Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (12): 3108-3119.doi: 10.3724/SP.J.1006.2022.14241

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Identification and relative expression levels of PEPC gene family members in cassava

LI Xiang-Chen1(), SHEN Xu3, ZHOU Xin-Cheng2, CHEN Xin2, WANG Hai-Yan2(), WANG Wen-Quan3()   

  1. 1College of Agricultural, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
    2Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs / Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences / Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, Hainan, China
    3College of Tropical Crops, Hainan University, Haikou 570228, Hainan, China
  • Received:2021-12-20 Accepted:2022-03-25 Online:2022-12-12 Published:2022-04-19
  • Contact: WANG Hai-Yan,WANG Wen-Quan E-mail:l13j45q3k2a@126.com;wanghaiyan@itbb.org.cn;wangwenquan@itbb.org.cn
  • Supported by:
    Natural Science Foundation of Hainan Province(320RC708);Project of the National Key Research and Development Program of China(2018YFD1000500);Major Science and Technology Plan of Hainan Province(ZDKJ2021012)

Abstract:

Phosphoenolpyruvate carboxylase (PEPC) is the key enzyme of photosynthesis in C4 plants. Cassava is a C3-C4 plant, and the relative expression levels of MePEPC genes in cultivated species are significantly higher than wild type. So far, systematic studies on MePEPC have not been done. To investigate the basic information of MePEPC family in cassava, five MePEPCs members were identified in the whole genome of cassava by bioinformatics method. The MePEPC family of cassava were comprehensively analyzed by bioinformatics software, including basic physical and chemical properties analysis, prediction of subcellular localization, evolutionary tree analysis, chromosome localization, gene and protein structure, and promoter cis-element prediction. The results showed that five MePEPC family members were identified and distributed on five chromosomes, respectively. Among them, MePEPC2 was distributed on chromosome 3 with underwent variable splicing, early termination of sequence, and loss of function. The phylogenetic tree revealed that MePEPC family could be divided into two subfamilies (plant type and bacterial type), and the distribution of exons of the same group were similar. The promoter region of MePEPC members contained different numbers of light corresponding elements, hormone corresponding elements, and stress response elements, indicating that different MePEPC member may participate in different growth and development regulation processes. The relative expression levels of MePEPC1, MePEPC4, and MePEPC5 were relatively higher, and the different expression patterns were in different light time, different development stages, drought and ABA stress. The relative expression levels of MePEPC2 and MePEPC3 were lower and almost invisible. This study provides basic data for in-depth study of the function of MePEPC family in cassava and candidate genes for cassava high light efficiency breeding.

Key words: cassava, phosphoenolpyruvate carboxylase, relative expression profile, drought, ABA, circadian rhythm

Table 1

Primers used in the study"

引物名称
Primer name
引物序列
Primer sequence (5°-3°)
用途
Purpose
MePEPC1F GTCGACATGGCTGCTAGGAATCTGGA 扩增全长Full length amplification
MePEPC1R GGTACCACCAGTGTTTTGCATGCCA
MePEPC2F GTCGACATGCAACCTAAGAATGTTGAGAAG 扩增全长Full length amplification
MePEPC2R GGTACCACCAGTATTCTGCATTCCAGC
MePEPC3F GTCGACATGACGGATACAACAGATGATATAGC 扩增全长Full length amplification
MePEPC3R GGTACCACCTGTGTTCCTCATCCCAG
MePEPC4F GTCGACATGGAGAAACTTGAAAGGATTCG 扩增全长Full length amplification
MePEPC4R ACTAGTACCCGTGTTTCTCATCCCA
MePEPC5F GTCGACATGCAACCTCGGAATCTTGAG 扩增全长Full length amplification
MePEPC5R GGTACCACCAGTGTTCTGCATTCCAG
Actin-F TCTTCTCAACTGAGGAGCTGCT RT-qPCR
Actin-R CCTTCGTCTGGACCTTGCTG
qMePEPC1F ATACGAGCAGAAGTGAAGGTG RT-qPCR
qMePEPC1R CTTATTCTTCTCGTGTGGTTCAC
qMePEPC2F ATATCGTCGAAGGCAAAAGTTG RT-qPCR
qMePEPC2R TGCCAAGCAATTACGAATCCTT
qMePEPC3F GTCCACCTCTCCACTGCT RT-qPCR
qMePEPC3R TGTTGTATCCGTCATTGTACCC
qMePEPC4F GTGGCAGGGATAGAGGATACG RT-qPCR
qMePEPC4R CTGGAGAAACTTCACCCTGTAAT
qMePEPC5F GGAGATCCCAGAGGAGGG RT-qPCR
qMePEPC5R GTCCTGTCGGCGTTCTTC

Table 2

Basic physical and chemical properties of PEPC proteins in cassava"

基因号
Gene ID
基因名称
Gene name
氨基酸
Amino acid
分子量
Molecular weight
等电点
pI
亲水系数
Hydrophilic coefficient
染色体
Chr.
染色体起始
Chr. start
染色体终止
Chr. end
亚细胞定位
Subcellular
localization
Manes.02G091300.1 MePEPC1 965 110,369.29 5.93 -0.421 2 6,822,458 6,829,902 细胞质Cytoplasm
Manes.03G101900.1 MePEPC2 295 33,742.35 5.26 -0.552 3 17,850,224 17,852,291 细胞质Cytoplasm
Manes.06G074600.1 MePEPC3 1020 114,385.76 6.51 -0.377 6 18,870,252 18,894,812 细胞质Cytoplasm
Manes.14G095900.1 MePEPC4 964 110,296.13 5.75 -0.412 14 7,740,112 7,757,686 细胞质Cytoplasm
Manes.15G093700.1 MePEPC5 965 110,554.63 6.05 -0.389 15 6,906,159 6,916,528 细胞质Cytoplasm

Fig. 1

Chromosome distribution of PEPC family in cassava"

Table 3

Secondary structure of PEPC family proteins in cassava"

基因名称
Gene name
α-螺旋
Alpha helix
延伸链
Extended strand
β-转角
Beta turn
无规卷曲
Random coil
二级结构原件
Secondary structural elements
MePEPC1 62.38 5.91 4.15 27.56
MePEPC2 62.71 4.75 3.73 28.81
MePEPC3 56.45 6.36 4.46 32.73
MePEPC4 55.88 6.67 4.02 33.43
MePEPC5 61.93 6.02 4.25 27.8

Fig. 2

Phylogenetic tree of PEPC protein family members in cassava, corn, millet, rice, Arabidopsis, and soybean"

Fig. 3

Structure and conserved motif of MePEPC genes A: gene structure of MePEPCs; B: the conserved motif of MePEPCs."

Table 4

Cis-element analysis of promoter region of PEPC gene family in cassava"

名称Name PEPC1 PEPC2 PEPC3 PEPC4 PEPC5
光响应元件Light response element 6 16 12 13 12
脱落酸响应元件ABRE 1 4 2 1 2
生长素响应元件AuxRR-core 1
生长素响应元件TGA-element 1 2 1
水杨酸响应元件TCA-element 1 1
赤霉素响应元件P-box 1 1 1
茉莉酸甲酯响应元件TGACG-motif 3 1 1
干旱响应元件MBS 1 1 1
低温响应元件LTR 2 1
细胞周期响应元件MSA-like 1
昼夜节律响应元件Circadian 1
厌氧响应元件GC-motif 1
缺氧响应元件ARE 1 1 2
创伤响应元件WUN-motif 1
分生组织响应元件CAT-box 1 1 1

Fig. 4

Subcellular localization of MePEPC1, MePEPC4, and MePEPC5"

Fig. 5

Relative expression levels of cassava PEPC family in different tissues Three biological replicates are set for each treatment, and the values of relative expression are the average value of three biological replicates ± STDEVs. Different lowercase letters indicate that there are significant differences between different genes in the same treatment at P ≤ 0.05."

Fig. 6

Relative expression levels of MePEPC genes under different light conditions The first row of abscissa is the time point, and the second row is the light intensity corresponding to the time point. Three biological replicates are set for each treatment, and the values of relative expression are the average values of the three biological replicates ± STDEVs. Different lowercase letters indicate that there are significant differences between different genes in the same treatment at P ≤ 0.05."

Fig. 7

Relative expression levels of MePEPC family of leaves and roots under drought stress in cassava A: leaf of SC124; B: leaf of Arg7; C: root of SC124; D: root of Arg7. Three biological replicates are set for each treatment, and the values of relative expression are the average value of three biological replicates ± STDEVs. Different lowercase letters indicate that there are significant differences between different genes in the same treatment at P ≤ 0.05."

Fig. 8

Relative expression levels of MePEPC1, MePEPC4, and MePEPC5 genes in leaves and roots under ABA stress A: leaf; B: root. Three biological replicates are set for each treatment, and the values of relative expression are the average values of the three biological replicates ± STDEVs. Different lowercase letters indicate that there are significant differences between different genes in the same treatment at P ≤ 0.05."

[1] El-Sharkawy M A. Cassava biology and physiology. Plant Mol Biol, 2004, 56: 481-501.
pmid: 15669146
[2] El-Sharkawy M A. International research on cassava photosynthesis, productivity, eco-physiology, and responses to environmental stresses in the tropics. Photosynthetica, 2006, 44: 481-512.
doi: 10.1007/s11099-006-0063-0
[3] 蒋和平, 倪印峰, 朱福守. 中国木薯产业发展模式及对策建议. 农业展望, 2014, 10(8): 41-48.
Jiang H P, Ni Y F, Zhu F S. Development mode and strategies of China’s cassava industry. Agric Outlook, 2014, 10(8): 41-48. (in Chinese with English abstract)
doi: 10.1177/003072707901000107
[4] Izui K, Ishijima S, Yamaguchi Y, Katagiri F, Murata T, Shigesada K, Sugiyama T, Katsuki H. Cloning and sequence analysis of cDNA encoding active phosphoenolpyruvate carboxylase of the C4-pathway from maize. Nucleic Acids Res, 1986, 14: 1615-1628.
pmid: 3005978
[5] 袁秀云, 田云芳, 张燕, 马杰, 崔波. 油用牡丹PEPC基因的克隆及表达分析. 中国油料作物学报, 2019, 41: 878-886.
Yuan X Y, Tian Y F, Zhang Y, Ma J, Cui B. Cloning and expression analysis of PEPC gene from Paeonia ostii. Chin J Oil Crop Sci, 2019, 41: 878-886. (in Chinese with English abstract)
[6] 彭文丽, 杨成坤, 崔志富, 赵成志, 王红. 榴莲PEPC基因家族全基因组鉴定及表达分析. 分子植物育种, 2022, 20: 76-85.
Peng W L, Yang C K, Cui Z F, Zhao C Z, Wang H. Genome-wide identification and expression analysis of PEPC gene family in durian. Mol Plant Breed, 2022, 20: 76-85 (in Chinesewith English abstract)
[7] Shen WJ, Chen G X, Xu J G, Jiang Y, Liu L, Gao Z P, Ma J, Chen X, Chen T H, Lyu C F. Overexpression of maize phosphoenolpyruvate carboxylase improves drought tolerance in rice by stabilization the function and structure of thylakoid membrane. Photosynthetica, 2015, 53: 436-446.
doi: 10.1007/s11099-015-0111-8
[8] 焦进安. 植物磷酸烯醇式丙酮酸羧化酶的多生理功能. 植物生理学通讯, 1987, (1): 40-43.
Jiao J A. Multiple functions of phosphoenolpyruvate carboxylase in plants. Plant Physiol J, 1987, (1): 40-43. (in Chinese)
[9] Cousins A B, Baroli I, Badger M R, Ivakov A, Lea P J, Leegood R C, Caemmerer S. The role of phosphoenolpyruvate carboxylase during C4 photosynthetic isotope exchange and stomatal conductance. Plant Physiol, 2007, 145: 1006-1017.
pmid: 17827274
[10] O'Leary B, Park J, Plaxton W C. The remarkable diversity of plant PEPC (phosphoenolpyruvate carboxylase): recent insights into the physiological functions and post-translational controls of non-photosynthetic PEPCs. Biochem J, 2011, 436: 15-34.
doi: 10.1042/BJ20110078 pmid: 21524275
[11] O’Leary B, Fedosejevs E T, Hill A T, Bettridge J, Park J, Rao S K, Leach C A, Plaxton W C. Tissue-specific expression and post-translational modifications of plant- and bacterial-type phosphoenolpyruvate carboxylase isozymes of the castor oil plant, Ricinus communis L. J Exp Bot, 2011, 62: 5485-5495.
doi: 10.1093/jxb/err225
[12] Doubnerová H V, Miedzińska L, Dobrá J, Vankova R, Ryšlavá H. Phosphoenolpyruvate carboxylase, NADP-malic enzyme, and pyruvate, phosphate dikinase are involved in the acclimation of Nicotiana tabacum L. to drought stress. J Plant Physiol, 2014, 171: 19-25.
doi: 10.1016/j.jplph.2013.10.017
[13] Cheng G, Wang L, Lan H Y. Cloning of PEPC-1 from a C4 halophyte Suaeda aralocaspica without Kranz anatomy and its recombinant enzymatic activity in responses to abiotic stresses. Enzyme Microbiol Technol, 2016, 83: 57-67.
doi: 10.1016/j.enzmictec.2015.11.006
[14] 宋凝曦, 谢寅峰, 李霞. 干旱胁迫下表观遗传机制对转C4型PEPC基因水稻种子萌发的影响. 植物学报, 2020, 55: 677-692.
Song N X, Xie Y F, Li X. Effects of epigenetic mechanisms on C4 phosphoenolpyruvate carboxylase transgenic rice (Oryza sativa) seed germination under drought stress. Chin Bull Bot, 2020, 55: 677-692. (in Chinese with English abstract)
[15] 闫贵欣, 陈碧云, 许鲲, 高桂珍, 吕培军, 伍晓明, 李锋, 李俊. 甘蓝型油菜ACCase、DGAT2和PEPC基因对氮素用量的应答. 植物营养与肥料学报, 2012, 18: 1370-1377.
Yan G X, Chen B Y, Xu K, Gao G Z, Lyu P J, Wu X M, Li F, Li J. Response of ACCase, DGAT2 and PEPC genes in developing seeds of Brassica napus L. to different nitrogen levels. J Plant Nutr Fert, 2012, 18: 1370-1377 (in Chinese with English abstract).
[16] 赵晋锋, 杜艳伟, 王高鸿, 李颜方, 赵根有, 王振华, 王玉文, 余爱丽. 谷子PEPC基因的鉴定及其对非生物逆境的响应特性. 作物学报, 2020, 46: 700-711.
doi: 10.3724/SP.J.1006.2020.94107
Zhao J F, Du Y W, Wang G H, Li Y G, Zhao G Y, Wang Z H, Wang Y W, Yu A L. Identification of PEPC genes from foxtail millet and its response to abiotic stress. Acta Agron Sin, 2020, 46: 700-711. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.94107
[17] Muramatsu M, Suzuki R, Yamazaki T, Miyao M. Comparison of plant-type phosphoenolpyruvate carboxylases from rice: identification of two plant-specific regulatory regions of the allosteric enzyme. Plant Cell Physiol, 2015, 56: 468-480.
doi: 10.1093/pcp/pcu189 pmid: 25505033
[18] Sánchez R, Cejudo F J. Identification and expression analysis of a gene encoding a bacterial-type phosphoenolpyruvate carboxylase from Arabidopsis and rice. Plant Physiol, 2003, 132: 949-957.
doi: 10.1104/pp.102.019653
[19] 马海洋, 赵秋芳, 陈曙, 石伟琦, 冼皑敏. 菠萝PEPC基因家族生物信息学分析. 热带作物学报, 2020, 41: 97-103.
Ma H Y, Zhao Q F, Chen S, Shi W Q, Xian A M. Bioinformatics analysis of PEPC gene family in pineapple. Chin J Tropical Crops, 2020, 41: 97-103. (in Chinese with English abstract)
[20] Wilkins M R, Gasteiger E, Bairoch A, Sanchez J C, Williams K L, Appel R D, Hochstrasser D F. Protein identification and analysis tools in the ExPASy server. Methods Mol Biol, 1999, 112: 531-552.
pmid: 10027275
[21] Larkin M A, Blackshields G, Brown N P, Chenna R, McGettigan P A, McWilliam H, Valentin F, Wallace I M, Wilm A, Lopez R, Thompson J D, Gibson T J, Higgins D G. Clustal W and Clustal X version 2.0. Bioinformatics, 2007, 23: 2947-2948.
doi: 10.1093/bioinformatics/btm404 pmid: 17846036
[22] Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis Version 7.0 for bigger datasets. Mol Biol Evol, 2016, 33: 1870-1874.
doi: 10.1093/molbev/msw054 pmid: 27004904
[23] Higo K, Ugawa Y, Iwamoto M, Korenaga T. Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res, 1999, 27: 297-300.
[24] Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190
[25] Wang W Q, Feng B X, Xiao J F, Xia Z Q, Zhou X C, Li P H, Zhang W X, Wang Y, Moller B L, Zhang P, Luo M C, Xiao G, Liu J X, Yang J, Chen S B, Rabinowicz P D, Chen X, Zhang H B, Ceballos H, Lou Q F, Zou M L, Carvalho L J, Zeng C Y, Xia J, Sun S X, Fu Y H, Wang H Y, Lu C, Ruan M B, Zhou S G, Wu Z C, Liu H, Kannangara R M, Jørgensen K, Neale R L, Bonde M, Heinz N, Zhu W L, Wang S J, Zhang Y, Pan K, Wen M F, Ma P A, Li Z X, Hu M Z, Liao W B, Hu W B, Zhang S K, Pei J L, Guo A P, Guo J C, Zhang J M, Zhang Z W, Ye J Q, Ou W J, Ma Y Q, Liu X Y, Tallon L J, Galens K, Ott S, Huang J, Xue J J, An F F, Yao Q Q, Lu X J, Fregene M, López-Lavalle L A, Wu J J, You F M, Chen M L, Hu S N, Wu G J, Zhong S L, Ling P, Chen Y Y, Wang Q H, Liu G D, Liu B, Li K M, Peng M. Cassava genome from a wild ancestor to cultivated varieties. Nat Commun, 2014, 5: 5110.
doi: 10.1038/ncomms6110 pmid: 25300236
[26] Xia Z Q, Chen X, Lu C, Zou M L, Wang S J, Zhang Y, Pan K, Zhou X C, Wang H Y, Wang W Q. Comparative transcriptomics revealed enhanced light responses, energy transport and storage in domestication of cassava (Manihot esculenta). Front Agric Sci Eng, 2016, 3: 295-307.
[27] Wilson M C, Mutka A M, Hummel A W, Berry J, Chauhan R D, Vijayaraghavan A, Taylor N J, Voytas D F, Chitwood D H, Bart R S. Gene expression atlas for the food security crop cassava. New Phytol, 2017, 213: 1632-1641.
doi: 10.1111/nph.14443 pmid: 28116755
[28] Izui K, Matsumura H, Furumoto T, Kai Y. Phosphoenolpyruvate carboxylase: a new era of structural biology. Annu Rev Plant Biol, 2004, 55: 69-84.
pmid: 15725057
[29] 潘丽娟, 陈娜, 陈明娜, 王通, 王冕, 陈静, 杨珍, 万勇善, 禹山林, 迟晓元, 刘风珍. 花生AhPEPC1基因抑制表达的转基因后代转录组分析. 作物学报, 2019, 45: 993-1001.
doi: 10.3724/SP.J.1006.2019.84122
Pan L J, Chen N, Chen M N, Wang T, Wang M, Chen J, Yang Z, Wan Y S, Yu S L, Chi X Y, Liu F Z. Transcriptome analysis of the peanut transgenic offspring with depressing AhPEPC1 gene. Acta Agron Sin, 2019, 45: 993-1001 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2019.84122
[30] Masumoto C, Miyazawa S, Ohkawa H, Fukuda T, Taniguchi Y, Murayama S, Kusano M, Saito K, Fukayama H, Miyao M. Phosphoenolpyruvate carboxylase intrinsically located in the chloroplast of rice plays a crucial role in ammonium assimilation. Proc Natl Acad Sci USA, 2010; 107: 5226-5231.
doi: 10.1073/pnas.0913127107
[31] 李小博. 玉米C4光合途径关键酶基因PEPC、PPDK、NADP-ME对C3植物拟南芥光合特性影响效应的研究. 南京农业大学硕士学位论文, 江苏南京, 2016.
Li X B. Photosynthetic Property of the Transgenic Arabidopsis Expressing Maize C4-type PEPC, PPDK and NADP-ME Genes. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2016. (in Chinese with English abstract)
[32] 郭金生, 曹丽茹, 张新, 张前进, 魏良明, 王振华, 鲁晓民. 外源ABA对干旱胁迫下玉米叶片光合能力及气孔开度的影响. 中国农学通报, 2019, 35(13): 31-35.
Guo J S, Cao L R, Zhang X, Zhang Q J, Wei L M, Wang Z H, Lu X M. Effects on photosynthetic capacity and stomatal opening of maize leaves: exogenous ABA under drought stress. Chin Agric Sci Bull, 2019, 35(13): 31-35. (in Chinese with English abstract)
[33] Carmo-Silva A E, da Silva A B, Keys A J, Parry M A, Arrabaça M C. The activities of PEP carboxylase and the C4 acid decarboxylases are little changed by drought stress in three C4 grasses of different subtypes. Photosynth Res, 2008, 97: 223-233.
doi: 10.1007/s11120-008-9329-7
[34] Bandyopadhyay A, Datta K, Zhang J, Yang W, Raychaudhuri S, Miyao M, Datta S K. Enhanced photosynthesis rate in genetically engineered indica rice expressing pepc gene cloned from maize. Plant Sci, 2007, 172: 1204-1209.
doi: 10.1016/j.plantsci.2007.02.016
[35] Sánchez R, Flores A, Cejudo F J. Arabidopsis phosphoenolpyruvate carboxylase genes encode immunologically unrelated polypeptides and are differentially expressed in response to drought and salt stress. Planta, 2006, 223: 901-909.
doi: 10.1007/s00425-005-0144-5
[36] 沈少炎, 吴玉香, 郑郁善. 植物干旱胁迫响应机制研究进展——从表型到分子. 生物技术进展, 2017, 7(3): 169-176.
Shen S Y, Wu Y X, Zheng Y S. Review on drought response in plants from phenotype to molecular. Curr Biotechnol, 2017, 7(3): 169-176. (in Chinese with English abstract)
[1] DING Hong, ZHANG Zhi-Meng, XU Yang, ZHANG Guan-Chu, GUO Qing, QIN Fei-Fei, DAI Liang-Xiang. Physiological and transcriptional regulation mechanisms of nitrogen alleviating drought stress in peanu [J]. Acta Agronomica Sinica, 2023, 49(1): 225-238.
[2] WANG Yun-Qi, GAO Fu-Li, LI Ao, GUO Tong-Ji, QI Liu-Ran, ZENG Huan-Yu, ZHAO Jian-Yun, WANG Xiao-Ge, GAO Guo-Ying, YANG Jia-Peng, BAI Jin-Ze, MA Ya-Huan, LIANG Yue-Xin, ZHANG Rui. Variation of ear temperature after anthesis and its relationship with yield in wheat [J]. Acta Agronomica Sinica, 2022, 48(9): 2400-2408.
[3] LI Pei-Ting, ZHAO Zhen-Li, HUANG Chao-Hua, HUANG Guo-Qiang, XU Liang-Nian, DENG Zu-Hu, ZHANG Yu, ZHAO Xin-Wang. Analysis of drought responsive regulatory network in sugarcane based on transcriptome and WGCNA [J]. Acta Agronomica Sinica, 2022, 48(7): 1583-1600.
[4] CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371.
[5] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[6] LI Yi-Jun, LYU Hou-Quan. Effect of agricultural meteorological disasters on the production corn in the Northeast China [J]. Acta Agronomica Sinica, 2022, 48(6): 1537-1545.
[7] WANG Xing-Rong, LI Yue, ZHANG Yan-Jun, LI Yong-Sheng, WANG Jun-Cheng, XU Yin-Ping, QI Xu-Sheng. Drought resistance identification and drought resistance indexes screening of Tibetan hulless barley resources at adult stage [J]. Acta Agronomica Sinica, 2022, 48(5): 1279-1287.
[8] LI A-Li, FENG Ya-Nan, LI Ping, ZHANG Dong-Sheng, ZONG Yu-Zheng, LIN Wen, HAO Xing-Yu. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.] [J]. Acta Agronomica Sinica, 2022, 48(5): 1103-1118.
[9] WANG Xia, YIN Xiao-Yu, Yu Xiao-Ming, LIU Xiao-Dan. Effects of drought hardening on contemporary expression of drought stress memory genes and DNA methylation in promoter of B73 inbred progeny [J]. Acta Agronomica Sinica, 2022, 48(5): 1191-1198.
[10] XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859.
[11] DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703.
[12] ZHANG Hai-Yan, XIE Bei-Tao, JIANG Chang-Song, FENG Xiang-Yang, ZHANG Qiao, DONG Shun-Xu, WANG Bao-Qing, ZHANG Li-Ming, QIN Zhen, DUAN Wen-Xue. Screening of leaf physiological characteristics and drought-tolerant indexes of sweetpotato cultivars with drought resistance [J]. Acta Agronomica Sinica, 2022, 48(2): 518-528.
[13] LIU Yu-Ling, ZHANG Hong-Yan, TENG Chang-Cai, ZHOU Xian-Li, HOU Wan-Wei. Genetic diversity and its association analysis of SSR markers with starch content in faba bean (Vicia faba L.) [J]. Acta Agronomica Sinica, 2022, 48(11): 2786-2796.
[14] MA Xin-Lei, XU Rui-Qi, SUO Xiao-Man, LI Jing-Shi, GU Peng-Peng, YAO Rui, LIN Xiao-Hu, GAO Hui. Genome-wide identification of the Class III PRX gene family in foxtail millet (Setaria italica L.) and expression analysis under drought stress [J]. Acta Agronomica Sinica, 2022, 48(10): 2517-2532.
[15] JIA Xiao-Xia, QI En-Fang, MA Sheng, HUANG Wei, ZHENG Yong-Wei, BAI Yong-Jie, WEN Guo-Hong. Genome-wide identification and expression analysis of potato PYL gene family [J]. Acta Agronomica Sinica, 2022, 48(10): 2533-2545.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .