Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (7): 1658-1668.doi: 10.3724/SP.J.1006.2022.14115
• OCROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
JIAN Hong-Ju1,2,3(), ZHANG Mei-Hua1(), SHANG Li-Na1, WANG Ji-Chun1,2,3, HU Bai-Geng4, Vadim Khassanov5, LYU Dian-Qiu1,2,3,*()
[1] | Jackson S D. Multiple signaling pathways control tuber induction in potato. Plant Physiol, 1999, 119: 1-8. |
[2] |
Lafta A M, Lorenzen J H. Effect of high temperature on plant growth and carbohydrate metabolism in potato. Plant Physiol, 1995, 109: 637-643.
pmid: 12228617 |
[3] |
Kolachevskaya O O, Lomin S N, Arkhipov D V, Romanov G A. Auxins in potato: molecular aspects and emerging roles in tuber formation and stress resistance. Plant Cell Rep, 2019, 38: 681-698.
doi: 10.1007/s00299-019-02395-0 pmid: 30739137 |
[4] |
Lehretz G G, Sonnewald S, Hornyik C, Corral J M, Sonnewald U. Post-transcriptional regulation of FLOWERING LOCUS T modulates heat-dependent source-sink development in potato. Curr Biol, 2019, 29: 1614-1624.
doi: S0960-9822(19)30425-7 pmid: 31056391 |
[5] |
Kondhare K R, Natarajan B, Banerjee A K. Molecular signals that govern tuber development in potato. Int J Dev Biol, 2020, 64: 133-140.
doi: 10.1387/ijdb.190132ab |
[6] |
Cheng L X, Wang Y P, Liu Y S, Zhang Q Q, Gao H H, Zhang F. Comparative proteomics illustrates the molecular mechanism of potato (Solanum tuberosum L.) tuberization inhibited by exogenous gibberellins in vitro. Physiol Plant, 2018, 163: 103-123.
doi: 10.1111/ppl.12670 |
[7] |
Evíková H, Maková P, Tarkowská D, Maek T, Lipavská H. Carbohydrates and gibberellins relationship in potato tuberization. J Plant Physiol, 2017, 214: 53-63.
doi: 10.1016/j.jplph.2017.04.003 |
[8] |
Martínez-García J F, García-Martínez J L, Bou J, Prat S. The interaction of gibberellins and photoperiod in the control of potato tuberization. J Plant Growth Regul, 2001, 20: 377-386.
doi: 10.1007/s003440010036 |
[9] |
Kloosterman B, Navarro C, Bijsterbosch G, Lange T, Bachem C W B. StGA2ox1 is induced prior to stolon swelling and controls GA levels during potato tuber development. Plant J, 2010, 52: 362-373.
doi: 10.1111/j.1365-313X.2007.03245.x |
[10] |
Jordi B T, Martínez-García J F, Luis G M J, Salomé P, Blazquez M A. Gibberellin A1 metabolism contributes to the control of photoperiod-mediated tuberization in potato. PLoS One, 2011, 6: e24458.
doi: 10.1371/journal.pone.0024458 |
[11] |
Kloosterman B, Navarro C, Bijsterbosch G, Lange T, Bachem C W B. StGA2ox1 is induced prior to stolon swelling and controls GA levels during potato tuber development. Plant J, 2010, 52: 362-373.
doi: 10.1111/j.1365-313X.2007.03245.x |
[12] |
Jackson S D. Regulation of transcript levels of a potato gibberellin 20-oxidase gene by light and phytochrome B. Plant Physiol, 2000, 124: 423-430.
pmid: 10982455 |
[13] |
Xu X, Vreugdenhil D, Lammeren A A M V. Cell division and cell enlargement during potato tuber formation. J Exp Bot, 1998, 49: 573-582.
doi: 10.1093/jxb/49.320.573 |
[14] |
Fujino K, Koda Y, Kikuta Y. Reorientation of cortical microtubules in sup-apical region during tuberization in single-node stem segments of potato in culture. Plant Cell Physiol, 1995, 36: 891-895.
doi: 10.1093/oxfordjournals.pcp.a078835 |
[15] |
Taiz L. Plant cell expansion: egulation of cell well mechanical properties. Annu Rev Plant Physiol, 2003, 35: 585-657.
doi: 10.1146/annurev.pp.35.060184.003101 |
[16] |
Sanz M J, Mingo-Castel A, Lammeren A A M V, Vreugdenhil D. Changes in the microtubular cytoskeleton precede in vitro tuber formation in potato. Protoplasma, 1996, 191: 46-54.
doi: 10.1007/BF01280824 |
[17] | Roumeliotis E, Kloosterman B, Oortwijn M, Kohlen W, Bachem C W B. The effects of auxin and strigolactones on tuber initiation and stolon architecture in potato. Plant Signal Behav, 2012, 63: 4539-4547. |
[18] |
Zhang B, Horvath S. A general framework for weighted geneco-expression network analysis. Plant Signal Behav, 2005, 4: 1128.
doi: 10.4161/psb.4.12.9942 |
[19] |
Downs G S, Bi Y M, Colasanti J, Wu W, Chen X, Zhu T, Rothstein S J, Lukens L N. A developmental transcriptional network for maize defines coexpression modules. Plant Physiol, 2013, 161: 1830-1843.
doi: 10.1104/pp.112.213231 |
[20] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609 |
[21] |
Hollender C A, Kang C, Darwish O, Geretz A, Matthews B F, Slovin J, Alkharouf N, Liu Z. Floral transcriptomes in woodland strawberry uncover developing receptacle and anther gene networks1. Plant Physiol, 2014, 165: 1062-1075.
pmid: 24828307 |
[22] | Luo Y, Pang D, Jin M, Chen J, Wang Z. Identification of plant hormones and candidate hub genes regulating flag leaf senescence in wheat response to water deficit stress at the grain-filling stage. Plant Direct, 2019, 3: e00152. |
[23] | 林行众. 黄瓜共表达基因模块的识别及其特点分析.南京农业大学硕士学位论文, 江苏南京, 2015. |
Lin X Z. Identification and Characterization of Co-expression Modules in Cucumber (Cucumis sativus L.). MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China 2015. (in Chinese with English abstract) | |
[24] |
秦天元, 孙超, 毕真真, 梁文君, 李鹏程, 张俊莲, 白江平. 基于WGCNA的马铃薯根系抗旱相关共表达模块鉴定和核心基因发掘. 作物学报, 2020, 46: 1033-1051.
doi: 10.3724/SP.J.1006.2020.94130 |
Qin T Y, Sun C, Bi Z Z, Liang W J, Li P C, Zhang J L, Bai J P. Identification of drought-related co-expression modules and hub genes in potato roots based on WGCNA. Acta Agron Sin, 2020, 46: 1033-1051. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.94130 |
|
[25] |
Ran Z, Zhu Y, Jiao Z, Fang Z, Ma D. Transcriptome-wide identification and characterization of potato circular rnas in response to pectobacterium carotovorum subspecies brasiliense infection. Int J Mol Sci, 2018, 19: 71.
doi: 10.3390/ijms19010071 |
[26] |
Leviatan N, Alkan N, Leshkowitz D, Robert F, Shin-Han S. Genome-wide survey of cold stress regulated alternative splicing in Arabidopsis thaliana with tiling microarray. PLoS One, 2018, 8: e66511.
doi: 10.1371/journal.pone.0066511 |
[27] |
Staiger D, Brown J W S. Alternative splicing at the intersection of biological timing, development, and stress responses. Plant Cell, 2013, 25: 3640-3656.
doi: 10.1105/tpc.113.113803 |
[28] |
Quesada V, Macknight R, Dean C, Simpson G G. Autoregulation of FCA pre-mRNA processing controls Arabidopsis flowering time. EMBO J, 2003, 22: 3142-3152.
pmid: 12805228 |
[29] | 张玲. 生长素和细胞分裂素在马铃薯块茎发育中的作用. 中国农业信息, 2014, (11): 14. |
Zhang L. Roles of auxin and cytokinin in potato tuber development. China Agric Inf, 2014, (11): 14. (in Chinese) | |
[30] |
Raspor M, Motyka V, Ninković S, Dobrev P I, Malbeck J, Ćosić T, Cingel A, Savić J, Tadić V, Dragićević I Č. Endogenous levels of cytokinins, indole-3-acetic acid and abscisic acid in in vitro grown potato: A contribution to potato hormonomics. Sci Rep, 2020, 10: 3437.
doi: 10.1038/s41598-020-60412-9 |
[31] |
Xu X, Lammeren A A M V, Vermeer E, Vreugdenhil D. The role of gibberellin, abscisic acide, and sucrose in the regulation of potato tuber formation in vitro. Plant Physiol, 1998, 117: 575-584.
pmid: 9625710 |
[32] |
Escaclante B, Langille A R. Photoperiod, temperature, gibberellin, and anti-gibberellin affect tuberization of potato stem segments in vitro. HortScience, 1998, 33: 701-703.
doi: 10.21273/HORTSCI.33.4.701 |
[33] |
Lee J H, Terzaghi W, Gusmaroli G, Charron J B F, Yoon H J, Chen H, He Y J, Xiong Y, Deng X W. Characterization of Arabidopsis and rice DWD proteins and their roles as substrate receptors for CUL4-RING E3 ubiquitin ligases. Plant Cell, 2008, 20: 152-167.
doi: 10.1105/tpc.107.055418 |
[34] |
Lee J H, Yoon H J, Terzaghi W, Martinez C, Dai M, Li J, Byun M O, Deng X W. DWA1 and DWA2, two Arabidopsis DWD protein components of CUL4-based E3 ligases, act together as negative regulators in ABA signal transduction. Plant Cell, 2010, 22: 1716-1732.
doi: 10.1105/tpc.109.073783 |
[35] |
Zhang Y, Feng S, Chen F, Chen H, Wang J, McCall C, Xiong Y, Deng X W. Arabidopsis DDB1-CUL4 ASSOCIATED FACTOR1 forms a nuclear E3 ubiquitin ligase with DDB1 and CUL4 that is involved in multiple plant developmental processes. Plant Cell, 2008, 20: 1437-1455.
doi: 10.1105/tpc.108.058891 pmid: 18552200 |
[36] |
Chen H, Huang X, Gusmaroli G, Terzaghi W, Lau O S, Yanagawa Y, Zhang Y, Li J, Lee J H, Zhu D M, Deng X W. Arabidopsis CULLIN4-damaged DNA binding protein 1 interacts with CONSTITUTIVELY PHOTOMORPHOGENIC1-SUPPRESSOR OF PHYA complexes to regulate photomorphogenesis and flowering time. Plant Cell, 2010, 22: 108-123.
doi: 10.1105/tpc.109.065490 |
[37] |
Kim Y O, Pan S, Jung C H, Kang H. A zinc finger-containing glycine-rich RNA-binding protein, atRZ-1a, has a negative impact on seed germination and seedling growth of Arabidopsis thaliana under salt or drought stress conditions. Plant Cell Physiol, 2007, 48: 1170-1181.
doi: 10.1093/pcp/pcm087 |
[38] |
Kim W Y, Kim J Y, Jung H J, Oh S H, Han Y S, Kang H. Comparative analysis of Arabidopsis zinc finger-containing glycine-rich RNA-binding proteins during cold adaptation. Plant Physiol Biochem, 2010, 48: 866-872.
doi: 10.1016/j.plaphy.2010.08.013 |
[39] |
Zhe W, Zhu D, Lin X, Jin M, Gu L, Deng X, Yang Q, Sun K, Zhu D, Cao X F, Tsuge T, Dean C, Aoyama T, Gu H, Qu L J. RNA binding proteins RZ-1B and RZ-1C Play critical roles in regulating pre-mRNA splicing and gene expression during development in Arabidopsis. Plant Cell, 2016, 28: 55-73.
doi: 10.1105/tpc.15.00949 |
[40] |
Yoshikawa M, Yang G, Kawaguchi K, Komatsu S. Expression analyses of β-tubulin isotype genes in rice. Plant Cell Physiol, 2003, 44: 1202-1207.
pmid: 14634157 |
[41] |
Spokevicius A V, Southerton S G, Macmillan C P, Qiu D, Gan S, Tibbits J F G, Moran G F, Bossinger G. β-tubulin affects cellulose microfibril orientation in plant secondary fibre cell walls. Plant J, 2007, 51: 717-726.
pmid: 17605757 |
[1] | XIE Li-Ming, JIANG Zhong-Yu, LIU Hong-Juan, HAN Jun-Jie, LIU Ben-Kui, WANG Xiao-Lu, SHI Chun-Yu. Suitable soil moisture promotes sugar supply and tuberization in sweet potato at root branching stage [J]. Acta Agronomica Sinica, 2022, 48(8): 2080-2087. |
[2] | HAN Shang-Ling, HUO Yi-Qiong, LI Hui, HAN Hua-Rui, HOU Si-Yu, SUN Zhao-Xia, HAN Yuan-Huai, LI Hong-Ying. Identification of regulatory genes related to flavonoids synthesis by weighted gene correlation network analysis in the panicle of foxtail millet [J]. Acta Agronomica Sinica, 2022, 48(7): 1645-1657. |
[3] | LI Jie-Ya, LI Hong-Yan, YE Guang-Ji, SU Wang, SUN Hai-Hong, WANG Jian. Changes of anthocyanins and expression analysis of synthesis-related genes in potato during storage period [J]. Acta Agronomica Sinica, 2022, 48(7): 1669-1682. |
[4] | CHEN Lu, ZHOU Shu-Qian, LI Yong-Xin, CHEN Gang, LU Guo-Quan, YANG Hu-Qing. Identification and expression analysis of uncoupling protein gene family in sweetpotato [J]. Acta Agronomica Sinica, 2022, 48(7): 1683-1696. |
[5] | WANG Hai-Bo, YING Jing-Wen, HE Li, YE Wen-Xuan, TU Wei, CAI Xing-Kui, SONG Bo-Tao, LIU Jun. Identification of chromosome loss and rearrangement in potato and eggplant somatic hybrids by rDNA and telomere repeats [J]. Acta Agronomica Sinica, 2022, 48(5): 1273-1278. |
[6] | SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297. |
[7] | KONG Chui-Bao, PANG Zi-Qin, ZHANG Cai-Fang, LIU Qiang, HU Chao-Hua, XIAO Yi-Jie, YUAN Zhao-Nian. Effects of arbuscular mycorrhizal fungi on sugarcane growth and nutrient- related gene co-expression network under different fertilization levels [J]. Acta Agronomica Sinica, 2022, 48(4): 860-872. |
[8] | FENG Ya, ZHU Xi, LUO Hong-Yu, LI Shi-Gui, ZHANG Ning, SI Huai-Jun. Functional analysis of StMAPK4 in response to low temperature stress in potato [J]. Acta Agronomica Sinica, 2022, 48(4): 896-907. |
[9] | ZHANG Xia, YU Zhuo, JIN Xing-Hong, YU Xiao-Xia, LI Jing-Wei, LI Jia-Qi. Development and characterization analysis of potato SSR primers and the amplification research in colored potato materials [J]. Acta Agronomica Sinica, 2022, 48(4): 920-929. |
[10] | JIN Rong, JIANG Wei, LIU Ming, ZHAO Peng, ZHANG Qiang-Qiang, LI Tie-Xin, WANG Dan-Feng, FAN Wen-Jing, ZHANG Ai-Jun, TANG Zhong-Hou. Genome-wide characterization and expression analysis of Dof family genes in sweetpotato [J]. Acta Agronomica Sinica, 2022, 48(3): 608-623. |
[11] | TAN Xue-Lian, GUO Tian-Wen, HU Xin-Yuan, ZHANG Ping-Liang, ZENG Jun, LIU Xiao-Wei. Characteristics of microbial community in the rhizosphere soil of continuous potato cropping in arid regions of the Loess Plateau [J]. Acta Agronomica Sinica, 2022, 48(3): 682-694. |
[12] | ZHANG Hai-Yan, XIE Bei-Tao, JIANG Chang-Song, FENG Xiang-Yang, ZHANG Qiao, DONG Shun-Xu, WANG Bao-Qing, ZHANG Li-Ming, QIN Zhen, DUAN Wen-Xue. Screening of leaf physiological characteristics and drought-tolerant indexes of sweetpotato cultivars with drought resistance [J]. Acta Agronomica Sinica, 2022, 48(2): 518-528. |
[13] | JIAN Hong-Ju, SHANG Li-Na, JIN Zhong-Hui, DING Yi, LI Yan, WANG Ji-Chun, HU Bai-Geng, Vadim Khassanov, LYU Dian-Qiu. Genome-wide identification and characterization of PIF genes and their response to high temperature stress in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 86-98. |
[14] | XU De-Rong, SUN Chao, BI Zhen-Zhen, QIN Tian-Yuan, WANG Yi-Hao, LI Cheng-Ju, FAN You-Fang, LIU Yin-Du, ZHANG Jun-Lian, BAI Jiang-Ping. Identification of StDRO1 gene polymorphism and association analysis with root traits in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 76-85. |
[15] | ZHANG Si-Meng, NI Wen-Rong, LYU Zun-Fu, LIN Yan, LIN Li-Zhuo, ZHONG Zi-Yu, CUI Peng, LU Guo-Quan. Identification and index screening of soft rot resistance at harvest stage in sweetpotato [J]. Acta Agronomica Sinica, 2021, 47(8): 1450-1459. |
|