Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (4): 978-987.doi: 10.3724/SP.J.1006.2023.24071
• CROP GENETICS & BREEDING · GERMPLASM RESOURCES · MOLECULAR GENETICS • Previous Articles Next Articles
LEI Jian-Feng1(), LI Yue2, DAI Pei-Hong2, ZHAO Yi2, YOU Yang-Zi2, JIA Jian-Guo1, ZHAO Shuai1, QU Yan-Ying1,*(), LIU Xiao-Dong2,*()
[1] |
Chen K L, Gao C X. Targeted genome modification technologies and their applications in crop improvements. Plant Cell Rep, 2014, 33: 575-583.
doi: 10.1007/s00299-013-1539-6 pmid: 24277082 |
[2] |
Zhou H B, Liu B, Weeks D P, Spalding M H, Yang B. Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucleic Acids Res, 2015, 42: 10903-10914.
doi: 10.1093/nar/gku806 |
[3] |
Alok A, Sandhya D, Jogam P, Rodrigues V, Bhati K K, Sharma H, Kumar J. The rise of the CRISPR/Cpf1 system for efficient genome editing in plants. Front Plant Sci, 2020, 11: 264.
doi: 10.3389/fpls.2020.00264 pmid: 32296449 |
[4] |
Wang C, Liu Q, Shen Y, Hua Y F, Wang J J, Lin J R, Wu M G, Sun T T, Cheng Z K, Mercier R, Wang K J. Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes. Nat Biotechnol, 2019, 37: 283-286.
doi: 10.1038/s41587-018-0003-0 pmid: 30610223 |
[5] |
Zhang S J, Zhang R Z, Song G Q, Gao J, Li W, Han X D, Chen M L, Li Y L, Li G Y. Targeted mutagenesis using the Agrobacterium tumefaciens-mediated CRISPR-Cas9 system in common wheat. BMC Plant Biol, 2018, 18: 302.
doi: 10.1186/s12870-018-1496-x |
[6] |
Wang D D, Samsulrizal N, Yan C, Allcock N S, Craigon J, Blanco-Ulate B, Ortega-Salazar I, Marcus S E, Bagheri H M, Fons L P, Fraser P D, Foster T, Fray R, Knox J P, Seymour G B. Characterization of CRISPR mutants targeting genes modulating pectin degradation in ripening tomato. Plant Physiol, 2019, 179: 544-557.
doi: 10.1104/pp.18.01187 pmid: 30459263 |
[7] |
Osakabe Y, Liang Z C, Ren C, Nishitani C, Osakabe K, Wada M, Komori S, Malnoy M, Velasco R, Poli M, Jung M H, Koo O J, Viola R, Kanchiswamy C N. CRISPR-Cas9-mediated genome editing in apple and grapevine. Nat Protoc, 2018, 13: 2844-2863.
doi: 10.1038/s41596-018-0067-9 pmid: 30390050 |
[8] |
Jiang W Z, Zhou H B, Bi H H, Fromm M, Yang B, Weeks D P. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res, 2013, 41: e188.
doi: 10.1093/nar/gkt780 |
[9] |
Chen X G, Lu X K, Shu N, Wang S, Wang J J, Wang D L, Guo L X, Ye W W. Targeted mutagenesis in cotton (Gossypium hirsutum L.) using the CRISPR/Cas9 system. Sci Rep, 2017, 7: 44304.
doi: 10.1038/srep44304 |
[10] |
Long L, Guo D D, Gao W, Yang W W, Hou L P, Ma X N, Miao Y C, Botella J R, Song C P. Optimization of CRISPR/Cas9 genome editing in cotton by improved sgRNA expression. Plant Methods, 2018, 14: 85.
doi: 10.1186/s13007-018-0353-0 pmid: 30305839 |
[11] |
Manghwar H, Lindsey K, Zhang X L, Jin S X. CRISPR/Cas system: recent advances and future prospects for genome editing. Trends Plant Sci, 2019, 24: 1102-1125.
doi: S1360-1385(19)30243-2 pmid: 31727474 |
[12] |
Li B, Rui H P, Li Y J, Wang Q Q, Alariqi M, Qin L, Sun L, Ding X, Wang F Q, Zou J W, Wang Y Q, Yuan D J, Zhang X L, Jin S X. Robust CRISPR/Cpf1 (Cas12a)-mediated genome editing in allotetraploid cotton (Gossypium hirsutum). Plant Biotechnol J, 2019, 17: 1862-1864.
doi: 10.1111/pbi.13147 pmid: 31055869 |
[13] |
Qin L, Li J Y, Wang Q Q, Xu Z P, Sun L, Alariqi M, Manghwar H, Wang G Y, Li B, Ding X, Rui H P, Huang H M, Lu T L, Lindsey K, Daniell H, Zhang X L, Jin S X. High-efficient and precise base editing of C•G to T•A in the allotetraploid cotton (Gossypium hirsutum) genome using a modified CRISPR/Cas9 system. Plant Biotechnol J, 2019, 18: 45-56.
doi: 10.1111/pbi.13168 |
[14] |
Zhao C Z, Wang Y L, Nie X W, Han X S, Liu H L, Li G L, Yang G J, Ruan J X, Ma Y L, Li X Y, Cheng H J, Zhao S H, Fang Y P, Xie S S. Evaluation of the effects of sequence length and microsatellite instability on single-guide RNA activity and specificity. Int J Biol Sci, 2019, 15: 2641-2653.
doi: 10.7150/ijbs.37152 pmid: 31754336 |
[15] |
Xie S S, Shen B, Zhang C B, Huang X X, Zhang Y L. sgRNAcas9: a software package for designing CRISPR sgRNA and evaluating potential off-target cleavage sites. PLoS One, 2014, 9: e100448.
doi: 10.1371/journal.pone.0100448 |
[16] |
李继洋, 雷建峰, 代培红, 姚瑞, 曲延英, 陈全家, 李月, 刘晓东. 基于棉花U6启动子的海岛棉CRISPR/Cas9基因组编辑体系的建立. 作物学报, 2018, 44: 227-235.
doi: 10.3724/SP.J.1006.2018.00227 |
Li J Y, Lei J F, Dai P H, Yao R, Qu Y Y, Chen Q J, Li Y, Liu X D. Establishment of CRISPR/Cas9 genome editing system based on GbU6 promoters in cotton (Gossypium barbadense L.). Acta Agron Sin, 2018, 44: 227-235. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.00227 |
|
[17] |
Gao W, Long L, Tian X Q, Xu F C, Liu J, Singh P K, Botella J R, Song C P. Genome editing in cotton with the CRISPR/Cas9 system. Front Plant Sci, 2017, 8: 1364.
doi: 10.3389/fpls.2017.01364 pmid: 28824692 |
[18] |
Yin K Q, Han T, Liu G, Chen T Y, Wang Y, Alice Y Y, Liu Y L. A geminivirus-based guide RNA delivery system for CRISPR/Cas9 mediated plant genome editing. Sci Rep, 2015, 5: 14926.
doi: 10.1038/srep14926 pmid: 26450012 |
[19] |
Hu J C, Li S, Li Z L, Li H Y, Song W B, Zhao H M, Lai J S, Xia L Q, Li D W, Zhang Y L. A barley stripe mosaic virus-based guide RNA delivery system for targeted mutagenesis in wheat and maize. Mol Plant Pathol, 2019, 20: 1463-1474.
doi: 10.1111/mpp.12849 pmid: 31273916 |
[20] |
Li T D, Hu J C, Sun Y, Li B S, Zhang D L, Li W L, Liu J X, Li D W, Gao C X, Zhang Y L, Wang Y P. Highly efficient heritable genome editing in wheat using an RNA virus and bypassing tissue culture. Mol Plant, 2021, 14: 1787-1798.
doi: 10.1016/j.molp.2021.07.010 pmid: 34274523 |
[21] |
Luo Y J, Na R, Nowak J S, Qiu Y, Lu Q S, Yang C Y, Marsolais F, Tian L N. Development of a Csy4-processed guide RNA delivery system with soybean-infecting virus ALSV for genome editing. BMC Plant Biol, 2021, 21: 419.
doi: 10.1186/s12870-021-03138-8 |
[22] |
Lei J F, Dai P H, Li Y, Zhang W Q, Zhou G T, Liu C, Liu X D. Heritable gene editing using FT mobile guide RNAs and DNA viruses. Plant Methods, 2021, 17: 20.
doi: 10.1186/s13007-021-00719-4 |
[23] |
Gu Z H, Huang C J, Li F F, Zhou X P. A versatile system for functional analysis of genes and microRNAs in cotton. Plant Biotechnol J, 2014, 12: 638-649.
doi: 10.1111/pbi.12169 pmid: 24521483 |
[24] |
Zhang J X, Wang F R, Zhang C Y, Zhang J H, Chen Y, Liu G D, Zhao Y X, Hao F S, Zhang J. A novel VIGS method by agroinoculation of cotton seeds and application for elucidating functions of GhBI-1 in salt-stress response. Plant Cell Rep, 2018, 37: 1091-1100.
doi: 10.1007/s00299-018-2294-5 |
[25] |
周冠彤, 雷建峰, 代培红, 刘超, 李月, 刘晓东. 棉花CRISPR/Cas9基因编辑有效sgRNA高效筛选体系的研究. 作物学报, 2021, 47: 427-437.
doi: 10.3724/SP.J.1006.2021.04178 |
Zhou G T, Lei J F, Dai P H, Liu C, Li Y, Liu X D. Efficient screening system of effective sgRNA for cotton CRISPR/Cas9 gene editing. Acta Agron Sin, 2021, 47: 427-437 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.04178 |
|
[26] |
雷建峰, 李月, 徐新霞, 阿尔祖古丽·塔什, 蒲艳, 张巨松, 刘晓东. 棉花不同GbU6启动子截短克隆及功能鉴定. 作物学报, 2016, 42: 675-683.
doi: 10.3724/SP.J.1006.2016.00675 |
Lei J F, Li Y, Xu X X, A’erzuguli T, Pu Y, Zhang J S, Liu X D. Cloning and functional analysis of different truncated GbU6 promoters in cotton. Acta Agron Sin, 2016, 42: 675-683. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2016.00675 |
|
[27] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Method, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 |
[28] | Wang W N, Yuan Y L, Yang C, Geng S P, Sun Q, Long L, Cai C W, Chu Z Y, Liu X, Wang G H, Du X M, Miao C, Zhang X, Cai Y F. Characterization, expression, and functional analysis of a novel NAC gene associated with resistance to Verticillium wilt and abiotic stress in cotton. Genes Genom Genet, 2016, 6: 3951-3961. |
[29] |
Wu H J, Qu X Y, Dong Z C, Luo L J, Shao C, Forner J, Lohmann J U, Su M, Xu M C, Liu X B, Zhu L, Zeng J, Liu S M, Tian Z X, Zhao Z. WUSCHEL triggers innate antiviral immunity in plant stem cells. Science, 2020, 370: 227-231.
doi: 10.1126/science.abb7360 |
[30] |
Ellison E E, Nagalakshmi U, Gamo M E, Huang P J, Dinesh-Kumar S, Voytas D F. Multiplexed heritable gene editing using RNA viruses and mobile single guide RNAs. Nat Plants, 2020, 6: 620-624.
doi: 10.1038/s41477-020-0670-y pmid: 32483329 |
[31] |
Li T D, Hu J C, Sun Y, Li B S, Zhang D L, Li W L, Liu J X, Li D W, Gao C X, Zhang Y L, Wang Y P. Highly efficient heritable genome editing in wheat using an RNA virus and bypassing tissue culture. Mol Plant, 2021, 14: 1787-1798.
doi: 10.1016/j.molp.2021.07.010 pmid: 34274523 |
[1] | XU Nai-Yin, WANG Yang, WANG Dan-Tao, NING He-Jia, YANG Xiao-Ni, QIAO Yin-Tao. Construction of cotton fiber quality index and weighted genotype by trait (WGT) biplot analysis [J]. Acta Agronomica Sinica, 2023, 49(5): 1262-1271. |
[2] | MENG Lu, DU Ming-Wei, LI Fang, QI Hai-Kun, LU Zheng-Ying, XU Dong-Yong, LI Cun-Dong, ZHANG Ming-Cai, TIAN Xiao-Li, LI Zhao-Hu. Relationship between cotton population, maturity, and the efficacy of harvest aids under high-density planting conditions in Central Hebei province, China [J]. Acta Agronomica Sinica, 2023, 49(4): 1028-1038. |
[3] | GUO Hong, YU Ji-Wen, PEI Wen-Feng, GUAN Yong-Hu, LI Hang, LI Chang-Xi, LIU Jin-Wei, WANG Wei, WANG Bao-Quan, MEI Yong-Jun. Genetic analysis of F2 generation of upland cotton hybrids and main effect clustering in Southern Xinjiang, China [J]. Acta Agronomica Sinica, 2023, 49(3): 608-621. |
[4] | LI Zhao-Wei, MO Zu-Yi, SUN Cong-Ying, SHI Yu, SHANG Ping, LIN Wei-Wei, FAN Kai, LIN Wen-Xiong. Construction of rice mutants by gene editing of OsNAC2d and their response to drought stress [J]. Acta Agronomica Sinica, 2023, 49(2): 365-376. |
[5] | LOU Shan-Wei, GAO Fei, WANG Chong, TIAN Xiao-Li, DU Ming-Wei, DUAN Liu-Sheng. Screening of different dropping formulations about mepiquat chloride and their effects on cotton growth and development [J]. Acta Agronomica Sinica, 2023, 49(2): 552-560. |
[6] | KE Hui-Feng, ZHANG Zhen, GU Qi-Shen, ZHAO Yan, LI Pei-Yu, ZHANG Dong-Mei, CUI Yan-Ru, WANG Xing-Fen, WU Li-Qiang, ZHANG Gui-Yin, MA Zhi-Ying, SUN Zheng-Wen. Genome-wide association study of root biomass related traits at seeding stage under low phosphorus stress in cotton (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2022, 48(9): 2168-2179. |
[7] | LI Ming-Jiang, LEI Jian-Feng, ZULIPIYE·Tuoheniyazi , DAI Pei-Hong, LIU Chao, LIU Xiao-Dong. Cloning and functional verification of GhIQM1 gene of cotton in response to Verticillium wilt [J]. Acta Agronomica Sinica, 2022, 48(9): 2265-2273. |
[8] | GUO Jia-Xin, LU Xiao-Yu, TAO Yi-Fan, GUO Hui-Juan, MIN Wei. Analysis of metabolites and pathways in cotton under salt and alkali stresses [J]. Acta Agronomica Sinica, 2022, 48(8): 2100-2114. |
[9] | ZHU Ling-Xiao, SONG Shi-Jia, LI Hao-Ran, SUN Hong-Chun, ZHANG Yong-Jiang, BAI Zhi-Ying, ZHANG Ke, LI An-Chang, LIU Lian-Tao, LI Cun-Dong. Screening of low nitrogen tolerant cultivars based on low nitrogen tolerance comprehensive index at seeding stage in cotton [J]. Acta Agronomica Sinica, 2022, 48(7): 1800-1812. |
[10] | ZHOU Jing-Yuan, KONG Xiang-Qiang, ZHANG Yan-Jun, LI Xue-Yuan, ZHANG Dong-Mei, DONG He-Zhong. Mechanism and technology of stand establishment improvements through regulating the apical hook formation and hypocotyl growth during seed germination and emergence in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1051-1058. |
[11] | SUN Si-Min, HAN Bei, CHEN Lin, SUN Wei-Nan, ZHANG Xian-Long, YANG Xi-Yan. Root system architecture analysis and genome-wide association study of root system architecture related traits in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1081-1090. |
[12] | YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247. |
[13] | ZHENG Shu-Feng, LIU Xiao-Ling, WANG Wei, XU Dao-Qing, KAN Hua-Chun, CHEN Min, LI Shu-Ying. On the green and light-simplified and mechanized cultivation of cotton in a cotton-based double cropping system [J]. Acta Agronomica Sinica, 2022, 48(3): 541-552. |
[14] | ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395. |
[15] | ZHANG Te, WANG Mi-Feng, ZHAO Qiang. Effects of DPC and nitrogen fertilizer through drip irrigation on growth and yield in cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 396-409. |
|