Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (7): 1658-1668.doi: 10.3724/SP.J.1006.2022.14115

• OCROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Screening candidate genes involved in potato tuber development using WGCNA

JIAN Hong-Ju1,2,3(), ZHANG Mei-Hua1(), SHANG Li-Na1, WANG Ji-Chun1,2,3, HU Bai-Geng4, Vadim Khassanov5, LYU Dian-Qiu1,2,3,*()   

  1. 1College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
    2State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing 400715, China
    3Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing 400715, China
    4National Engineering Research Center for Potato, Dezhou 253600, Shandong, China
    5S. Seifullin Kazakh Agrotechnical University, Zhenis Avenue 010011, Astana, Republic of Kazakhstan
  • Received:2021-07-02 Accepted:2021-10-19 Online:2022-07-12 Published:2021-11-15
  • Contact: LYU Dian-Qiu E-mail:hjjian518@swu.edu.cn;mhzhang77@163.com;smallpotatoes@126.com
  • About author:First author contact:

    ** Contributed equally to this work

  • Supported by:
    Science and Technology Partnership Program, Minis-try of Science and Technology of China(KY201904016);National Key Research and Development Program of China(2018YFE0127900);National Natural Science Foundation of China(32101659);Talent Introduction Program of Southwest University Project(SWU019008);Special research project on Germplasm Innovation of Southwest University

Abstract:

Tuber is the main economic organ of potato. It is of great significance to illustrate its formation and development mechanism for high yield breeding of potato. Although some related genes have been reported, there are still a large number of genes involved in tuber production which need to be further excavated and identified. With the continuous innovation and development of sequencing technology, transcriptome data has become more abundant and complicated. The method of screening genes related to specific traits, tissues or developmental stages using Weighted Gene Co-expression Network Analysis (WGCNA) has been widely used. In this study, to construct co-expression networks and screen co-expression modules related to tuber development, WGCNA was used to analyze transcriptome data of potato DM 1-3516 R44 (DM) material and RH89-039-16 (RH) material from 15 tissues and organs, respectively. GO and KEGG pathway enrichment were performed on the genes in the screening expression module. The top 10 genes in the module were taken as the hub genes, annotated by PGSC database and NCBI, and verified by qRT-PCR. 13 co-expression modules were obtained in both DM and RH materials, among which the Cray module in DM material analysis and the Black module in RH material analysis were significantly correlated with tubers by WGCNA. The analysis showed that the genes of the two modules were significantly enriched in related processes such as hormone metabolism, starch and sucrose metabolism, and cell formation. In addition, gene StGA2ox1, which had been proved to be related to tuber development, was noted in Cyan, and StGA2ox1 was correlated with 10 hub genes in the module in the co-expression analysis. The qRT-PCR results of the hub genes were basically consistent with the results of RNA-seq. In this study, two co-expression modules related to tuber development were identified by WGCNA, and several candidate genes related to tuber development were screened out, which laid a foundation for high yield potato breeding.

Key words: potato, WGCNA, tuber development, regulatory network, hub genes

Table 1

Primers of hub genes"

模块
Module
基因编号
Gene ID
正向引物
Forward primer (5°-3°)
反向引物
Reverse primer (5°-3°)
Cyan PGSC0003DMG400021191 GTGCTGCTTAGGAATATGGTTG GAATGAAGATCCGAACAGCTTC
Cyan PGSC0003DMG400005704 CGACAACGATGAAGAAGATGAC ATGACGATGGTACTCTCTTCAC
Cyan PGSC0003DMG400005659 CAACGATTGGAGGCATTTCTAG GAGCTCATATGCAGTAGTTTGC
Cyan PGSC0003DMG400017696 AGTCGCAGTGATCGTGAATA CCACCACCATACCTATCATCTC
Cyan PGSC0003DMG401009395 GATGGCCGTATTCTTGTATCAT AGACCTGTTATGGTTCCAAATG
Cyan PGSC0003DMG400021095 CTTTTGGGGACTTGTGAAAGAG CTGGACATGGTGGATAGTGATT
Black PGSC0003DMG400030431 CTAAGGGTCATTACACTGAGGG CTTGTAGGCAGTCACAGTTTTC
Black PGSC0003DMG400010293 ATTTAGGCTTCTTTGTCTTGCG CGCCATCAAGTCAAATAAACCA
Black PGSC0003DMG400009401 ACAAGTGCTTACTATCGAGGAG GTCAGTATGATCTCTGAGCTCC
Black PGSC0003DMG400007997 TCCCTTCATTCCCTGTCTTA AATGTAGGCTCCACTTCCAC
Black PGSC0003DMG400008491 CTCTCCAACTGTGAAGTCTAGG AAGGAGAACATGATTTCCGTCT
Black PGSC0003DMG400012238 CAATGTCAAGGCCAAGATTCAA AAGTCGACTCTTTCTGGATGTT

Fig. 1

Gene cluster tree and module construction"

Fig. 2

Number of genes contained in different modules"

Fig. 3

Association analysis of gene co-expression network modules with traits A: DM material; B: RH material. The horizontal axis represents different tissues, and the vertical axis represents the eigenvectors of each module. The red lattice represents a positive correlation between the physiological traits with the module, while the blue lattice represents a negative correlation."

Fig. 4

GO enrichment analysis of genes in target module A: Cyan module of DM material; B: Black module of RH material."

Fig. 5

KEGG enrichment analysis of genes in target module A: Cyan module of DM material; B: Black module of RH material."

Fig. 6

Gene co-expression network and hub genes in Cyan and Black module"

Table 2

Functional annotations of hub genes in different modules"

模块
Module
核心基因
Hub gene
拟南芥同源基因
Homologous gene in Arabidopsis thaliana
基因注释
Gene annotation
Cyan PGSC0003DMG400021191 AT1G30480 DNA损伤修复/耐受蛋白DRT111, 叶绿体 DNA-damage-repair/toleration protein DRT111, chloroplastic
Cyan PGSC0003DMG400004278 AT3G63390 功能未知的保守基因
Conserved gene of unknown function
Cyan PGSC0003DMG400005704 AT1G03280 转录起始因子IIE亚基α样亚型X2
Transcription initiation factor IIE subunit alpha-like isoform X2
Cyan PGSC0003DMG400005659 AT3G18165 Pre-mRNA剪接因子SPF27同源物
Pre-mRNA-splicing factor SPF27 homolog
Cyan PGSC0003DMG400031139 AT1G71780 功能未知的保守基因
Conserved gene of unknown function
Cyan PGSC0003DMG400011912 功能未知的基因
Gene of unknown function
Cyan PGSC0003DMG400017696 AT3G26420 RNA结合蛋白RZ-1
RNA binding protein RZ-1
Cyan PGSC0003DMG400006479 Myb-like蛋白A同工型X2
Myb-like protein A isoform X2
Cyan PGSC0003DMG400000409 AT4G01560 RNA加工因子1
RNA processing factor 1
Cyan PGSC0003DMG401009395 AT4G28450 DDB1和CUL4相关因子13
DDB1- and CUL4-associated factor 13
Cyan PGSC0003DMG400021095 AT1G30040 赤霉素2-氧化酶1
Gibberellin 2-oxidase 1 (GA2OX1)
Black PGSC0003DMG400030431 AT2G29550 β微管蛋白2
Beta-tubulin 2
模块
Module
核心基因
Hub gene
拟南芥同源基因
Homologous gene in Arabidopsis thaliana
基因注释
Gene annotation
Black PGSC0003DMG401002397 AT5G56670 核糖体蛋白S30
Ribosomal protein S30
Black PGSC0003DMG400017722 AT1G35780 功能未知的保守基因
Conserved gene of unknown function
Black PGSC0003DMG400010293 AT2G20490 H/ACA核糖核蛋白复合物亚基3-like蛋白同工型X2
H/ACA ribonucleoprotein complex subunit 3-like protein isoform X2
Black PGSC0003DMG400009401 AT5G60860 Ras相关蛋白RABA1f
Ras-related protein RABA1f
Black PGSC0003DMG400003723 AT5G39600 功能未知的保守基因
Conserved gene of unknown function
Black PGSC0003DMG400007997 AT2G34520 核糖体蛋白S14, 线粒体
Rbosomal protein S14, mitochondrial
Black PGSC0003DMG400007257 AT1G67785 功能未知的保守基因
Conserved gene of unknown function
Black PGSC0003DMG400008491 AT2G38160 内切几丁质酶A
Endochitinase A
Black PGSC0003DMG400012238 AT3G52590 泛素超群, 核糖体蛋白L40e
Ubiquitin supergroup, ribosomal protein L40e

Fig. 7

qRT-PCR validation of Hub genes The relative expression of RNA-Seq=log10 (FPKM+1)."

[1] Jackson S D. Multiple signaling pathways control tuber induction in potato. Plant Physiol, 1999, 119: 1-8.
[2] Lafta A M, Lorenzen J H. Effect of high temperature on plant growth and carbohydrate metabolism in potato. Plant Physiol, 1995, 109: 637-643.
pmid: 12228617
[3] Kolachevskaya O O, Lomin S N, Arkhipov D V, Romanov G A. Auxins in potato: molecular aspects and emerging roles in tuber formation and stress resistance. Plant Cell Rep, 2019, 38: 681-698.
doi: 10.1007/s00299-019-02395-0 pmid: 30739137
[4] Lehretz G G, Sonnewald S, Hornyik C, Corral J M, Sonnewald U. Post-transcriptional regulation of FLOWERING LOCUS T modulates heat-dependent source-sink development in potato. Curr Biol, 2019, 29: 1614-1624.
doi: S0960-9822(19)30425-7 pmid: 31056391
[5] Kondhare K R, Natarajan B, Banerjee A K. Molecular signals that govern tuber development in potato. Int J Dev Biol, 2020, 64: 133-140.
doi: 10.1387/ijdb.190132ab
[6] Cheng L X, Wang Y P, Liu Y S, Zhang Q Q, Gao H H, Zhang F. Comparative proteomics illustrates the molecular mechanism of potato (Solanum tuberosum L.) tuberization inhibited by exogenous gibberellins in vitro. Physiol Plant, 2018, 163: 103-123.
doi: 10.1111/ppl.12670
[7] Evíková H, Maková P, Tarkowská D, Maek T, Lipavská H. Carbohydrates and gibberellins relationship in potato tuberization. J Plant Physiol, 2017, 214: 53-63.
doi: 10.1016/j.jplph.2017.04.003
[8] Martínez-García J F, García-Martínez J L, Bou J, Prat S. The interaction of gibberellins and photoperiod in the control of potato tuberization. J Plant Growth Regul, 2001, 20: 377-386.
doi: 10.1007/s003440010036
[9] Kloosterman B, Navarro C, Bijsterbosch G, Lange T, Bachem C W B. StGA2ox1 is induced prior to stolon swelling and controls GA levels during potato tuber development. Plant J, 2010, 52: 362-373.
doi: 10.1111/j.1365-313X.2007.03245.x
[10] Jordi B T, Martínez-García J F, Luis G M J, Salomé P, Blazquez M A. Gibberellin A1 metabolism contributes to the control of photoperiod-mediated tuberization in potato. PLoS One, 2011, 6: e24458.
doi: 10.1371/journal.pone.0024458
[11] Kloosterman B, Navarro C, Bijsterbosch G, Lange T, Bachem C W B. StGA2ox1 is induced prior to stolon swelling and controls GA levels during potato tuber development. Plant J, 2010, 52: 362-373.
doi: 10.1111/j.1365-313X.2007.03245.x
[12] Jackson S D. Regulation of transcript levels of a potato gibberellin 20-oxidase gene by light and phytochrome B. Plant Physiol, 2000, 124: 423-430.
pmid: 10982455
[13] Xu X, Vreugdenhil D, Lammeren A A M V. Cell division and cell enlargement during potato tuber formation. J Exp Bot, 1998, 49: 573-582.
doi: 10.1093/jxb/49.320.573
[14] Fujino K, Koda Y, Kikuta Y. Reorientation of cortical microtubules in sup-apical region during tuberization in single-node stem segments of potato in culture. Plant Cell Physiol, 1995, 36: 891-895.
doi: 10.1093/oxfordjournals.pcp.a078835
[15] Taiz L. Plant cell expansion: egulation of cell well mechanical properties. Annu Rev Plant Physiol, 2003, 35: 585-657.
doi: 10.1146/annurev.pp.35.060184.003101
[16] Sanz M J, Mingo-Castel A, Lammeren A A M V, Vreugdenhil D. Changes in the microtubular cytoskeleton precede in vitro tuber formation in potato. Protoplasma, 1996, 191: 46-54.
doi: 10.1007/BF01280824
[17] Roumeliotis E, Kloosterman B, Oortwijn M, Kohlen W, Bachem C W B. The effects of auxin and strigolactones on tuber initiation and stolon architecture in potato. Plant Signal Behav, 2012, 63: 4539-4547.
[18] Zhang B, Horvath S. A general framework for weighted geneco-expression network analysis. Plant Signal Behav, 2005, 4: 1128.
doi: 10.4161/psb.4.12.9942
[19] Downs G S, Bi Y M, Colasanti J, Wu W, Chen X, Zhu T, Rothstein S J, Lukens L N. A developmental transcriptional network for maize defines coexpression modules. Plant Physiol, 2013, 161: 1830-1843.
doi: 10.1104/pp.112.213231
[20] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[21] Hollender C A, Kang C, Darwish O, Geretz A, Matthews B F, Slovin J, Alkharouf N, Liu Z. Floral transcriptomes in woodland strawberry uncover developing receptacle and anther gene networks1. Plant Physiol, 2014, 165: 1062-1075.
pmid: 24828307
[22] Luo Y, Pang D, Jin M, Chen J, Wang Z. Identification of plant hormones and candidate hub genes regulating flag leaf senescence in wheat response to water deficit stress at the grain-filling stage. Plant Direct, 2019, 3: e00152.
[23] 林行众. 黄瓜共表达基因模块的识别及其特点分析.南京农业大学硕士学位论文, 江苏南京, 2015.
Lin X Z. Identification and Characterization of Co-expression Modules in Cucumber (Cucumis sativus L.). MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China 2015. (in Chinese with English abstract)
[24] 秦天元, 孙超, 毕真真, 梁文君, 李鹏程, 张俊莲, 白江平. 基于WGCNA的马铃薯根系抗旱相关共表达模块鉴定和核心基因发掘. 作物学报, 2020, 46: 1033-1051.
doi: 10.3724/SP.J.1006.2020.94130
Qin T Y, Sun C, Bi Z Z, Liang W J, Li P C, Zhang J L, Bai J P. Identification of drought-related co-expression modules and hub genes in potato roots based on WGCNA. Acta Agron Sin, 2020, 46: 1033-1051. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.94130
[25] Ran Z, Zhu Y, Jiao Z, Fang Z, Ma D. Transcriptome-wide identification and characterization of potato circular rnas in response to pectobacterium carotovorum subspecies brasiliense infection. Int J Mol Sci, 2018, 19: 71.
doi: 10.3390/ijms19010071
[26] Leviatan N, Alkan N, Leshkowitz D, Robert F, Shin-Han S. Genome-wide survey of cold stress regulated alternative splicing in Arabidopsis thaliana with tiling microarray. PLoS One, 2018, 8: e66511.
doi: 10.1371/journal.pone.0066511
[27] Staiger D, Brown J W S. Alternative splicing at the intersection of biological timing, development, and stress responses. Plant Cell, 2013, 25: 3640-3656.
doi: 10.1105/tpc.113.113803
[28] Quesada V, Macknight R, Dean C, Simpson G G. Autoregulation of FCA pre-mRNA processing controls Arabidopsis flowering time. EMBO J, 2003, 22: 3142-3152.
pmid: 12805228
[29] 张玲. 生长素和细胞分裂素在马铃薯块茎发育中的作用. 中国农业信息, 2014, (11): 14.
Zhang L. Roles of auxin and cytokinin in potato tuber development. China Agric Inf, 2014, (11): 14. (in Chinese)
[30] Raspor M, Motyka V, Ninković S, Dobrev P I, Malbeck J, Ćosić T, Cingel A, Savić J, Tadić V, Dragićević I Č. Endogenous levels of cytokinins, indole-3-acetic acid and abscisic acid in in vitro grown potato: A contribution to potato hormonomics. Sci Rep, 2020, 10: 3437.
doi: 10.1038/s41598-020-60412-9
[31] Xu X, Lammeren A A M V, Vermeer E, Vreugdenhil D. The role of gibberellin, abscisic acide, and sucrose in the regulation of potato tuber formation in vitro. Plant Physiol, 1998, 117: 575-584.
pmid: 9625710
[32] Escaclante B, Langille A R. Photoperiod, temperature, gibberellin, and anti-gibberellin affect tuberization of potato stem segments in vitro. HortScience, 1998, 33: 701-703.
doi: 10.21273/HORTSCI.33.4.701
[33] Lee J H, Terzaghi W, Gusmaroli G, Charron J B F, Yoon H J, Chen H, He Y J, Xiong Y, Deng X W. Characterization of Arabidopsis and rice DWD proteins and their roles as substrate receptors for CUL4-RING E3 ubiquitin ligases. Plant Cell, 2008, 20: 152-167.
doi: 10.1105/tpc.107.055418
[34] Lee J H, Yoon H J, Terzaghi W, Martinez C, Dai M, Li J, Byun M O, Deng X W. DWA1 and DWA2, two Arabidopsis DWD protein components of CUL4-based E3 ligases, act together as negative regulators in ABA signal transduction. Plant Cell, 2010, 22: 1716-1732.
doi: 10.1105/tpc.109.073783
[35] Zhang Y, Feng S, Chen F, Chen H, Wang J, McCall C, Xiong Y, Deng X W. Arabidopsis DDB1-CUL4 ASSOCIATED FACTOR1 forms a nuclear E3 ubiquitin ligase with DDB1 and CUL4 that is involved in multiple plant developmental processes. Plant Cell, 2008, 20: 1437-1455.
doi: 10.1105/tpc.108.058891 pmid: 18552200
[36] Chen H, Huang X, Gusmaroli G, Terzaghi W, Lau O S, Yanagawa Y, Zhang Y, Li J, Lee J H, Zhu D M, Deng X W. Arabidopsis CULLIN4-damaged DNA binding protein 1 interacts with CONSTITUTIVELY PHOTOMORPHOGENIC1-SUPPRESSOR OF PHYA complexes to regulate photomorphogenesis and flowering time. Plant Cell, 2010, 22: 108-123.
doi: 10.1105/tpc.109.065490
[37] Kim Y O, Pan S, Jung C H, Kang H. A zinc finger-containing glycine-rich RNA-binding protein, atRZ-1a, has a negative impact on seed germination and seedling growth of Arabidopsis thaliana under salt or drought stress conditions. Plant Cell Physiol, 2007, 48: 1170-1181.
doi: 10.1093/pcp/pcm087
[38] Kim W Y, Kim J Y, Jung H J, Oh S H, Han Y S, Kang H. Comparative analysis of Arabidopsis zinc finger-containing glycine-rich RNA-binding proteins during cold adaptation. Plant Physiol Biochem, 2010, 48: 866-872.
doi: 10.1016/j.plaphy.2010.08.013
[39] Zhe W, Zhu D, Lin X, Jin M, Gu L, Deng X, Yang Q, Sun K, Zhu D, Cao X F, Tsuge T, Dean C, Aoyama T, Gu H, Qu L J. RNA binding proteins RZ-1B and RZ-1C Play critical roles in regulating pre-mRNA splicing and gene expression during development in Arabidopsis. Plant Cell, 2016, 28: 55-73.
doi: 10.1105/tpc.15.00949
[40] Yoshikawa M, Yang G, Kawaguchi K, Komatsu S. Expression analyses of β-tubulin isotype genes in rice. Plant Cell Physiol, 2003, 44: 1202-1207.
pmid: 14634157
[41] Spokevicius A V, Southerton S G, Macmillan C P, Qiu D, Gan S, Tibbits J F G, Moran G F, Bossinger G. β-tubulin affects cellulose microfibril orientation in plant secondary fibre cell walls. Plant J, 2007, 51: 717-726.
pmid: 17605757
[1] XIE Li-Ming, JIANG Zhong-Yu, LIU Hong-Juan, HAN Jun-Jie, LIU Ben-Kui, WANG Xiao-Lu, SHI Chun-Yu. Suitable soil moisture promotes sugar supply and tuberization in sweet potato at root branching stage  [J]. Acta Agronomica Sinica, 2022, 48(8): 2080-2087.
[2] HAN Shang-Ling, HUO Yi-Qiong, LI Hui, HAN Hua-Rui, HOU Si-Yu, SUN Zhao-Xia, HAN Yuan-Huai, LI Hong-Ying. Identification of regulatory genes related to flavonoids synthesis by weighted gene correlation network analysis in the panicle of foxtail millet [J]. Acta Agronomica Sinica, 2022, 48(7): 1645-1657.
[3] LI Jie-Ya, LI Hong-Yan, YE Guang-Ji, SU Wang, SUN Hai-Hong, WANG Jian. Changes of anthocyanins and expression analysis of synthesis-related genes in potato during storage period [J]. Acta Agronomica Sinica, 2022, 48(7): 1669-1682.
[4] CHEN Lu, ZHOU Shu-Qian, LI Yong-Xin, CHEN Gang, LU Guo-Quan, YANG Hu-Qing. Identification and expression analysis of uncoupling protein gene family in sweetpotato [J]. Acta Agronomica Sinica, 2022, 48(7): 1683-1696.
[5] WANG Hai-Bo, YING Jing-Wen, HE Li, YE Wen-Xuan, TU Wei, CAI Xing-Kui, SONG Bo-Tao, LIU Jun. Identification of chromosome loss and rearrangement in potato and eggplant somatic hybrids by rDNA and telomere repeats [J]. Acta Agronomica Sinica, 2022, 48(5): 1273-1278.
[6] SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297.
[7] KONG Chui-Bao, PANG Zi-Qin, ZHANG Cai-Fang, LIU Qiang, HU Chao-Hua, XIAO Yi-Jie, YUAN Zhao-Nian. Effects of arbuscular mycorrhizal fungi on sugarcane growth and nutrient- related gene co-expression network under different fertilization levels [J]. Acta Agronomica Sinica, 2022, 48(4): 860-872.
[8] FENG Ya, ZHU Xi, LUO Hong-Yu, LI Shi-Gui, ZHANG Ning, SI Huai-Jun. Functional analysis of StMAPK4 in response to low temperature stress in potato [J]. Acta Agronomica Sinica, 2022, 48(4): 896-907.
[9] ZHANG Xia, YU Zhuo, JIN Xing-Hong, YU Xiao-Xia, LI Jing-Wei, LI Jia-Qi. Development and characterization analysis of potato SSR primers and the amplification research in colored potato materials [J]. Acta Agronomica Sinica, 2022, 48(4): 920-929.
[10] JIN Rong, JIANG Wei, LIU Ming, ZHAO Peng, ZHANG Qiang-Qiang, LI Tie-Xin, WANG Dan-Feng, FAN Wen-Jing, ZHANG Ai-Jun, TANG Zhong-Hou. Genome-wide characterization and expression analysis of Dof family genes in sweetpotato [J]. Acta Agronomica Sinica, 2022, 48(3): 608-623.
[11] TAN Xue-Lian, GUO Tian-Wen, HU Xin-Yuan, ZHANG Ping-Liang, ZENG Jun, LIU Xiao-Wei. Characteristics of microbial community in the rhizosphere soil of continuous potato cropping in arid regions of the Loess Plateau [J]. Acta Agronomica Sinica, 2022, 48(3): 682-694.
[12] ZHANG Hai-Yan, XIE Bei-Tao, JIANG Chang-Song, FENG Xiang-Yang, ZHANG Qiao, DONG Shun-Xu, WANG Bao-Qing, ZHANG Li-Ming, QIN Zhen, DUAN Wen-Xue. Screening of leaf physiological characteristics and drought-tolerant indexes of sweetpotato cultivars with drought resistance [J]. Acta Agronomica Sinica, 2022, 48(2): 518-528.
[13] JIAN Hong-Ju, SHANG Li-Na, JIN Zhong-Hui, DING Yi, LI Yan, WANG Ji-Chun, HU Bai-Geng, Vadim Khassanov, LYU Dian-Qiu. Genome-wide identification and characterization of PIF genes and their response to high temperature stress in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 86-98.
[14] XU De-Rong, SUN Chao, BI Zhen-Zhen, QIN Tian-Yuan, WANG Yi-Hao, LI Cheng-Ju, FAN You-Fang, LIU Yin-Du, ZHANG Jun-Lian, BAI Jiang-Ping. Identification of StDRO1 gene polymorphism and association analysis with root traits in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 76-85.
[15] ZHANG Si-Meng, NI Wen-Rong, LYU Zun-Fu, LIN Yan, LIN Li-Zhuo, ZHONG Zi-Yu, CUI Peng, LU Guo-Quan. Identification and index screening of soft rot resistance at harvest stage in sweetpotato [J]. Acta Agronomica Sinica, 2021, 47(8): 1450-1459.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .