Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (4): 966-977.doi: 10.3724/SP.J.1006.2023.21023
• CROP GENETICS & BREEDING · GERMPLASM RESOURCES · MOLECULAR GENETICS • Previous Articles Next Articles
ZHOU Bin-Han1(), YANG Zhu1, WANG Shu-Ping1, FANG Zheng-Wu1, HU Zan-Min2, XU Zhao-Shi3, ZHANG Ying-Xin1,*()
[1] |
Feschotte C, Jiang N, Wessler S R. Plant transposable elements: where genetics meets genomics. Nat Rev Genet, 2002, 3: 329-341.
doi: 10.1038/nrg793 pmid: 11988759 |
[2] |
Hou J, Lu D, Mason A S, Li B, Xiao M, An S, Fu D. Non-coding RNAs and transposable elements in plant genomes: emergence, regulatory mechanisms and roles in plant development and stress responses. Planta, 2019, 250: 23-40.
doi: 10.1007/s00425-019-03166-7 pmid: 30993403 |
[3] | Ning J. Plant transposable Elements:Beyond Insertions and Interruptions. New York: Springer-Verlag, 2018. |
[4] |
Roquis D, Robertson M, Yu L, Thieme M, Julkowska M, Bucher E. Genomic impact of stress-induced transposable element mobility in Arabidopsis. Nucleic Acids Res, 2021, 49: 10431-10447.
doi: 10.1093/nar/gkab828 |
[5] |
Wicker T, Gundlach H, Spannagl M, Uauy C, Borrill P, Ramírez-González R H, De Oliveira R. International Wheat Genome Sequencing Consortium, Mayer Kfx, Paux E, Choulet F. Impact of transposable elements on genome structure and evolution in bread wheat. Genome Biol, 2018, 19: 103.
doi: 10.1186/s13059-018-1479-0 pmid: 30115100 |
[6] |
Alonge M, Shumate A, Puiu D, Zimin A V, Salzberg S L. Chromosome-scale assembly of the bread wheat genome reveals thousands of additional gene copies. Genetics, 2020, 216: 599-608.
doi: 10.1534/genetics.120.303501 pmid: 32796007 |
[7] |
Hirsch C D, Springer N M. Transposable element influences on gene expression in plants. Biochim Biophys Acta Gene Regul Mech, 2017, 1860: 157-165.
doi: 10.1016/j.bbagrm.2016.05.010 |
[8] |
Piégu B, Bire S, Arensburger P, Bigot Y. A survey of transposable element classification systems: a call for a fundamental update to meet the challenge of their diversity and complexity. Mol Phylogenet Evol, 2015, 86: 90-109.
doi: 10.1016/j.ympev.2015.03.009 |
[9] |
Ramakrishnan M, Satish L, Kalendar R, Narayanan M, Kandasamy S, Sharma A, Emamverdian A, Wei Q, Zhou M. The dynamism of transposon methylation for plant development and stress adaptation. Int J Mol Sci, 2021, 22: 11387.
doi: 10.3390/ijms222111387 |
[10] |
Galindo-González L, Sarmiento F, Quimbaya M A. Shaping plant adaptability, genome structure and gene expression through transposable element epigenetic control: focus on methylation. Agronomy, 2018, 8: 180.
doi: 10.3390/agronomy8090180 |
[11] |
Saze H. Epigenetic regulation of intragenic transposable elements: a two-edged sword. J Biochem, 2018, 164: 323-328.
doi: 10.1093/jb/mvy060 pmid: 30010918 |
[12] |
Yates-Stewart A D, Daron J, Wijeratne S, Shahid S, Edgington H A, Slotkin R K, Michel A. Soybean aphids adapted to host-plant resistance by down regulating putative effectors and up regulating transposable elements. Insect Biochem Mol Biol, 2020, 121: 103363.
doi: 10.1016/j.ibmb.2020.103363 |
[13] |
Kimura Y, Tosa Y, Shimada S, Sogo R, Kusaba M, Sunaga T, Betsuyaku S, Eto Y, Nakayashiki H, Mayama S. OARE-1, a Ty1-copia retrotransposon in oat activated by abiotic and biotic stresses. Plant Cell Physiol, 2001, 42: 1345-1354.
doi: 10.1093/pcp/pce171 pmid: 11773527 |
[14] |
Woodrow P, Pontecorvo G, Fantaccione S, Fuggi A, Kafantaris I, Parisi D, Carillo P. Polymorphism of a new Ty1-copia retrotransposon in durum wheat under salt and light stresses. Theor Appl Genet, 2010, 121: 311-322.
doi: 10.1007/s00122-010-1311-z pmid: 20237753 |
[15] |
Roquis D, Robertson M, Yu L, Thieme M, Julkowska M, Bucher E. Genomic impact of stress-induced transposable element mobility in Arabidopsis. Nucleic Acids Res, 2021, 49: 10431-10447.
doi: 10.1093/nar/gkab828 |
[16] |
Zhao Y, Wu L, Fu Q, Wang D, Li J, Yao B, Yu S, Jiang L, Qian J, Zhou X, Han L, Zhao S, Ma C, Zhang Y, Luo C, Dong Q, Li S, Zhang L, Jiang X, Li Y, Luo H, Li K, Yang J, Luo Q, Li L, Peng S, Huang H, Zuo Z, Liu C, Wang L, Li C, He X, Friml J, Du Y. INDITTO2 transposon conveys auxin-mediated DRO1 transcription for rice drought avoidance. Plant Cell Environ, 2021, 44: 1846-1857.
doi: 10.1111/pce.14029 |
[17] |
Marcussen T, Sandve S R, Heier L, Spannagl M, Pfeifer M, International Wheat Genome Sequencing Consortium, Jakobsen K S, Wulff B B, Steuernagel B, Mayer K F, Olsen O A. Ancient hybridizations among the ancestral genomes of bread wheat. Science, 2014, 345: 1250092.
doi: 10.1126/science.1250092 |
[18] | 郭靖宇. 小麦中国春全基因组转座元件的特征分析. 河南大学硕士学位论文, 河南郑州, 2020. |
Guo J Y. Genome-wide Analysis of Transposable Elements in Bread Wheat. MS Thesis of Henan University, Zhengzhou, Henan, China, 2020. (in Chinese with English abstract) | |
[19] |
Nian L L, Liu X L, Yang Y B, Zhu X L, Yi X F, Haider F U. Genome-wide identification, phylogenetic, and expression analysis under abiotic stress conditions of LIM gene family in Medicago sativa L. PLoS One, 2021, 16: e0252213.
doi: 10.1371/journal.pone.0252213 |
[20] |
Mani B, Agarwal M, Katiyar-Agarwal S. Comprehensive expression profiling of rice Tetraspanin genes reveals diverse roles during development and abiotic stress. Front Plant Sci, 2015, 6: 1088.
doi: 10.3389/fpls.2015.01088 pmid: 26697042 |
[21] |
Zhou Y B, Li Y, Qi X L, Liu R B, Dong J H, Jing W H, Guo M M, Si Q L, Xu Z S, Li L C, Wang C S, Cheng X G, Ma Y Z, Chen M. Overexpression of V-type H+pyrophosphatase gene EdVP1 from Elymus dahuricus increases yield and potassium uptake of transgenic wheat under low potassium conditions. Sci Rep, 2020, 10: 5020.
doi: 10.1038/s41598-020-62052-5 |
[22] |
Mosoni P, Chaucheyras-Durand F, Béra-Maillet C, Forano E. Quantification by real-time PCR of cellulolytic bacteria in the rumen of sheep after supplementation of a forage diet with readily fermentable carbohydrates: effect of a yeast additive. J Appl Microbiol, 2007, 103: 2676-2685.
pmid: 18045448 |
[23] |
Feldman M, Levy A A. Genome evolution due to allopolyploidization in wheat. Genetics, 2012, 192: 763-774.
doi: 10.1534/genetics.112.146316 pmid: 23135324 |
[24] |
Mcclelland M, Nelson M, Raschke E. Effect of site-specific modification on restriction endonucleases and DNA modification methyltransferases. Nucleic Acids Res, 1994, 22: 3640-3659.
pmid: 7937074 |
[25] |
Pan Y P, Bo K L, Cheng Z H, Weng Y Q. The loss-of-function GLABROUS 3 mutation in cucumber is due to LTR- retrotransposon insertion in a class IV HD-ZIP transcription factor gene CsGL3 that is epistatic over CsGL1. BMC Plant Biol, 2015, 15: 302.
doi: 10.1186/s12870-015-0693-0 |
[26] |
Simpson S D, Nakashima K, Narusaka Y, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Two different novel cis-acting elements of erd1, a clpA homologous Arabidopsis gene function in induction by dehydration stress and dark-induced senescence. Plant J, 2003, 33: 259-270.
doi: 10.1046/j.1365-313x.2003.01624.x pmid: 12535340 |
[27] |
Hattori T, Terada T, Hamasuna S. Regulation of the Osem gene by abscisic acid and the transcriptional activator VP1: analysis of cis-acting promoter elements required for regulation by abscisic acid and VP1. Plant J, 1995, 7: 913-925.
pmid: 7599651 |
[28] |
Busk P K, Jensen A B, Pagès M. Regulatory elements in vivo in the promoter of the abscisic acid responsive gene rab17 from maize. Plant J, 1997, 11: 1285-1295.
pmid: 9225468 |
[29] |
Baker S S, Wilhelm K S, Thomashow M F. The 5'-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Mol Biol, 1994, 24: 701-713.
doi: 10.1007/BF00029852 pmid: 8193295 |
[30] |
Hartmann U, Sagasser M, Mehrtens F, Stracke R, Weisshaar B. Differential combinatorial interactions of cis-acting elements recognized by R2R3-MYB, BZIP, and BHLH factors control light-responsive and tissue-specific activation of phenylpropanoid biosynthesis genes. Plant Mol Biol, 2005, 57: 155-171.
doi: 10.1007/s11103-004-6910-0 pmid: 15821875 |
[31] |
Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi- Shinozaki K. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell, 2003, 15: 63-78.
doi: 10.1105/tpc.006130 |
[32] |
Hirochika H. Activation of tobacco retrotransposons during tissue culture. EMBO J, 1993, 12: 2521-2528.
doi: 10.1002/j.1460-2075.1993.tb05907.x pmid: 8389699 |
[33] |
Wendel J F, Wessler S R. Retrotransposon-mediated genome evolution on a local ecological scale. Proc Natl Acad Sci USA, 2000, 97: 6250-6252.
pmid: 10841529 |
[34] | Aliyev A T, Lobianco F, Krager K J, Aykin-Burns N. Assessment of cellular oxidation using a subcellular compartment-specific redox-sensitive green fluorescent protein. J Vis Exp, 2020, 160: 10.3791/61229. |
[35] |
Galindo-González L, Mhiri C, Deyholos M K, Grandbastien M A. LTR-retrotransposons in plants: engines of evolution. Gene, 2017, 626: 14-25.
doi: S0378-1119(17)30322-0 pmid: 28476688 |
[36] |
Georgiev S, Dekova T, Atanassov I, Angelova Z, Dimitrova A, Mirkova V, Stoilov L. Transposable elements in wheat and Triticale sphaerococcum mutant forms. Biotechnol Biotechnol Equip, 2000, 14: 25-32.
doi: 10.1080/13102818.2000.10819057 |
[37] | Gu Y Q, Crossman C, Kong X, Luo M, You F M, Coleman-Derr D, Dubcovsky J, Anderson O D. Genomic organization of the complex α-gliadin gene loci in wheat. J Appl Genet, 2004, 109: 648-657. |
[38] |
Kashkush K, Feldman M, Levy A A. Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nat Genet, 2003, 33: 102-106.
doi: 10.1038/ng1063 pmid: 12483211 |
[39] |
Murphy G, Lucas H, Moore G, Flavell R. Sequence analysis of WIS-2-1A, a retrotransposon-like element from wheat. Plant Mol Biol, 1992, 20: 991-995.
doi: 10.1007/BF00027169 pmid: 1334439 |
[40] |
Roquis D, Robertson M, Yu L, Thieme M, Julkowska M, Bucher E. Genomic impact of stress-induced transposable element mobility in Arabidopsis. Nucleic Acids Res, 2021, 49: 10431-10447.
doi: 10.1093/nar/gkab828 |
[41] |
Wicker T, Stein N, Albar L, Feuillet C, Schlagenhauf E, Keller B. Analysis of a contiguous 211 kb sequence in diploid wheat (Triticum monococcum L.) reveals multiple mechanisms of genome evolution. Plant J, 2001, 26: 307-316.
pmid: 11439119 |
[42] |
Gu Y Q, Crossman C, Kong X, Luo M, You F M, Coleman-Derr D, Dubcovsky J, Anderson O D. Genomic organization of the complex alpha-gliadin gene loci in wheat. Theor Appl Genet, 2004, 109: 648-657.
pmid: 15103408 |
[43] |
Li W, Zhang P, Fellers J P, Friebe B, Gill B S. Sequence composition, organization, and evolution of the core Triticeae genome. Plant J, 2004, 40: 500-511.
doi: 10.1111/j.1365-313X.2004.02228.x |
[44] |
Lee S C, Martienssen R A. Regulation of retrotransposition in Arabidopsis. Biochem Soc Trans, 2021, 49: 2241-2251.
doi: 10.1042/BST20210337 |
[45] | Merkulov P, Omarov M, Gvaramiya S, Kirov I. Detection of active LTR retrotransposons via eccDNA analysis in Helianthus annuus L., Arabidopsis thaliana and triticale. In: Salina E A, ed. Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk, Russia: The 6th International Scientific Conference, 2021 (in Russian and English). |
[1] | JIA Yu-Ku, GAO Hong-Huan, FENG Jian-Chao, HAO Zi-Rui, WANG Chen-Yang, XIE Ying-Xin, GUO Tian-Cai, MA Dong-Yun. Genome-wide identification and expression analysis of G2-like transcription factors family genes in wheat [J]. Acta Agronomica Sinica, 2023, 49(5): 1410-1425. |
[2] | SUN Quan-Xi, YUAN Cui-Ling, MOU Yi-Fei, YAN Cai-Xia, ZHAO Xiao-Bo, WANG Juan, WANG Qi, SUN Hui, LI Chun-Juan, SHAN Shi-Hua. Genome-wide identification and expression analysis of SWEET genes from peanut genomes [J]. Acta Agronomica Sinica, 2023, 49(4): 938-954. |
[3] | XU Zi-Yin, YU Xiao-Ling, ZOU Liang-Ping, ZHAO Ping-Juan, LI Wen-Bin, GENG Meng-Ting, RUAN Meng-Bin. Expression pattern analysis and interaction protein screening of cassava MYB transcription factor MeMYB60 [J]. Acta Agronomica Sinica, 2023, 49(4): 955-965. |
[4] | QI Yan-Ni, LI Wen-Juan, ZHAO Li-Rong, LI Wen, WANG Li-Min, XIE Ya-Ping, ZHAO Wei, DANG Zhao, ZHANG Jian-Ping. Identification and expression analysis of CYP79 gene family, a key enzyme for cyanogenic glycoside synthesis in flax [J]. Acta Agronomica Sinica, 2023, 49(3): 687-702. |
[5] | DENG Zhao, JIANG Huan-Qi, CHENG Li-Sha, LIU Rui, HUANG Min, LI Man-Fei, DU He-Wei. Identification of abiotic stress-related gene co-expression networks in maize by WGCNA [J]. Acta Agronomica Sinica, 2023, 49(3): 672-686. |
[6] | HUANG Zhen, WU Qi-Jing, CHEN Can-Ni, WU Xia, CAO Shan, ZHANG Hui, YUE Jiao, HU Ya-Li, LUO Deng-Jie, LI Yun, LIAO Chang-Jun, LI Ru, CHEN Peng. Role of calmodulin gene (HcCaM7) and its protein acetylation is involved in kenaf response to abiotic stress [J]. Acta Agronomica Sinica, 2023, 49(2): 402-413. |
[7] | ZHANG Cheng, ZHANG Zhan, YANG Jia-Bao, MENG Wan-Qiu, ZENG Ling-Lu, SUN Li. Genome-wide identification and relative expression analysis of DGATs gene family in sunflower [J]. Acta Agronomica Sinica, 2023, 49(1): 73-85. |
[8] | WANG Heng-Bo, ZHANG Chang, WU Ming-Xing, LI Xiang, JIANG Zhong-Li, LIN Rong-Xiao, GUO Jin-Long, QUE You-Xiong. Genome-wide identification of NAC transcription factors ATAF subfamily in Sacchrum spontaneum and functional analysis of its homologous gene ScNAC2 in sugarcane cultivar [J]. Acta Agronomica Sinica, 2023, 49(1): 46-61. |
[9] | WU Yan-Fei, HU Qin, ZHOU Qi, DU Xue-Zhu, SHENG Feng. Genome-wide identification and expression analysis of Elongator complex family genes in response to abiotic stresses in rice [J]. Acta Agronomica Sinica, 2022, 48(3): 644-655. |
[10] | MA Wen-Jing, LIU Zhen, LI Zhi-Tao, ZHU Jin-Yong, LI Hong-Yang, CHEN Li-Min, SHI Tian-Bin, ZHANG Jun-Lian, LIU Yu-Hui. Genome-wide identification and expression analysis of BBX gene family in potato (Solanum tuberosum L.) [J]. Acta Agronomica Sinica, 2022, 48(11): 2797-2812. |
[11] | MA Chao, FENG Ya-Lan, WU Shan-Wei, ZHANG Jun, GUO Bin-Bin, XIONG Ying, LI Chun-Xia, LI You-Jun. Effects of shading at grain filling stages on anthocyanin accumulation and related gene expression characteristics in seed coat of black mung bean [J]. Acta Agronomica Sinica, 2022, 48(11): 2826-2839. |
[12] | XIE Qin-Qin, ZUO Tong-Hong, HU Deng-Ke, LIU Qian-Ying, ZHANG Yi-Zhong, ZHANG He-Cui, ZENG Wen-Yi, YUAN Chong-Mo, ZHU Li-Quan. Molecular cloning and expression analysis of BoPUB9 in self-incompatibility Brassica oleracea [J]. Acta Agronomica Sinica, 2022, 48(1): 108-120. |
[13] | WANG Yan-Peng, LING Lei, ZHANG Wen-Rui, WANG Dan, GUO Chang-Hong. Genome-wide identification and expression analysis of B-box gene family in wheat [J]. Acta Agronomica Sinica, 2021, 47(8): 1437-1449. |
[14] | LI Wen-Lan, LI Wen-Cai, SUN Qi, YU Yan-Li, ZHAO Meng, LU Shou-Ping, LI Yan-Jiao, MENG Zhao-Dong. A study of expression pattern of auxin response factor family genes in maize (Zea mays L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1138-1148. |
[15] | JIANG Peng, ZHANG Xu, WU Lei, HE Yi, ZHANG Ping-Ping, MA Hong-Xiang, KONG Ling-Rang. Genetic analysis for yield related traits of wheat (Triticum aestivum L.) based on a recombinant inbred line population from Ningmai 9 and Yangmai 158 [J]. Acta Agronomica Sinica, 2021, 47(5): 869-881. |
|