Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (4): 988-995.doi: 10.3724/SP.J.1006.2023.24082

• CROP GENETICS & BREEDING · GERMPLASM RESOURCES · MOLECULAR GENETICS • Previous Articles     Next Articles

Effects of overexpression of LrAN2 gene on contents of anthocyanins and glycoalkaloids in potato

LI Hong-Yan1(), LI Jie-Ya1, LI Xiang1, YE Guang-Ji1,2,3,4,5,6, ZHOU Yun1,2,3,4,5,6, WANG Jian1,2,3,4,5,6,*()   

  1. 1Qinghai University, Xining 810016, Qinghai, China
    2Qinghai Academy of Agriculture and Forestry Sciences, Xining 810016, Qinghai, China
    3Qinghai University Key Laboratory of Qinghai-Tibet Plateau Biotechnology of the Ministry of Education, Xining 810016, Qinghai, China
    4Qinghai Provincial Key Laboratory of Potato Breeding, Xining 810016, Qinghai, China
    5Provincial and Ministry Co-construction of the State Key Laboratory of Sanjiangyuan Ecology and Plateau Agriculture and Animal Husbandry, Xining 810016, Qinghai, China
    6Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining 810016, Qinghai, China
  • Received:2022-04-03 Accepted:2022-07-21 Online:2023-04-12 Published:2022-08-17
  • Contact: *E-mail: jianwang2197@163.com
  • Supported by:
    China Agriculture Research System of MOF and MARA(CARS-9);Qinghai Natural Science Foundation Program-Innovation Team(2022-ZJ-902);Qinghai Innovation Platform Construction Project(2022-ZJ-Y01)

Abstract:

At present, the research on the anthocyanins involved in the MYB gene in potato (Solanum tuberosum L.) is relatively in-depth, but the change rule and regulatory mechanism of the glycoalkaloids (steroidal glycoalkaloids, SGAs) in different tissues, which affect the quality and safety of potato, are still unclear. LrAN2, the MYB gene in Lycium ruthenicum, is associated with the accumulation of anthocyanins in Lycium ruthenicum fruit. In this study, to detect the contents of anthocyanins and SGAs in different tissues, and to analyze the expression of genes related to SGA biosynthesis, wild-type Atlantic and two trans-LrAN2 Atlantic lines (LrAN2oe#66 and LrAN2oe#200) were used as the test materials. The detection of anthocyanins by pH differential method showed that only a certain number of anthocyanins (12 mg 100 g-1 FW) were detected in the leaves of transgenic plants (LrAN2oe#200). The contents of SGAs by HPLC-TMS in different tissues of the three materials were as follows: leaves>potato skin>potato flesh. There was no significant difference in the contents of SGAs in potato peels. Compared with the control, the SGAs content of LrAN2oe#66 in potato flesh was lower than the control, and the SGAs content of LrAN2oe#200 was significantly increased by 1.3 times, but did not exceed the safety standard (0.2 mg g-1 FW). The contents of SGAs in LrAN2oe#66 of leaves were increased by 1 times and LrAN2oe#200 was significantly increased by 3.8 times compared with the control. StHMG1 and StSGT2 genes were significantly up-regulated in transgenic plants under the regulation of LrAN2 gene by qRT-PCR. These results give a guiding significance for the accumulation of anthocyanins in potato plants and provide a theoretical basis for further analysis of the regulation mechanism of anthocyanins and SGAs in potato resources.

Key words: LrAN2 gene, potato, anthocyanin, glycoalkaloid

Fig. 1

Potato SGA biosynthesis pathway"

Table 1

Primer sequences used in this study"

引物名称
Primer name
正向引物
Forward sequence (5'-3')
反向引物
Reverse sequence (5'-3')
qStHMG1 CAGGTTCAAATGCAAGACTC GATAGATCTATTATATTTCAT
qStSQS1 ACTTGCAGAGACTCGGGAAC TCGGTTGCCAGAAAGTTGTG
qStCAS ACCATTACACTCTGCAGCAA GAACGATATTCTCCCAATGC
qStSSR2 AAGCGCCTTGAACAGAGGAA ACCCTTGACATTTGGCCCAT
qStGAME4 GGCTTGCATTTGAGGTGTTTA GAGCCTTGAGTCCCTTATGAT
qStGAME8a TGGGAGATATGACAATTC GCCATGCCAAAGTTATTACC
qStSGT1 GGAACAATCTCACTGCTC CACACACACACCAAGTTAC
qStSGT2 CAATCTTACCGCACTTATAG GTGTTTATTCCCAGCCCTAG
qStSMT1 GATATCTAGGGGACAGGT CAGGTAGCTTCTATTGCG
qStCYP51G AATGTGGGGTTGCTGTTAGT ATCAACCCACCAACAATAGG
Actin (internal reference gene) AGATGCTTACGCTGGATG GAATGC TTCCGGTGTGGTTGGATTCTGTTC

Fig. 2

Partially overexpressed LrAN2 gene in potato M: DL 2000 marker; Plasmid: LrAN2 plasmid; WT: wild-type."

Fig. 3

Phenotypic characteristics of Atlantic and transgenic potatoes (A), anthocyanin content of Atlantic, and LrAN2oe#200 (B) n.d. means the anthocyanin content is 0 mg 100 g-1, biological replicates n = 3."

Fig. 4

SGAs content in potato peel (A), flesh (B), and leaf (C) in Atlantic, LrAN2oe#66, and LrAN2oe#200 Different lowercase letters indicate significant difference in the contents of SGAs at P < 0.05."

Fig. 5

Relative expression levels in SGAs biosynthesis-related genes in Atlantic and LrAN2oe#200 potato peels Different lowercase letters indicate significant differences in the relative expression levels among different varieties at P < 0.05."

Fig. 6

Relative expression levels in SGAs biosynthesis related genes in Atlantic and LrAN2oe#200 fleshes Different lowercase letters indicate significant differences in gene expression among different varieties at P < 0.05."

Fig. 7

Relative expression levels of SGAs biosynthesis-related genes in the leaves of Atlantic and LrAN2oe#200 Different lowercase letters indicate significant differences in gene expression among different varieties at P < 0.05."

[1] 石娜, 何玉华. 糖苷生物碱的药理学及临床应用研究进展. 畜牧与饲料科学, 2018, 39(6): 78-80.
Shi N, He Y H. Progress in pharmacology and clinical application of glycoalkaloids. Anim Husb Feed Sci, 2018, 39(6): 78-80. (in Chinese with English abstract)
[2] 梁克红, 卢林纲, 朱大洲, 朱宏. 马铃薯糖苷生物碱的研究进展. 食品研究与开发, 2017, 38(21): 195-199.
Liang K H, Lu L G, Zhu D Z, Zhu H. Research progress of potato glycoside alkaloids. Food Res Dev, 2017, 38(21): 195-199. (in Chinese with English abstract)
[3] Mohsenikia M, Farhangi B, Alizadeh A M, Khodayari H, Khodayari S, Khori V, Arjmand A Y, Vesovic M, Soleymani A, Najafi F. Therapeutic effects of dendrosomal solanine on a metastatic breast tumor. Life Sci, 2016, 148: 260-267.
doi: 10.1016/j.lfs.2016.02.008 pmid: 26854999
[4] 李志文, 周宝利, 刘翔, 张平. 茄科植物体内糖苷生物碱的生理生态活性研究进展. 上海农业学报, 2011, 27(3): 129-134.
Li Z W, Zhou B L, Liu X, Zhang P. Research progress on the physiological and ecological activities of glycoalkaloids in Solanaceae. Shanghai J Agric Sci, 2011, 27(3): 129-134. (in Chinese with English abstract)
[5] Sanford L L, Kobayashi R S, Deahl K L, Sinden S L. Diploid and tetraploid Solanum chacoense genotypes that synthesize leptine glycoalkaloids and deter feeding by Colorado potato beetle. Am Potato J, 1997, 74: 15-21.
doi: 10.1007/BF02849168
[6] 伍慧敏, 曾静, 李美, 刘德明, 杜宇, 熊兴耀, 曾建国. 液相色谱-质谱联用法检测马铃薯中α-茄碱含量. 食品科学, 2013, 34(24): 121-124.
Wu H M, Zeng J, Li M, Liu D M, Du Y, Xiong X Y, Zeng J G. Determination of α-solanine in potato by liquid chromatography-mass spectrometry. Food Sci, 2013, 34(24): 121-124. (in Chinese with English abstract)
[7] 任丹丹, 刘洋, 史晓梅, 孙大江, 王书雅, 谢云峰. 超高效液相色谱-串联质谱法测定马铃薯中α-茄碱和α-卡茄碱. 食品安全质量检测学报, 2019, 10: 8231-8235.
Ren D D, Liu Y, Shi X M, Sun D J, Wang S Y, Xie Y F. Determination of α-solanine and α-caconine in potato by ultra performance liquid chromatography-tandem mass spectrometry. J Food Safety Qual Test, 2019, 10: 8231-8235. (in Chinese with English abstract)
[8] 郭海霞, 张晶晶, 安然, 乔岩, 石文慧, 石菁, 张金文. 马铃薯地上部绿色组织中糖苷生物碱合成调控的研究. 园艺学报, 2017, 44: 1105-1115.
Guo H X, Zhang J J, An R, Qiao Y, Shi W H, Shi J, Zhang J W. Study on the regulation of glycoalkaloid synthesis in the aboveground green tissues of potato. Acta Hortic Sin, 2017, 44: 1105-1115. (in Chinese with English abstract)
[9] Itkin M, Heinig U, Tzfadia O, Bhide A J, Shinde B, Cardenas P D, Bocobza S E, Unger T, Malitsky S, Finkers R, Tikunov Y, Bovy A, Chikate Y, Singh P, Rogachev I, Beekwilder J, Giri A P, Aharoni A. Biosynthesis of antinutritional alkaloids in solanaceous crops is mediated by clustered genes. Science, 2013, 341: 175-179.
doi: 10.1126/science.1240230 pmid: 23788733
[10] Nakayasu M, Umemoto N, Ohyama K, Fujimoto Y, Lee H J, Watanabe B, Muranaka T, Saito K, Sugimoto Y, Mizutani M. A dioxygenase catalyzes steroid 16 α-hydroxylation in steroidal glycoalkaloid biosynthesis. Plant Physiol, 2017, 175: 120-133.
doi: 10.1104/pp.17.00501 pmid: 28754839
[11] Nes W D. Biosynthesis of cholesterol and other sterols. Chem Rev, 2011, 111: 6423-6451.
doi: 10.1021/cr200021m pmid: 21902244
[12] Kumar A, Fogelman E, Weissberg M, Tanami Z, Veilleux R E, Ginzberg I. Lanosterol synthase-like is involved with differential accumulation of steroidal glycoalkaloids in potato. Planta, 2017, 246: 1189-1202.
doi: 10.1007/s00425-017-2763-z pmid: 28828630
[13] Sawai S, Ohyama K, Yasumoto S, Seki H, Sakuma T, Yamamoto T, Takebayashi Y, Kojima M, Sakakibara H, Aoki T, Muranaka T, Saito K, Umemoto N. Sterol side chain reductase 2 is a key enzyme in the biosynthesis of cholesterol, the common precursor of toxic steroidal glycoalkaloids in potato. Plant Cell, 2014, 26: 3763-3774.
doi: 10.1105/tpc.114.130096
[14] Arnqvist L, Dutta P C, Jonsson L, Sitbon F. Reduction of cholesterol and glycoalkaloid levels in transgenic potato plants by overexpression of a type 1 sterol methyltransferase cDNA. Plant Physiol, 2003, 131: 1792-1799.
doi: 10.1104/pp.102.018788 pmid: 12692338
[15] Sonawane P D, Heinig U, Panda S, Gilboa N S, Yona M, Kumar S P, Alkan N, Unger T, Bocobza S, Pliner M, Malitsky S, Tkachev M, Meir S, Rogachev I, Aharoni A. Short-chain dehydrogenase/reductase governs steroidal specialized metabolites structural diversity and toxicity in the genus Solanum. Proc Natl Acad Sci USA, 2018, 115: E5419-E5428.
[16] 黄红苹, 郭华春, 王琼, 沈词专, 周晨. 云南马铃薯品种(系)块茎中的龙葵素含量测定. 中国农业科学, 2011, 44: 1512-1518.
Huang H P, Guo H C, Wang Q, Shen C Z, Zhou C. Determination of solanine content in tubers of Yunnan potato varieties (lines). Sci Agric Sin, 2011, 44: 1512-1518. (in Chinese with English abstract)
[17] Cárdenas P, Sonawane P, Pollier J, Vanden Bossche R, Dewangan V, Weithorn E, Tal L, Meir S, Rogachev I, Malitsky S. GAME9 regulates the biosynthesis of steroidal alkaloids and upstream isoprenoids in the plant mevalonate pathway. Nat Commun, 2016, 7: 10654.
doi: 10.1038/ncomms10654 pmid: 26876023
[18] 许芸梅, 李玉梅, 贾玉鑫, 张春芝, 李灿辉, 黄三文, 祝光涛. 马铃薯红色薯肉调控基因的精细定位与候选基因分析. 中国农业科学, 2019, 52: 2678-2685.
Xu Y M, Li Y M, Jia Y X, Zhang C Z, Li C H, Huang S W, Zhu G T. Fine mapping and candidate gene analysis of regulatory genes in potato red potato meat. Sci Agric Sin, 2016, 52: 2678-2685. (in Chinese with English abstract)
[19] Chhon S, Jeon J, Kim J, Park S U. Accumulation of anthocyanins through overexpression of AtPAP1 in Solanum nigrum Lin. (Black Nightshade). Biomolecules, 2020, 10: 277.
doi: 10.3390/biom10020277
[20] Rommens C M, Richael C M, Yan H, Navarre D A, Ye J, Krucker M, Swords K. Engineered native pathways for high kaempferol and caffeoylquinate production in potato. Plant Biotechnol J, 2008, 6: 870-886.
doi: 10.1111/j.1467-7652.2008.00362.x pmid: 18662373
[21] 罗香怡, 李云, 曹东, 魏乐, 宗渊, 刘宝龙. 枸杞MYB转录因子LrAN2在番茄中的过量表达分析. 西北农业学报, 2021, 30: 1374-1381.
Luo X Y, Li Y, Cao D, Wei L, Zong Y, Liu B L. Analysis of overexpression of Lycium barbarum MYB transcription factor LrAN2 in tomato. Northwest Agric J, 2021, 30: 1374-1381. (in Chinese with English abstract)
[22] Zong Y, Zhu X, Liu Z, Xi X, Li G, Cao D, Wei L, Li J, Liu B. Functional MYB transcription factor encoding gene AN2 is associated with anthocyanin biosynthesis in Lycium ruthenicum Murray. BMC Plant Biol, 2019, 19: 169.
doi: 10.1186/s12870-019-1752-8
[23] Chong J, Baltz R, Schmitt C, Beffa R, Fritig B, Saindrenan P. Downregulation of a pathogen-responsive tobacco UDP-Glc: phenylpropanoid glucosyltransferase reduces scopoletin glucoside accumulation, enhances oxidative stress, and weakens virus resistance. Plant Cell, 2002, 14: 1093-1097.
doi: 10.1105/tpc.010436
[24] Gachon C, Baltz R, Saindrenan P. Over-expression of a scopoletin glucosyltransferase in Nicotiana tabacum leads to precocious lesion formation during the hypersensitive response to tobacco mosaic virus but does not affect virus resistance. Plant Mol Biol, 2004, 54: 137-146.
doi: 10.1023/B:PLAN.0000028775.58537.fe
[25] 谭继君, 伍小松. α-茄碱的生理功能及其在畜禽生产中的应用前景. 中国饲料, 2018, 4(17): 23-26.
Tan J J, Wu X S. Physiological function of α-solanine and its application prospect in livestock and poultry production. China Feed, 2018, 4(17): 23-26. (in Chinese with English abstract)
[26] 商婷婷, 邝梦婷, 胡新喜, 熊兴耀, 陆英. HPLC-ELSD法同时测定马铃薯中α-茄碱和α-卡茄碱含量. 食品与机械, 2015, 31(4): 55-58.
Shang T T, Guang M T, Hu X X, Xiong X Y, Lu Y. Simultaneous determination of α-solanine and α-chaconine in potato by HPLC-ELSD. Food Mach, 2015, 31(4): 55-58. (in Chinese with English abstract)
[27] 郑海松, 谢晶琦, 孙娟娟, 叶永康, 操小栋. 转基因作物中CaMV35S序列信号双重放大的电化学基因传感方法. 分析测试学报, 2021, 40: 989-995.
Zheng H S, Xie J Q, Sun J J, Ye Y K, Cao X D. Electrochemical gene sensing method for double amplification of CaMV35S sequence signal in transgenic crops. Chin J Analy Test, 2021, 40: 989-995. (in Chinese with English abstract)
[28] Holtorf S, Apel K, Bohlmann H. Comparison of different constitutive and inducible promoters for the overexpression of transgenes in Arabidopsis thaliana. Plant Mol Biol, 1995, 29: 637-646.
pmid: 8541491
[1] ZHANG Xiao-Hong, PENG Qiong, YAN Zheng. Transcriptome sequencing analysis of different sweet potato varieties under salt stress [J]. Acta Agronomica Sinica, 2023, 49(5): 1432-1444.
[2] CHEN Yi-Hang, TANG Chao-Chen, ZHANG Xiong-Jian, YAO Zhu-Fang, JIANG Bing-Zhi, WANG Zhang-Ying. Construction of core collection of sweetpotato based on phenotypic traits and SSR markers [J]. Acta Agronomica Sinica, 2023, 49(5): 1249-1261.
[3] WU Shi-Yu, CHEN Kuang-Ji, LYU Zun-Fu, XU Xi-Ming, PANG Lin-Jiang, LU Guo-Quan. Effects of nitrogen fertilizer application rate on starch contents and properties during storage root expansion in sweetpotato [J]. Acta Agronomica Sinica, 2023, 49(4): 1090-1101.
[4] WANG Shuo, BAO Tian-Yang, LIU Jian-Gang, DUAN Shao-Guang, JIAN Yin-Qiao, LI Guang-Cun, JIN Li-Ping, XU Jian-Fei. Potato tuber greening evaluation based on RGB color space [J]. Acta Agronomica Sinica, 2023, 49(4): 1102-1110.
[5] LIU Ming, FAN Wen-Jing, ZHAO Peng, JIN Rong, ZHANG Qiang-Qiang, ZHU Xiao-Ya, WANG Jing, LI Qiang. Genotypes screening and comprehensive evaluation of sweetpotato tolerant to low potassium stress at seedling stage [J]. Acta Agronomica Sinica, 2023, 49(4): 926-937.
[6] ZHANG Wei-Na, YU Hui-Fang, AN Zhen, LIU Wen-Kai, KANG Yi-Chen, SHI Ming-Fu, YANG Xin-Yu, ZHANG Ru-Yang, WANG Yong, QIN Shu-Hao. StEFR1 regulates late blight resistance positively in potato (Solanum tuberosum) [J]. Acta Agronomica Sinica, 2023, 49(4): 996-1005.
[7] PU Xue, WANG Kai-Tong, ZHANG Ning, SI Huai-Jun. Relative expression analysis of StMAPKK4 gene and screening and identification of its interacting proteins in potato (Solanum tuberosum L.) [J]. Acta Agronomica Sinica, 2023, 49(1): 36-45.
[8] WU Xu-Li, WU Zheng-Dan, WAN Chuan-Fang, DU Ye, GAO Yan, LI Ze-Xuan, WANG Zhi-Qian, TANG Dao-Bin, WANG Ji-Chun, ZHANG Kai. Functional identification of sucrose transporter protein IbSWEET15 in sweet potato [J]. Acta Agronomica Sinica, 2023, 49(1): 129-139.
[9] HUI Zhi-Ming, XU Jian-Fei, JIAN Yin-Qiao, BIAN Chun-Song, DUAN Shao-Guang, HU Jun, LI Guang-Cun, JIN Li-Ping. 2b-RAD based maturity associated molecular marker identification in tetraploid potato (Solanum tuberosum L.) [J]. Acta Agronomica Sinica, 2022, 48(9): 2274-2284.
[10] YAO Zhu-Fang, ZHANG Xiong-Jian, YANG Yi-Ling, HUANG Li-Fei, CHEN Xin-Liang, YAO Xiao-Jian, LUO Zhong-Xia, CHEN Jing-Yi, WANG Zhang-Ying, FANG Bo-Ping. Genetic diversity of phenotypic traits in 177 sweetpotato landrace [J]. Acta Agronomica Sinica, 2022, 48(9): 2228-2241.
[11] XIE Li-Ming, JIANG Zhong-Yu, LIU Hong-Juan, HAN Jun-Jie, LIU Ben-Kui, WANG Xiao-Lu, SHI Chun-Yu. Suitable soil moisture promotes sugar supply and tuberization in sweet potato at root branching stage [J]. Acta Agronomica Sinica, 2022, 48(8): 2080-2087.
[12] JIAN Hong-Ju, ZHANG Mei-Hua, SHANG Li-Na, WANG Ji-Chun, HU Bai-Geng, Vadim Khassanov, LYU Dian-Qiu. Screening candidate genes involved in potato tuber development using WGCNA [J]. Acta Agronomica Sinica, 2022, 48(7): 1658-1668.
[13] LI Jie-Ya, LI Hong-Yan, YE Guang-Ji, SU Wang, SUN Hai-Hong, WANG Jian. Changes of anthocyanins and expression analysis of synthesis-related genes in potato during storage period [J]. Acta Agronomica Sinica, 2022, 48(7): 1669-1682.
[14] CHEN Lu, ZHOU Shu-Qian, LI Yong-Xin, CHEN Gang, LU Guo-Quan, YANG Hu-Qing. Identification and expression analysis of uncoupling protein gene family in sweetpotato [J]. Acta Agronomica Sinica, 2022, 48(7): 1683-1696.
[15] WANG Hai-Bo, YING Jing-Wen, HE Li, YE Wen-Xuan, TU Wei, CAI Xing-Kui, SONG Bo-Tao, LIU Jun. Identification of chromosome loss and rearrangement in potato and eggplant somatic hybrids by rDNA and telomere repeats [J]. Acta Agronomica Sinica, 2022, 48(5): 1273-1278.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .