Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (4): 978-987.doi: 10.3724/SP.J.1006.2023.24071

• CROP GENETICS & BREEDING · GERMPLASM RESOURCES · MOLECULAR GENETICS • Previous Articles     Next Articles

Study on VIGE system mediated by different plant viruses in cotton

LEI Jian-Feng1(), LI Yue2, DAI Pei-Hong2, ZHAO Yi2, YOU Yang-Zi2, JIA Jian-Guo1, ZHAO Shuai1, QU Yan-Ying1,*(), LIU Xiao-Dong2,*()   

  1. 1College of Agronomy, Xinjiang Agricultural University/Research Center of Cotton Engineering, Ministry of Education, Urumqi 830052, Xinjiang, China
    2College of Life Sciences, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
  • Received:2022-03-30 Accepted:2022-07-21 Online:2023-04-12 Published:2022-08-17
  • Contact: *E-mail: xiaodongliu75@aliyun.com;E-mail: xjyyq5322@126.com
  • Supported by:
    Natural Science Foundation of Xinjiang Uygur Autonomous Region(2022D01B23);Basic Research Funds for Universities in the Autonomous Region(XJEDU2022J007)

Abstract:

Plant virus-mediated sgRNA delivery and expression has tremendous advantage over traditional transformation of intact editing vectors for gene editing, because sgRNA expression can be rapidly amplified and be accumulated along with virus replication and movement, resulting in efficient gene editing efficiency. In this study, to develop and apply more plant virus-mediated gene editing (VIGE) systems in cotton, the overexpressing Cas9 (Cas9-OE) cotton was used as VIGE receptor and the cotton leaf crumple virus (CLCrV) and tobacco rattle virus (TRV) mediated VIGE systems were established in cotton. First of all, both CLCrV and TRV-mediated VIGE could target and knock out the GhBsrk1 and GhMAPKKK2 in subgroup A and subgroup D genomic sequences, which verified the feasibility and effectiveness of these two systems. Further quantificaiton of the editing efficiency of GhBsrk1 and GhMAPKKK2 genes by these two systems showed that both CLCrV and TRV-mediated VIGE could produce high-efficiency gene editing efficiency, and there was no significant difference in gene editing efficiency between the two systems. This study also explored the effect of sgRNAs driven by cotton endogenous U6 promoter and Arabidopsis U6 promoter on VIGE gene editing efficiency. The results showed that both promoter-mediated VIGE were able to produce high-efficiency gene editing efficiency, and there was no significant difference in gene editing efficiency based on these two promoter-mediated VIGE systems. The above results indicate that more plant virus vectors can be developed for the application of cotton gene editing research, thus obtaining an efficient sgRNA screening system.

Key words: cotton, CLCrV, TRV, VIGE, gene editing

Table 1

Primer sequences used in this study"

引物 Primer name 序列 Sequence (5'-3') 目的 Destination
GhBsrk1-sgRNA1F: GATTGTTGCACTTAGCTCCATGGC 构建AtU6-26::GhBsrk1-sgRNA和GhU6-5P::GhBsrk1-sgRNA: 5'-GTTGCACTTAGCTCCATGGC-3'
Construction of AtU6-26::GhBsrk1-sgRNA and GhU6-5P::GhBsrk1-sgRNA: 5'-GTTGCACTTAGCTCCATGGC-3'
GhBsrk1-sgRNA2F: AAGTGTTGCACTTAGCTCCATGGC
GhBsrk1-sgRNA1R: AAACGCCATGGAGCTAAGTGCAAC
GhMAPKKK2-sgRNA1F: GATTGAGGGTTCCCAGCTGACATA 构建AtU6-26::GhMAPKKK2-sgRNA和GhU6-5P::GhMAPKKK2-sgRNA: 5'-GAGGGTTCCCAGCTGACATA-3'
Construction of AtU6-26::GhMAPKKK2-sgRNA and GhU6-5P::GhMAPKKK2-sgRNA: 5'-GAGGGTTCCCAGCTGACATA-3'
GhMAPKKK2-sgRNA2F: AAGTGAGGGTTCCCAGCTGACATA
GhMAPKKK2-sgRNA1R: AAACTATGTCAGCTGGGAACCCTC
M-GhBsrk1F: GTTTAGAATACAATGCAGAAACTTTC PCR扩增涵盖GhBsrk1基因A亚组和D亚组靶位点区域
PCR amplification contains the target site regions of GhBsrk1 gene subgroup A and subgroup D
M-GhBsrk1R: GACAAGTTTAAGCACACACTTC
M-MAPPPK2F: CCATGTCGTAGCTTATAAAGG PCR扩增涵盖GhMAPKKK2基因A亚组和D亚组靶位点区域
PCR amplification contains the target site regions of GhMAPKKK2 gene subgroup A and subgroup D
M-MAPPPK2R: CGATTCATTCACGAACTCATG
GhUBQ7F: GAAGGCATTCCACCTGACCAAC PCR扩增GhUBQ7基因部分片段
PCR amplification of partial fragments of GhUBQ7 gene
GhUBQ7R: CTTGACCTTCTTCTTCTTGTGCTTG
Cas9F: GTCATTACGGACGAGTACAAG qRT-PCR分析Cas9 mRNA表达量
The mRNA relative expression level of Cas9 by qRT-PCR
Cas9R: AGGTAGCAGATCCGATTCTTT

Fig. 1

Construction of CLCrV-sgRNA and TRV-sgRNA vectors"

Fig. 2

qRT-PCR analysis of Cas9 expressions Different letters indicate significant difference among different treatments at the 0.05 probability level."

Fig. 3

Identification of different CLCrV-sgRNA and TRV- sgRNA expression vectors by restriction enzyme digestions M: 2K Plus II DNA marker; 1: CLCrV-AtU6-26::GhBsrk1-sgRNA; 2: CLCrV-AtU6-26::GhMAPKKK2-sgRNA; 3: CLCrV-GhU6-5P:: GhBsrk1-sgRNA; 4: CLCrV-GhU6-5P::GhMAPKKK2-sgRNA; 5: TRV-AtU6-26::GhBsrk1-sgRNA; 6: TRV-AtU6-26::GhMAPKKK2- sgRNA; 7: TRV-GhU6-5P::GhBsrk1-sgRNA; 8: TRV-GhU6-5P:: GhMAPKKK2-sgRNA."

Fig. 4

CLCrV and TRV-mediated VIGE targeted mutagenesis of GhBsrk1 and GhMAPKKK2 in cotton M: 2K Plus II DNA marker. A and B: the detection of GhBsrk1-sgRNA targeted mutations. A: wild type served as a control, 1 and 2 are plant numbers inoculated with CLCrV-AtU6-26::GhBsrk1-sgRNA and TRV-AtU6-26::GhBsrk1-sgRNA respectively. The gel image shows digested PCR products of GhBsrk1 gene with Nco I and undigested PCR products. B: the undigested PCR products lacking the Nco I site (due to the presence of a mutation) that were subsequently purified, cloned, and analyzed by sequencing. C: GhBsrk1 mutation sequencing peak map; D and E: the detection of GhMAPKKK2-sgRNA targeted mutations. D: wild type served as a control, 1 and 2 are plant numbers inoculated with CLCrV-AtU6-26::GhMAPKKK2-sgRNA and TRV-AtU6-26::GhMAPKKK2-sgRNA, respectively. The gel image shows digested PCR products of GhMAPKKK2 gene with Nde I and undigested PCR products. E: the undigested PCR products lacking the Nde I site (due to the presence of a mutation) that were subsequently purified, cloned, and analyzed by sequencing. F: GhMAPKKK2 mutation sequencing peak map. Green color indicates the PAM sequence, underline in blue indicates the restriction site on the target sequence. M indicates the mutation sequence, insertions are denoted with red uppercase letters, deletions are shown as red dashes."

Fig. 5

Comparison of gene editing efficiency by CLCrV and TRV-mediated VIGE M: 2K Plus II DNA marker. A: wild type, 1-12 are individual plant numbers inoculated with CLCrV-AtU6-26::GhMAPKKK2-sgRNA, 13-25 are individual plant numbers inoculated with TRV-AtU6-26::GhMAPKKK2-sgRNA. B: wild type, 1-8 are individual plant numbers inoculated with CLCrV-AtU6-26::GhBsrk1-sgRNA, 9-15 are individual plant numbers inoculated with TRV-AtU6-26::GhBsrk1-sgRNA."

Fig. 6

Comparison of gene editing efficiency by different U6 promoters-mediated VIGE M: 2K Plus II DNA marker. A: wild type, 1-12 are individual plant numbers inoculated with CLCrV-AtU6-26::GhMAPKKK2-sgRNA; B: wild type, 1-11 are individual plant numbers inoculated with CLCrV-GhU6-5P::GhMAPKKK2-sgRNA."

[1] Chen K L, Gao C X. Targeted genome modification technologies and their applications in crop improvements. Plant Cell Rep, 2014, 33: 575-583.
doi: 10.1007/s00299-013-1539-6 pmid: 24277082
[2] Zhou H B, Liu B, Weeks D P, Spalding M H, Yang B. Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucleic Acids Res, 2015, 42: 10903-10914.
doi: 10.1093/nar/gku806
[3] Alok A, Sandhya D, Jogam P, Rodrigues V, Bhati K K, Sharma H, Kumar J. The rise of the CRISPR/Cpf1 system for efficient genome editing in plants. Front Plant Sci, 2020, 11: 264.
doi: 10.3389/fpls.2020.00264 pmid: 32296449
[4] Wang C, Liu Q, Shen Y, Hua Y F, Wang J J, Lin J R, Wu M G, Sun T T, Cheng Z K, Mercier R, Wang K J. Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes. Nat Biotechnol, 2019, 37: 283-286.
doi: 10.1038/s41587-018-0003-0 pmid: 30610223
[5] Zhang S J, Zhang R Z, Song G Q, Gao J, Li W, Han X D, Chen M L, Li Y L, Li G Y. Targeted mutagenesis using the Agrobacterium tumefaciens-mediated CRISPR-Cas9 system in common wheat. BMC Plant Biol, 2018, 18: 302.
doi: 10.1186/s12870-018-1496-x
[6] Wang D D, Samsulrizal N, Yan C, Allcock N S, Craigon J, Blanco-Ulate B, Ortega-Salazar I, Marcus S E, Bagheri H M, Fons L P, Fraser P D, Foster T, Fray R, Knox J P, Seymour G B. Characterization of CRISPR mutants targeting genes modulating pectin degradation in ripening tomato. Plant Physiol, 2019, 179: 544-557.
doi: 10.1104/pp.18.01187 pmid: 30459263
[7] Osakabe Y, Liang Z C, Ren C, Nishitani C, Osakabe K, Wada M, Komori S, Malnoy M, Velasco R, Poli M, Jung M H, Koo O J, Viola R, Kanchiswamy C N. CRISPR-Cas9-mediated genome editing in apple and grapevine. Nat Protoc, 2018, 13: 2844-2863.
doi: 10.1038/s41596-018-0067-9 pmid: 30390050
[8] Jiang W Z, Zhou H B, Bi H H, Fromm M, Yang B, Weeks D P. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res, 2013, 41: e188.
doi: 10.1093/nar/gkt780
[9] Chen X G, Lu X K, Shu N, Wang S, Wang J J, Wang D L, Guo L X, Ye W W. Targeted mutagenesis in cotton (Gossypium hirsutum L.) using the CRISPR/Cas9 system. Sci Rep, 2017, 7: 44304.
doi: 10.1038/srep44304
[10] Long L, Guo D D, Gao W, Yang W W, Hou L P, Ma X N, Miao Y C, Botella J R, Song C P. Optimization of CRISPR/Cas9 genome editing in cotton by improved sgRNA expression. Plant Methods, 2018, 14: 85.
doi: 10.1186/s13007-018-0353-0 pmid: 30305839
[11] Manghwar H, Lindsey K, Zhang X L, Jin S X. CRISPR/Cas system: recent advances and future prospects for genome editing. Trends Plant Sci, 2019, 24: 1102-1125.
doi: S1360-1385(19)30243-2 pmid: 31727474
[12] Li B, Rui H P, Li Y J, Wang Q Q, Alariqi M, Qin L, Sun L, Ding X, Wang F Q, Zou J W, Wang Y Q, Yuan D J, Zhang X L, Jin S X. Robust CRISPR/Cpf1 (Cas12a)-mediated genome editing in allotetraploid cotton (Gossypium hirsutum). Plant Biotechnol J, 2019, 17: 1862-1864.
doi: 10.1111/pbi.13147 pmid: 31055869
[13] Qin L, Li J Y, Wang Q Q, Xu Z P, Sun L, Alariqi M, Manghwar H, Wang G Y, Li B, Ding X, Rui H P, Huang H M, Lu T L, Lindsey K, Daniell H, Zhang X L, Jin S X. High-efficient and precise base editing of C•G to T•A in the allotetraploid cotton (Gossypium hirsutum) genome using a modified CRISPR/Cas9 system. Plant Biotechnol J, 2019, 18: 45-56.
doi: 10.1111/pbi.13168
[14] Zhao C Z, Wang Y L, Nie X W, Han X S, Liu H L, Li G L, Yang G J, Ruan J X, Ma Y L, Li X Y, Cheng H J, Zhao S H, Fang Y P, Xie S S. Evaluation of the effects of sequence length and microsatellite instability on single-guide RNA activity and specificity. Int J Biol Sci, 2019, 15: 2641-2653.
doi: 10.7150/ijbs.37152 pmid: 31754336
[15] Xie S S, Shen B, Zhang C B, Huang X X, Zhang Y L. sgRNAcas9: a software package for designing CRISPR sgRNA and evaluating potential off-target cleavage sites. PLoS One, 2014, 9: e100448.
doi: 10.1371/journal.pone.0100448
[16] 李继洋, 雷建峰, 代培红, 姚瑞, 曲延英, 陈全家, 李月, 刘晓东. 基于棉花U6启动子的海岛棉CRISPR/Cas9基因组编辑体系的建立. 作物学报, 2018, 44: 227-235.
doi: 10.3724/SP.J.1006.2018.00227
Li J Y, Lei J F, Dai P H, Yao R, Qu Y Y, Chen Q J, Li Y, Liu X D. Establishment of CRISPR/Cas9 genome editing system based on GbU6 promoters in cotton (Gossypium barbadense L.). Acta Agron Sin, 2018, 44: 227-235. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.00227
[17] Gao W, Long L, Tian X Q, Xu F C, Liu J, Singh P K, Botella J R, Song C P. Genome editing in cotton with the CRISPR/Cas9 system. Front Plant Sci, 2017, 8: 1364.
doi: 10.3389/fpls.2017.01364 pmid: 28824692
[18] Yin K Q, Han T, Liu G, Chen T Y, Wang Y, Alice Y Y, Liu Y L. A geminivirus-based guide RNA delivery system for CRISPR/Cas9 mediated plant genome editing. Sci Rep, 2015, 5: 14926.
doi: 10.1038/srep14926 pmid: 26450012
[19] Hu J C, Li S, Li Z L, Li H Y, Song W B, Zhao H M, Lai J S, Xia L Q, Li D W, Zhang Y L. A barley stripe mosaic virus-based guide RNA delivery system for targeted mutagenesis in wheat and maize. Mol Plant Pathol, 2019, 20: 1463-1474.
doi: 10.1111/mpp.12849 pmid: 31273916
[20] Li T D, Hu J C, Sun Y, Li B S, Zhang D L, Li W L, Liu J X, Li D W, Gao C X, Zhang Y L, Wang Y P. Highly efficient heritable genome editing in wheat using an RNA virus and bypassing tissue culture. Mol Plant, 2021, 14: 1787-1798.
doi: 10.1016/j.molp.2021.07.010 pmid: 34274523
[21] Luo Y J, Na R, Nowak J S, Qiu Y, Lu Q S, Yang C Y, Marsolais F, Tian L N. Development of a Csy4-processed guide RNA delivery system with soybean-infecting virus ALSV for genome editing. BMC Plant Biol, 2021, 21: 419.
doi: 10.1186/s12870-021-03138-8
[22] Lei J F, Dai P H, Li Y, Zhang W Q, Zhou G T, Liu C, Liu X D. Heritable gene editing using FT mobile guide RNAs and DNA viruses. Plant Methods, 2021, 17: 20.
doi: 10.1186/s13007-021-00719-4
[23] Gu Z H, Huang C J, Li F F, Zhou X P. A versatile system for functional analysis of genes and microRNAs in cotton. Plant Biotechnol J, 2014, 12: 638-649.
doi: 10.1111/pbi.12169 pmid: 24521483
[24] Zhang J X, Wang F R, Zhang C Y, Zhang J H, Chen Y, Liu G D, Zhao Y X, Hao F S, Zhang J. A novel VIGS method by agroinoculation of cotton seeds and application for elucidating functions of GhBI-1 in salt-stress response. Plant Cell Rep, 2018, 37: 1091-1100.
doi: 10.1007/s00299-018-2294-5
[25] 周冠彤, 雷建峰, 代培红, 刘超, 李月, 刘晓东. 棉花CRISPR/Cas9基因编辑有效sgRNA高效筛选体系的研究. 作物学报, 2021, 47: 427-437.
doi: 10.3724/SP.J.1006.2021.04178
Zhou G T, Lei J F, Dai P H, Liu C, Li Y, Liu X D. Efficient screening system of effective sgRNA for cotton CRISPR/Cas9 gene editing. Acta Agron Sin, 2021, 47: 427-437 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.04178
[26] 雷建峰, 李月, 徐新霞, 阿尔祖古丽·塔什, 蒲艳, 张巨松, 刘晓东. 棉花不同GbU6启动子截短克隆及功能鉴定. 作物学报, 2016, 42: 675-683.
doi: 10.3724/SP.J.1006.2016.00675
Lei J F, Li Y, Xu X X, A’erzuguli T, Pu Y, Zhang J S, Liu X D. Cloning and functional analysis of different truncated GbU6 promoters in cotton. Acta Agron Sin, 2016, 42: 675-683. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2016.00675
[27] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Method, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262
[28] Wang W N, Yuan Y L, Yang C, Geng S P, Sun Q, Long L, Cai C W, Chu Z Y, Liu X, Wang G H, Du X M, Miao C, Zhang X, Cai Y F. Characterization, expression, and functional analysis of a novel NAC gene associated with resistance to Verticillium wilt and abiotic stress in cotton. Genes Genom Genet, 2016, 6: 3951-3961.
[29] Wu H J, Qu X Y, Dong Z C, Luo L J, Shao C, Forner J, Lohmann J U, Su M, Xu M C, Liu X B, Zhu L, Zeng J, Liu S M, Tian Z X, Zhao Z. WUSCHEL triggers innate antiviral immunity in plant stem cells. Science, 2020, 370: 227-231.
doi: 10.1126/science.abb7360
[30] Ellison E E, Nagalakshmi U, Gamo M E, Huang P J, Dinesh-Kumar S, Voytas D F. Multiplexed heritable gene editing using RNA viruses and mobile single guide RNAs. Nat Plants, 2020, 6: 620-624.
doi: 10.1038/s41477-020-0670-y pmid: 32483329
[31] Li T D, Hu J C, Sun Y, Li B S, Zhang D L, Li W L, Liu J X, Li D W, Gao C X, Zhang Y L, Wang Y P. Highly efficient heritable genome editing in wheat using an RNA virus and bypassing tissue culture. Mol Plant, 2021, 14: 1787-1798.
doi: 10.1016/j.molp.2021.07.010 pmid: 34274523
[1] XU Nai-Yin, WANG Yang, WANG Dan-Tao, NING He-Jia, YANG Xiao-Ni, QIAO Yin-Tao. Construction of cotton fiber quality index and weighted genotype by trait (WGT) biplot analysis [J]. Acta Agronomica Sinica, 2023, 49(5): 1262-1271.
[2] MENG Lu, DU Ming-Wei, LI Fang, QI Hai-Kun, LU Zheng-Ying, XU Dong-Yong, LI Cun-Dong, ZHANG Ming-Cai, TIAN Xiao-Li, LI Zhao-Hu. Relationship between cotton population, maturity, and the efficacy of harvest aids under high-density planting conditions in Central Hebei province, China [J]. Acta Agronomica Sinica, 2023, 49(4): 1028-1038.
[3] GUO Hong, YU Ji-Wen, PEI Wen-Feng, GUAN Yong-Hu, LI Hang, LI Chang-Xi, LIU Jin-Wei, WANG Wei, WANG Bao-Quan, MEI Yong-Jun. Genetic analysis of F2 generation of upland cotton hybrids and main effect clustering in Southern Xinjiang, China [J]. Acta Agronomica Sinica, 2023, 49(3): 608-621.
[4] LI Zhao-Wei, MO Zu-Yi, SUN Cong-Ying, SHI Yu, SHANG Ping, LIN Wei-Wei, FAN Kai, LIN Wen-Xiong. Construction of rice mutants by gene editing of OsNAC2d and their response to drought stress [J]. Acta Agronomica Sinica, 2023, 49(2): 365-376.
[5] LOU Shan-Wei, GAO Fei, WANG Chong, TIAN Xiao-Li, DU Ming-Wei, DUAN Liu-Sheng. Screening of different dropping formulations about mepiquat chloride and their effects on cotton growth and development [J]. Acta Agronomica Sinica, 2023, 49(2): 552-560.
[6] KE Hui-Feng, ZHANG Zhen, GU Qi-Shen, ZHAO Yan, LI Pei-Yu, ZHANG Dong-Mei, CUI Yan-Ru, WANG Xing-Fen, WU Li-Qiang, ZHANG Gui-Yin, MA Zhi-Ying, SUN Zheng-Wen. Genome-wide association study of root biomass related traits at seeding stage under low phosphorus stress in cotton (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2022, 48(9): 2168-2179.
[7] LI Ming-Jiang, LEI Jian-Feng, ZULIPIYE·Tuoheniyazi , DAI Pei-Hong, LIU Chao, LIU Xiao-Dong. Cloning and functional verification of GhIQM1 gene of cotton in response to Verticillium wilt [J]. Acta Agronomica Sinica, 2022, 48(9): 2265-2273.
[8] GUO Jia-Xin, LU Xiao-Yu, TAO Yi-Fan, GUO Hui-Juan, MIN Wei. Analysis of metabolites and pathways in cotton under salt and alkali stresses [J]. Acta Agronomica Sinica, 2022, 48(8): 2100-2114.
[9] ZHU Ling-Xiao, SONG Shi-Jia, LI Hao-Ran, SUN Hong-Chun, ZHANG Yong-Jiang, BAI Zhi-Ying, ZHANG Ke, LI An-Chang, LIU Lian-Tao, LI Cun-Dong. Screening of low nitrogen tolerant cultivars based on low nitrogen tolerance comprehensive index at seeding stage in cotton [J]. Acta Agronomica Sinica, 2022, 48(7): 1800-1812.
[10] ZHOU Jing-Yuan, KONG Xiang-Qiang, ZHANG Yan-Jun, LI Xue-Yuan, ZHANG Dong-Mei, DONG He-Zhong. Mechanism and technology of stand establishment improvements through regulating the apical hook formation and hypocotyl growth during seed germination and emergence in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1051-1058.
[11] SUN Si-Min, HAN Bei, CHEN Lin, SUN Wei-Nan, ZHANG Xian-Long, YANG Xi-Yan. Root system architecture analysis and genome-wide association study of root system architecture related traits in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1081-1090.
[12] YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247.
[13] ZHENG Shu-Feng, LIU Xiao-Ling, WANG Wei, XU Dao-Qing, KAN Hua-Chun, CHEN Min, LI Shu-Ying. On the green and light-simplified and mechanized cultivation of cotton in a cotton-based double cropping system [J]. Acta Agronomica Sinica, 2022, 48(3): 541-552.
[14] ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395.
[15] ZHANG Te, WANG Mi-Feng, ZHAO Qiang. Effects of DPC and nitrogen fertilizer through drip irrigation on growth and yield in cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 396-409.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .