridization F2 generation of soybean. Heilongjiang Agric Sci, 2006, 6(6): 14-15 (in Chinese with English abstract)
[32] 吴渝生. 荞麦主要农艺性状的遗传相关分析. 云南农业大学学报, 1996, 11: 258-262.
Wu Y S. Genetic correlation of main agronomic character on buckwheat. J Yunnan Agric Univ, 1996, 11: 258-262 (in Chinese with English abstract)
[33] 罗燕, 敖学成. 秋播苦荞麦单株性状与株产种量的相关通径分析. 牧草与饲料, 2012, 6(2): 31-34.
Luo Y, Ao X C. Correlation coefficient path analysis on the plant traits and seed generating amount of tartary buckwheat in autumn. J forag feed, 2012, 6(2): 31-34 (in Chinese with English abstract).
[34] 潘凡, 石桃雄, 陈其皎, 孟子烨, 梁庆刚, 陈庆富. 苦荞种质主要农艺性状的变异及其对单株粒重的贡献研究. 植物科学学报, 2015, 33: 829-839.
Pan F, Shi T X, Meng Z Y, Liang Q G, Chen Q F. Variation in major agronomic traits and its contribution to grain weight per plant in Tartary buckwheat germplasm. Plant Sci J, 2015, 33: 829-839. (in Chinese with English abstract)
[35] 吕丹, 黎瑞源, 郑冉, 郑俊青, 朱丽伟, 石桃雄, 陈庆富. 213份苦荞种质资源主要农艺性状分析及高产种质筛选. 南方农业学报, 2020, 51: 2429-2439.
Lyu D, Li R Y, Zheng R, Zheng J Q, Zhu L W, Shi T X, Chen Q F. Main agronomic traits and selection of high seed yield germplasms in 213 tartary buckwheat materials. J Southern Agric, 2020, 51: 2429-2439. (in Chinese with English abstract)
[36] 卢媛, 艾为大, 韩晴, 王义发, 李宏杨, 瞿玉玑, 施标, 沈雪芳. 糯玉米自交系SSR标记遗传多样性及群体遗传结构分析. 作物学报, 2019, 45: 214-224.
doi: 10.3724/SP.J.1006.2019.83008
Lu Y, Ai W D, Han Q, Wang Y F, Li H Y, Qu Y J, Shi B, Shen X F. Genetic diversity and population structure analysis by SSR markers in waxy maize. Acta Agron Sin, 2019, 45: 214-224. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2019.83008
[37] 张善磊, 岳红亮, 赵春芳, 陈涛, 张亚东, 周丽慧, 赵凌, 梁文化, 王才林. 粳稻栽培品种中淀粉合成相关基因的等位变异及群体结构分析. 华北农学报, 2018, 33: 116-122.
doi: 10.7668/hbnxb.2018.06.016
Zhang S L, Yue H L, Zhao C F, Chen T, Zhang Y D, Zhou L H, Zhao L, Liang W H, Wang C L. Allelic variation of starch synthesis related genes and population structure in japonica rice cultivars. Acta Agric Boreali-Sin, 2018, 33: 116-122. (in Chinese with English abstract)
[38] 张海雯, 巩檑, 马斯霜, 甘晓燕, 宋玉霞. 基于SSR标记的马铃薯种质遗传多样性及群体结构分析. 分子植物育种, 2020, 18: 4144-4152.
Zhang H W, Gong L, Ma S S, Gan X Y, Song Y X. Genetic diversity and population structure analysis of potato (Solanum tuberosum) germplasm based on SSR markers. Mol Plant Breed, 2020, 18: 4144-4152. (in Chinese with English abstract)
[39] 邢泽农, 蒋雷, 贺道华, 邢宏宜, 雷忠萍. 陕棉抗病种质及其衍生品种的遗传多样性与群体结构研究. 西北植物学报, 2016, 36: 1551-1559.
Xing Z N, Jiang L, He D H, Xing H Y, Lei Z P. Genetic diversity and population structure of disease-resistance cotton cultivars developed in Shaanxi and their descendants by mapped SSRs. Acta Agric Boreali-Occident Sin, 2016, 36: 1551-1559. (in Chinese with English abstract)
[40] 俞渭江. 最优线性无偏预测(BLUP)的原理及其应用. 贵州农学院从刊, 1993, 2: 1-14.
Yu W J. The principles of best linear unbiased production (BLUP) and its application. Coll Guizhou Agric, 1993, 2: 1-14. (in Chinese with English abstract)
[41] Wang L Y, He S P, Dia S, Sun G, Liu X Y, Wang X Y, Pan Z E, Jia Y H, Wang L R, Pang B Y, Sun X Z, Song X L, Du X M. Alien genomic introgressions enhanced fiber strength in upland cotton (Gossypium hirsutum L.). Indust Crops Prod, 2021, 159: 113028.
[42] 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析. 作物学报, 2021, 47: 438-450.
doi: 10.3724/SP.J.1006.2021.04063
Han B, Wang X W, Li B Q, Yu Y, Tian Q, Yang X Y. Association analysis of drought tolerance traits of upland cotton accessions (Gossypium hirsutum L.). Acta Agron Sin, 2021, 47: 438-450. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.04063
[43] Zhang L, Li X X, Ma B, Gao Q, Du H L, Han Y H, Li Y, Cao Y H, Qi M, Zhu Y X, Lu H W, Ma M C, Liu L L, Zhou J P, Nan C H, Qin Y J, Wang J, Lin C, Liu H M, Liang C Z, Qiao Z J. The Tartary buckwheat genome provides insights into rutin biosynthesis and abiotic stress tolerance. Mol Plant, 2017, 10: 1224-1237.
doi: 10.1016/j.molp.2017.08.013
[1] XU Kai, ZHENG Xing-Fei, ZHANG Hong-Yan, HU Zhong-Li, NING Zi-Lan, LI Lan-Zhi. Genome-wide association analysis of indica-rice heading date based on NCII genetic mating design [J]. Acta Agronomica Sinica, 2023, 49(1): 86-96.
[2] HUAI Yuan-Yuan, ZHANG Sheng-Rui, WU Ting-Ting, AZAM Muhammad, LI Jing, SUN Shi, HAN Tian-Fu, LI Bin, SUN Jun-Ming. Potential evaluation of molecular markers related to major nutritional quality traits in soybean breeding [J]. Acta Agronomica Sinica, 2022, 48(8): 1957-1976.
[3] LIU Yu-Ling, ZHANG Hong-Yan, TENG Chang-Cai, ZHOU Xian-Li, HOU Wan-Wei. Genetic diversity and its association analysis of SSR markers with starch content in faba bean (Vicia faba L.) [J]. Acta Agronomica Sinica, 2022, 48(11): 2786-2796.
[4] LI Jian-Ling, GONG Dan, WANG Su-Hua, CHEN Hong-Lin, CHENG Xu-Zhen, XIONG Tao, WANG Li-Xia. Construction of SNP high-density genetic map and QTL analysis of agronomic traits in cowpea (Vigna unguiculata (L.) Walp.) [J]. Acta Agronomica Sinica, 2022, 48(10): 2475-2482.
[5] XU De-Rong, SUN Chao, BI Zhen-Zhen, QIN Tian-Yuan, WANG Yi-Hao, LI Cheng-Ju, FAN You-Fang, LIU Yin-Du, ZHANG Jun-Lian, BAI Jiang-Ping. Identification of StDRO1 gene polymorphism and association analysis with root traits in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 76-85.
[6] YU Rui-Su, TIAN Xiao-Kang, LIU Bin-Bin, DUAN Ying-Xin, LI Ting, ZHANG Xiu-Ying, ZHANG Xing-Hua, HAO Yin-Chuan, LI Qin, XUE Ji-Quan, XU Shu-Tu. Dissecting the genetic architecture of lodging related traits by genome-wide association study and linkage analysis in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 138-150.
[7] ZHAO Jing, MENG Fan-Gang, YU De-Bin, QIU Qiang, ZHANG Ming-Hao, RAO De-Min, CONG Bo-Tao, ZHANG Wei, YAN Xiao-Yan. Response of agronomic traits and P/Fe utilization efficiency to P application with different P efficiency in soybean [J]. Acta Agronomica Sinica, 2021, 47(9): 1824-1833.
[8] FANG Yan-Jie, ZHANG Xu-Cheng, HOU Hui-Zhi, YU Xian-Feng, WANG Hong-Li, MA Yi-Fan, ZHANG Guo-Ping, LEI Kang-Ning. Effects of whole soil-plastic mulching system and fertilization rates on water consumption characteristics and yield of tartary buckwheat in arid land [J]. Acta Agronomica Sinica, 2021, 47(6): 1149-1161.
[9] HAN Bei, WANG Xu-Wen, LI Bao-Qi, YU Yu, TIAN Qin, YANG Xi-Yan. Association analysis of drought tolerance traits of upland cotton accessions (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2021, 47(3): 438-450.
[10] TANG Jing-Quan, WANG Nan, GAO Jie, LIU Ting-Ting, WEN Jing, YI Bin, TU Jin-Xing, FU Ting-Dong, SHEN Jin-Xiong. Bioinformatics analysis of SnRK gene family and its relation with seed oil content of Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(3): 416-426.
[11] JIANG Wei, PAN Zhe-Chao, BAO Li-Xian, ZHOU Fu-Xian, LI Yan-Shan, SUI Qi-Jun, LI Xian-Ping. Genome-wide association analysis for late blight resistance of potato resources [J]. Acta Agronomica Sinica, 2021, 47(2): 245-261.
[12] XIE Lei, REN Yi, ZHANG Xin-Zhong, WANG Ji-Qing, ZHANG Zhi-Hui, SHI Shu-Bing, GENG Hong-Wei. Genome-wide association study of pre-harvest sprouting traits in wheat [J]. Acta Agronomica Sinica, 2021, 47(10): 1891-1902.
[13] LI Jing-Cai, WANG Qiang-Lin, SONG Wei-Wu, HUANG Wei, XIAO Gui-Lin, WU Cheng-Jin, GU Qin, SONG Bo-Tao. Association analysis of dormancy QTL in tetraploid potato via candidate gene markers [J]. Acta Agronomica Sinica, 2020, 46(9): 1380-1387.
[14] PENG Bo,ZHAO Xiao-Lei,WANG Yi,YUAN Wen-Ya,LI Chun-Hui,LI Yong-Xiang,ZHANG Deng-Feng,SHI Yun-Su,SONG Yan-Chun,WANG Tian-Yu,LI Yu. Genome-wide association studies of leaf orientation value in maize [J]. Acta Agronomica Sinica, 2020, 46(6): 819-831.
[15] Li-Lan ZHANG, Lie-Mei ZHANG, Huan-Ying NIU, Yi XU, Yu LI, Jian-Min QI, Ai-Fen TAO, Ping-Ping FANG, Li-Wu ZHANG. Correlation between SSR markers and fiber yield related traits in jute (Corchorus spp.) [J]. Acta Agronomica Sinica, 2020, 46(12): 1905-1913.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[2] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[3] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[4] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[5] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .
[6] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .
[7] KE Li-Ping;ZHENG Tao;WU Xue-Long;HE Hai-Yan;CHEN Jin-Qing. Analysis of Self-Incompatibility Locus Gene in Brassica napus[J]. Acta Agron Sin, 2008, 34(05): 764 -769 .
[8] ZHENG Yong-Mei;DING Yan-Feng;WANG Qiang-Sheng;LI Gang-Hua;WANG Hui-Zhi;WANG Shao-Hua. Effect of Nitrogen Applied before Transplanting on Tillering and Nitrogen Utilization in Rice[J]. Acta Agron Sin, 2008, 34(03): 513 -519 .
[9] QIN En-Hua;YANG Lan-Fang;. Selenium Content in Seedling and Selenium Forms in Rhizospheric Soil of Nicotiana tabacum L.[J]. Acta Agron Sin, 2008, 34(03): 506 -512 .
[10] LÜ Li-Hua;TAO Hong-Bin;XIA Lai-Kun; HANG Ya-Jie;ZHAO Ming;ZHAO Jiu-Ran;WANG Pu;. Canopy Structure and Photosynthesis Traits of Summer Maize under Different Planting Densities[J]. Acta Agron Sin, 2008, 34(03): 447 -455 .