Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (3): 687-702.doi: 10.3724/SP.J.1006.2023.24042

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Identification and expression analysis of CYP79 gene family, a key enzyme for cyanogenic glycoside synthesis in flax

QI Yan-Ni1(), LI Wen-Juan1, ZHAO Li-Rong2, LI Wen2, WANG Li-Min1, XIE Ya-Ping1, ZHAO Wei1, DANG Zhao1, ZHANG Jian-Ping1,*()   

  1. 1Institute of Crop Sciences, Gansu Academy of Agricultural Sciences, Lanzhou 730070, Gansu, China
    2College of Agronomy, Gansu Agricultural University / Key Laboratory of Arid Land Crop Science in Gansu Province / Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, Gansu, China
  • Received:2022-02-21 Accepted:2022-07-21 Online:2023-03-12 Published:2022-08-19
  • Contact: ZHANG Jian-Ping E-mail:xbsdqyn@126.com;zhangJPzw3@gsagr.ac.cn
  • Supported by:
    Modern Biology Breeding Project of Gansu Academy of Agricultural Sciences(2020GAAS08);Modern Biology Breeding Project of Gansu Academy of Agricultural Sciences(2022GAAS04);China Agriculture Research System (Oil) of MOF and MARA;National Natural Science Foundation of China(31760426);Intellectual Property Planning project of Gansu Province(21ZSCQ026);Science and Technology Project of Gansu Province(21JR7RA722);Science and Technology Project of Gansu Province(21JR1RA354)

Abstract:

CYP79 is a key enzyme in the synthesis of cyanogenic glycoside. However, there is no systematical study of CYP79 genes in flax. In this study, we identified CYP79 gene family in 9 crops including flax, and focused on the sequence characteristics, duplication events, collinearity, evolution, cis-acting elements and expression patterns of LuCYP79 genes. The results revealed that a total of 9, 9, 3, 2, 5, 7, 6, 16, and 4 CYP79 family members were identified in flax, pale flax, poplar, cassava, sesame, sorghum, soybean, grape, and rice, respectively. Phylogenetic analysis showed that the evolution of CYP79 genes was species-specific. LuCYP79 were distributed unevenly on four chromosomes and had 1-3 exons. The promoter region of LuCYP79 contained lots of elements involved in response to hormone and stress. 8 full-length DNA sequences and 5 full-length cDNA sequences of flax LuCYP79 genes were cloned. LuCYP79 proteins contained 282-565 amino acid residues with molecular weight of 31.56-62.86 kD, and isoelectric point of 5.84-9.14. All LuCYP79 members were hydrophilic protein and located in endoplasmic reticulum. There were five pairs of LuCYP79 genes with duplication events, accounting for 77.8% of all genes, and all the duplication genes underwent strong purification selection. Both LuCYP79-1 and LuCYP79-9 had homologous genes in Arabidopsis and cassava. The relative expression levels showed that LuCYP79 family members were tissue-specific and had different expression patterns under different genetic backgrounds. There were significantly different in the relative expression of LuCYP79-1, LuCYP79-7, LuCYP79-8, and LuCYP79-9 in the four cultivars. Moreover, correlation analysis showed that LuCYP79-1/LuCYP79-7 in 50 days flaxseed was significantly positively correlated with the concentration of cyanogenic glycosides in mature flaxseed. LuCYP79-7/LuCYP79-8 and (LuCYP79-7+LuCYP79-9)/LuCYP79-8 in 20 days flaxseed were significantly positively correlated with the concentration of cyanogenic glycosides in mature flaxseed, respectively. It was preliminarily speculated that they might be the key genes in the synthesis of cyanogenic glycoside in flaxseed. These results have positive significance for further elucidating the function of CYP79 proteins in flax and provide theoretical references for breeding flax varieties with low cyanogenic glycoside.

Key words: flax, CYP79 gene family, cyanogenic glycoside, bioinformatics, the relative expression level

Table S1

Primers used for cloning of LuCYP79 gene family"

基因名称
Gene name
正向引物序列
Forward sequence (5'-3')
反向引物序列
Reverse sequence (5'-3')
LuCYP79-1 ATGAACATCGACGGCCAGGAGAAG TCAGTTGGTAATCTTGGGGTACAAGTG
LuCYP79-2 ATGACCATGAAAACCTCCGACG TCAGTTGGTAACCAAAGGGTACAAG
LuCYP79-3 ATGCCCATGAACACCTCCGACCGAT TCAGTTGGTAATCTTGGGGTACAAGTGG
LuCYP79-4 ATGAAGTCATCTCCGATCAACACTATTAC TCATTTGGTAGAGCGGCTGGGTAC
LuCYP79-5 ATGGCAAATAACCTCCCTCCGAG TCATTTGGCTAAGGCAGGGTACAAG
LuCYP79-6 ATGGAAACCATGATCCTCCTCGTC TCAAGAGAGTGTAGGGTATAAATGAGG
LuCYP79-7 ATGAACACCTTCACAATCATCCTCC TCATTTGACGACAACGACAGGGTAC
LuCYP79-8 ATGGCGGCCATGAACACCTCC TCATTTGGCTAAGGCAGGGTACAAG
LuCYP79-9 ATGGCCATGAACACCTCCGAC TCAGTTGGTAATCTTAGGGTACAAGTGGG

Table S2

Primers for qRT-PCR in this study"

基因名称
Gene name
正向引物序列
Forward sequence (5'-3')
反向引物序列
Reverse sequence (5'-3')
LuCYP79-1 ACCGCTGCTGTCACTACCACG CTGCTCCTTCTGATGCGTTGG
LuCYP79-2 GGGAAGGTGATTAAGGAGGCTAATAAG CCACTGCGTTTGACGGGTTG
LuCYP79-3 GCAAGCGAATAAGACGATGAGGG GGTTGGTGATTTCATTGCGGGAG
LuCYP79-4 CTCCGACCGATGTCTATCCACCAC CCAGTCATAATGCTACCTGCTCCT
LuCYP79-5 CGGCACAATGACATCTACCACCTC CTGCAATAAGCCTACCTGCTCTTC
LuCYP79-6 TAAGGAGTCGAATAAGGCGTTGC CACTGCGTTGGATGGATTGTCTA
LuCYP79-7 CACCGCCGTCATAATCCTCCTC GCCGCTGGCTTCTTCCTCGTT
LuCYP79-8 CGGACCGATGGAGATTGACC TCCCTCGCACATGCCTTGAC
LuCYP79-9 TCTCACCGACGTTCTTATTACCCTT GGACTAGCCTATCTTTACCGACCAC

Table 1

Main features of the CYP79 gene family in flax"

基因名称
Gene name
基因号
Gene ID
染色体位置
Chromosome location
外显子数量
No. of
exons
蛋白序列长度
Protein length (aa)
分子量
Molecular weight (kD)
等电点
pI
亚细胞定位
Subcellular location
LuCYP79-1 L.us.o.m.scaffold38.16 Chr2:4491546-4492641(+) 2 282 31.56 5.84 ER
LuCYP79-2 L.us.o.m.scaffold38.15 Chr2:4495863-4497662(+) 2 554 62.17 9.14 ER
LuCYP79-3 L.us.o.m.scaffold38.14 Chr2:4499744-4501641(+) 2 558 62.57 9.01 ER
LuCYP79-4 L.us.o.m.scaffold137.29 Chr6:18190484-18192183(+) 2 537 60.32 8.97 ER
LuCYP79-5 L.us.o.m.scaffold137.31 Chr6:18195750-18196883(+) 1 377 41.69 8.11 ER
LuCYP79-6 L.us.o.m.scaffold96.139 Chr12:3278067-3280521(-) 3 521 58.68 6.97 ER
LuCYP79-7 L.us.o.m.scaffold13.272 Chr12:15779026-15781011(-) 2 525 59.10 8.12 ER
LuCYP79-8 L.us.o.m.scaffold13.263 Chr12:15823701-15825571(+) 2 549 60.89 7.26 ER
LuCYP79-9 L.us.o.m.scaffold28.185 Chr15:6106894-6109113(-) 2 565 62.86 9.03 ER

Table S3

CYP79 gene family of 8 species in this study"

物种
Species
基因号
Gene ID
物种
Species
基因号
Gene ID
物种
Species
基因号
Gene ID
白亚麻
Linum bienne
L.bie.m.scaffold143.40 芝麻
Sesamum indicum
rna5687 葡萄
Vitis vinifera
VIT_206s0009g01780.1
L.bie.m.scaffold143.49 rna5689 VIT_206s0009g02820.1
L.bie.m.scaffold349.34 rna5691 VIT_206s0009g02843.1
L.bie.m.scaffold349.35 rna5692 VIT_206s0009g02850.1
L.bie.m.scaffold349.36 rna9755 VIT_206s0009g02895.1
L.bie.m.scaffold593.11 高粱
Sorghum bicolor
Sobic.001G012300.1.p VIT_206s0009g02930.1
L.bie.m.scaffold593.12 Sobic.001G185900.2.p VIT_206s0009g02980.1
L.bie.m.scaffold593.6 Sobic.001G185900.2.p VIT_206s0009g03120.1
L.bie.m.scaffold852.13 Sobic.001G187500.1.p VIT_206s0009g03130.1
毛果杨
Populus trichocarpa
Potri.004G055200.1.p Sobic.001G187600.1.p VIT_213s0067g02720.1
Potri.013G157200.1.p Sobic.007G090457.1.p VIT_213s0067g02730.1
Potri.013G157400.1.p Sobic.010G172200.1.p VIT_213s0067g02780.1
木薯
Manihot esculenta
Manes.12G133500.1.p 大豆
Glycine max
Glyma.11G197300.1.p VIT_213s0067g02790.1
Manes.13G094200.1.p Glyma.11G197400.1.p VIT_213s0067g02830.1
水稻
Oryza sativa
LOC_Os03g37290.1 Glyma.13G051600.1.p VIT_213s0106g00280.1
LOC_Os04g08824.1 Glyma.18G052200.1.p VIT_218s0001g13760.1
LOC_Os04g08828.1 Glyma.20G065000.1.p
LOC_Os04g09430.1 Glyma.20G065100.1.p

Fig. 1

PCR products of full-length DNA (A) and cDNA (B) of LuCYP79 genes (A) M: DL 5000 marker; 1-8: LuCYP79-1, LuCYP79-2, LuCYP79-3, LuCYP79-4, LuCYP79-6, LuCYP79-7, LuCYP79-8, and LuCYP79-9, respectively. (B) M: DL 2000 marker; 1-5: LuCYP79-1, LuCYP79-3, LuCYP79-6, LuCYP79-8, and LuCYP79-9, respectively."

Fig. 2

Phylogenetic tree, gene structure, and motif of LuCYP79"

Fig. S1

Hydrophilic and hydrophobic analysis of CYP79 proteins in flax"

Fig. S2

Secondary and tertiary structure of CYP79 proteins in flax"

Fig. S3

Conserved motifs of LuCYP79 family"

Table S4

Secondary structure prediction of CYP79 proteins in flax"

蛋白名称Protein name α-螺旋
Alpha helix
β-转角
Beta turn
延伸链
Extended strand
无规则卷曲
Random coil
LuCYP79-9 120 (42.55%) 7 (2.48%) 35 (12.41%) 120 (42.55%)
LuCYP79-5 255 (46.03%) 22 (3.97%) 58 (10.47%) 219 (39.53%)
LuCYP79-4 240 (43.01%) 32 (5.73%) 86 (15.41%) 200 (35.84%)
LuCYP79-7 231 (43.02%) 23 (4.28%) 71 (13.22%) 212 (39.48%)
LuCYP79-8 177 (46.95%) 9 (2.39%) 48 (12.73%) 143 (37.93%)
LuCYP79-6 240 (46.07%) 21 (4.03%) 64 (12.28%) 196 (37.62%)
LuCYP79-3 234 (44.57%) 19 (3.62%) 68 (12.95%) 204 (38.86%)
LuCYP79-2 243 (44.26%) 21 (3.83%) 76 (13.84%) 209 (38.07%)
LuCYP79-1 247 (43.72%) 25 ( 4.42%) 76 (13.45%) 217 (38.41%)

Fig. 3

Conserved motifs of SFSTG(K/R)RGC(A/I)A and FXP(E/D)RH of LuCYP79 family"

Fig. 4

Chromosome distribution of LuCYP79 genes in flax Gray line and red rectangle indicates segmental and tandem duplication, respectively."

Table 2

Duplicate events, selection pressure, and divergence time of LuCYP79 genes"

基因对
Gene pairs
复制事件
Duplication event
非同义
替换率
Ka
同义
替换率
Ks
Ka/Ks 选择类型
Selection type
分歧时间
Divergence time (MYa)
LuCYP79-1/LuCYP79-2 串联复制
Tandem duplication
0.0722 0.6753 0.1069 纯化选择
Purifying selection
55.3525
LuCYP79-2/LuCYP79-3 串联复制
Tandem duplication
0.0678 0.6603 0.1027 纯化选择
Purifying selection
54.1230
LuCYP79-4/LuCYP79-5 串联复制
Tandem duplication
0.1213 1.1045 0.1098 纯化选择
Purifying selection
90.5328
LuCYP79-1/LuCYP79-9 片段复制
Segmental duplication
0.0055 0.0164 0.3354 纯化选择
Purifying selection
1.3443
LuCYP79-4/LuCYP79-8 片段复制
Segmental duplication
0.1277 1.0731 0.1190 纯化选择
Purifying selection
87.9590

Fig. 5

Collinearity of LuCYP79 genes in flax, Arabidopsis, and cassava A: the gray lines indicate the colinear LuCYP79 gene pairs. B: the gray lines show the collinear regions between flax and other species, and the color lines represent the collinear CYP79 gene pairs between different species."

Table 3

Predicted cis-acting elements of LuCYP79 promoters"

顺式元件Cis-element 典型序列
Typical sequence
特性
Characteristic
基因
Gene name
ARE AAACCA 厌氧诱导必需的顺式作用元件
Cis-acting regulatory element essential for the anaerobic induction
LuCYP79-1, LuCYP79-2, LuCYP79-3, LuCYP79-4, LuCYP79-5, LuCYP79-6, LuCYP79-7, LuCYP79-8, LuCYP79-9
G-box CACGTG/TACGTG 光响应顺式作用元件
Cis-acting regulatory element involved in light responsiveness
LuCYP79-1, LuCYP79-2, LuCYP79-3, LuCYP79-4, LuCYP79-5, LuCYP79-6, LuCYP79-7, LuCYP79-8, LuCYP79-9
GT1-motif GGTTAAT/GGTTAA 光响应元件
Light responsive element
LuCYP79-1, LuCYP79-2, LuCYP79-3, LuCYP79-4, LuCYP79-5, LuCYP79-6, LuCYP79-7, LuCYP79-9
Box 4 ATTAAT 光响应保守模块的一部分
Part of a conserved DNA module involved in light responsiveness
LuCYP79-1, LuCYP79-2, LuCYP79-3, LuCYP79-5, LuCYP79-6, LuCYP79-7, LuCYP79-8, LuCYP79-9
GATA-motif GATAGGG 光响应元件的一部分
Part of a light responsive element
LuCYP79-1, LuCYP79-3, LuCYP79-5, LuCYP79-7, LuCYP79-8, LuCYP79-9
ABRE CGTACGTGCA/
CGCACGTGTC
脱落酸响应顺式元件
Cis-acting element involved in the abscisic acid responsiveness
LuCYP79-1, LuCYP79-2, LuCYP79-3, LuCYP79-4, LuCYP79-5, LuCYP79-6, LuCYP79-7, LuCYP79-8, LuCYP79-9
TGACG-motif TGACG MeJA响应顺式作用元件
Cis-acting regulatory element involved in the MeJA-responsiveness
LuCYP79-1, LuCYP79-2, LuCYP79-3, LuCYP79-4, LuCYP79-5, LuCYP79-6, LuCYP79-7, LuCYP79-8
CGTCA-motif CGTCA MeJA响应顺式作用元件
Cis-acting regulatory element involved in the MeJA-responsiveness
LuCYP79-1, LuCYP79-2, LuCYP79-3, LuCYP79-4, LuCYP79-5, LuCYP79-6, LuCYP79-7, LuCYP79-8
TGA-element AACGAC 生长素响应元件
Auxin-responsive element
LuCYP79-1, LuCYP79-2, LuCYP79-5, LuCYP79-8
AuxRR-core GGTCCAT 生长素响应顺式作用元件
Cis-acting regulatory element involved in auxin responsiveness
LuCYP79-4, LuCYP79-5
AuxRE TGTCTCAATAAG 生长素响应元件的一部分
Part of an auxin-responsive element
LuCYP79-7
GARE-motif TCTGTTG 赤霉素响应元件
Gibberellin-responsive element
LuCYP79-2, LuCYP79-9
P-box CCTTTTG 赤霉素响应元件
Gibberellin-responsive element
LuCYP79-2
顺式元件Cis-element 典型序列
Typical sequence
特性
Characteristic
基因
Gene name
LTR CCGAAA 低温响应顺式作用元件
Cis-acting element involved in low-temperature responsiveness
LuCYP79-1, LuCYP79-2, LuCYP79-4, LuCYP79-6, LuCYP79-7
MBS CAACTG 参与干旱诱导的MYB结合位点
MYB binding site involved in drought-inducibility
LuCYP79-1, LuCYP79-2, LuCYP79-8, LuCYP79-9
TC-rich repeats GTTTTCTTAC 参与防御和胁迫响应的顺式作用元件
Cis-acting element involved in defense and stress responsiveness
LuCYP79-2
RY-element CATGCATG 参与种子特异性调控的顺式调控元件
Cis-acting regulatory element involved in seed-specific regulation
LuCYP79-4, LuCYP79-5, LuCYP79-7
CAT-box GCCACT 分生组织相关的顺式调控元件
Cis-acting regulatory element related to
meristem expression
LuCYP79-5, LuCYP79-6, LuCYP79-7
A-box CCGTCC 顺式调控元件
Cis-acting regulatory element
LuCYP79-3, LuCYP79-7
GC-motif CCCCCG 参与缺氧特异性诱导的类增强子元件
Enhancer-like element involved in anoxic specific inducibility
LuCYP79-1, LuCYP79-7
O2-site GATGA(C/T)(A/G)TG (A/G)/GATGATGTGG 参与玉米醇溶蛋白新陈代谢调节的顺式调控元件
Cis-acting regulatory element involved in zein metabolism regulation
LuCYP79-1, LuCYP79-2, LuCYP79-6
MBSI TTTTTACGGTTA 参与黄酮类合成基因调控的MYB结合位点
MYB binding site involved in flavonoid biosynthetic genes regulation
LuCYP79-3
HD-Zip 1 CAAT(A/T)ATTG 参与栅栏叶肉细胞分化的元件
Element involved in differentiation of the palisade mesophyll cells
LuCYP79-1

Fig. 6

Phylogenetic tree of CYP79 family"

Fig. 7

Relative expression patterns of LuCYP79 family in seeds of four flax varieties at different developmental stages"

Fig. 8

Cumulative expression of LuCYP79 family during seed development in four flax varieties"

Fig. 9

Relative expression patterns of LuCYP79 genes in different developmental stages and tissues of four flax varieties R1-R4: 10 days, 20 days, 30 days, and 40 days root at seeding stage; R5: root at early blooming stage; R6-R10: 10 days, 20 days, 30 days, 40 days, and 50 days root after flowering; S1-S4: 10 days, 20 days, 30 days, and 40 days stem at seeding stage; S5: stem at early blooming stage; S6-S10: 10 days, 20 days, 30 days, 40 days, and 50 days stem after flowering; L1-L4: 10 days, 20 days, 30 days, and 40 days leaf at seeding stage; L5: leaf at early blooming stage; L6-L10: 10 days, 20 days, 30 days, 40 days, and 50 days leaf after flowering; F: flower; 10-50 d: 10-50 days seeds after flowering."

Fig. 10

Concentration of cyanogenic glycoside in mature seeds of four flax varieties Different lowercase letters mean significant differences at the 0.05 probability level."

Fig. 11

Correlation between LuCYP79 gene expression and cyanogenic glycoside concentration in mature flax seed Y: cyanogenic glycoside concentration in mature flaxseed; x in A, B, and C represents the gene expression ratio of LuCYP79-1 to LuCYP79-7, LuCYP79-7 to LuCYP79-8, and LuCYP79-7 + LuCYP79-9 to LuCYP79-8, respectively."

[1] Zohary D. Monophyletic vs. polyphyletic origin of the crops on which agriculture was founded in the near east. Genet Resour Crop Evol, 1999, 46: 133-142.
doi: 10.1023/A:1008692912820
[2] Oomah B D. Flaxseed as a functional food source. J Sci Food Agric, 2001, 81: 889-894.
doi: 10.1002/jsfa.898
[3] Turner T D, Mapiye C, Aalhus J L, Beaulieu A D, Patience J F, Zijlstra R T. Flaxseed fed pork: n-3 fatty acidenrichment and contribution to dietary recommendations. Meat Sci, 2014, 96: 541-547.
doi: 10.1016/j.meatsci.2013.08.021 pmid: 24012977
[4] Goyal A, Sharma V, Upadhyay N, Gill S, Sihag M. Flax and flaxseed oil: an ancient medicine & modernfunctional food. J Food Sci Technol, 2014, 9: 1633-1653.
[5] Oomah B D, Mazza G, Kenaschuk E O. Cyanogenic compounds in flaxseed. J Agric Food Chem, 1992, 40: 1346-1348.
doi: 10.1021/jf00020a010
[6] Conn E E. Cyanogenic glycosides. Biochem Plants, 1981, 7: 479-500.
[7] Nelson L. Acute cyanide toxicity mechanisms and manifestations. J Emerg Nurs, 2006, 32: 8-10.
pmid: 16860675
[8] Ganjewala D, Kumar S, Devi A, Ambika K. Advances in cyanogenic glycosides biosynthesis and analyses in plants. Acta Biol Szegediensis, 2010, 54: 1-14.
[9] Sibbesen O, Koch B, Halkier B A, Moller B L. Cytochrome P-450TYR is a multifunctional heme-thiolate enzyme catalyzing the conversion of L-tyrosine to p-hydroxyphenylacetaldehyde oxime in the biosynthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor (L.) Moench. J Biol Chem, 1995, 270: 3506-3511.
doi: 10.1074/jbc.270.8.3506 pmid: 7876084
[10] Wang C W, Dissing M M, Agerbirk N, Crocoll C, Halkier B A. Characterization of Arabidopsis CYP79C1 and CYP79C2 by glucosinolate pathway engineering in Nicotiana benthamiana shows substrate specificity toward a range of aliphatic and aromatic amino acids. Front Plant Sci, 2020, 11: 57.
doi: 10.3389/fpls.2020.00057
[11] Andersen M D, Busk P K, Svendsen I, Møller B L. Cytochromes P-450 from cassava (Manihot esculenta Crantz) catalyzing the first steps in the biosynthesis of the cyanogenic glucosides linamarin and lotaustralin: cloning, functional expression in Pichia pastoris, and substrate specificity of the isolated recombinant enzymes. J Biol Chem, 2000, 275: 1966-1975.
doi: 10.1074/jbc.275.3.1966 pmid: 10636899
[12] Irmisch S, McCormick A C, Boeckler G A, Schmidt A, Reichelt M, Schneider B, Block K, Schnitzler J, Gershenzon J, Unsicker S B, Köllner T G. Two herbivore-induced cytochrome P450 enzymes CYP79D6 and CYP79D7 catalyze the formation of volatile aldoximes involved in poplar defense. Plant Cell, 2013, 25: 4737-4754.
doi: 10.1105/tpc.113.118265
[13] Irmisch S, Zeltner P, Handrick V, Gershenzon J, Köllner T G. The maize cytochrome P450 CYP79A61 produces phenylacetaldoxime and indole-3-acetaldoxime in heterologous systems and might contribute to plant defense and auxin formation. BMC Plant Biol, 2015, 15: 128-139.
doi: 10.1186/s12870-015-0526-1 pmid: 26017568
[14] Bak S, Nielsen H L, Halkier B A. The presence of CYP79 homologues in glucosinolate-producing plants shows evolutionary conservation of the enzymes in the conversion of amino acid to aldoxime in the biosynthesis of cyanogenic glucosides and glucosinolates. Plant Mol Biol, 1998, 38: 725-734.
pmid: 9862490
[15] Petersen B L, Andreasson E, Bak S, Agerbirk N, Halkier B A. Characterization of transgenic Arabidopsis thaliana with metabolically engineered high levels of p-hydroxybenzylglucosinolate. Planta, 2001, 212: 612-618.
pmid: 11525519
[16] Reintanz B, Lehnen M, Reichelt M, Gershenzon J, Kowalczyk M, Sandberg G, Godde M, Uhl R, Palme K. Bus, a bushy Arabidopsis CYP79F1 knockout mutant with abolished synthesis of short-chain aliphatic glucosinolates. Plant Cell, 2001, 13: 351-367.
doi: 10.1105/tpc.13.2.351 pmid: 11226190
[17] Chen S X, Glawischnig E, Jørgensen K, Naur P, Jørgensen B, Olsen C E, Hansen C H, Rasmussen H, Pickett J A, Halkier B A. CYP79F1 and CYP79F2 have distinct functions in the biosynthesis of aliphatic glueosinolates in Arabidopsis. Plant J, 2003, 33: 923-937.
doi: 10.1046/j.1365-313X.2003.01679.x
[18] Bak S, Paquette S M, Morant M, Morant V M, Saito S, Bjarnholt N, Zagrobelny M, Jorgensen K, Osmani S, Simonsen H T, Perez R S, Heeswijck T B, Jorgensen B, Moller B L. Cyanogenic glycosides a case study for evolution and application of cytochromes P450. Phytochem Rev, 2006, 5: 309-329.
doi: 10.1007/s11101-006-9033-1
[19] Hull A K, Vij R, Celenza J L. Arabidopsis cytochrome P450s that catalyze the first step of tryptophan-dependent indole-3-acetic acid biosynthesis. Proc Natl Acad Sci USA, 2000, 97: 2379-2384.
pmid: 10681464
[20] Wittstock U, Halkier B A. Cytochrome 450 CYP79A2 from Arabidopsis thaliana L. catalyzes the conversion of l-phenylalanine to phenylacetaldoxime in the biosynthesis of benzylglucosinolate. J Biol Chem, 2000, 275: 14659-14666.
doi: 10.1074/jbc.275.19.14659 pmid: 10799553
[21] Jorgensen K, Morant A V, Morant M, Jensen N B, Olsen C E, Kannangara R, Motawia M S, Moller B L, Bak S. Biosynthesis of the cyanogenic glucosides linamarin and lotaustralin in cassava isolation biochemical characterization and expression pattern of CYP71E7 the oxime-metabolizing cytochrome P450 enzyme. Plant Physiol, 2011, 155: 282-292.
doi: 10.1104/pp.110.164053
[22] Luck K, Jia Q D, Huber M, Handrick V, Wong G K, Nelson D R, Chen F, Gershenzon J, Köllner T G. CYP79 P450 monooxygenases in gymnosperms: CYP79A118 is associated with the formation of taxiphyllin in Taxus baccata. Plant Mol Biol, 2017, 95: 169-180.
doi: 10.1007/s11103-017-0646-0
[23] Halkier B A, Hansen C H, Naur P, Mikkelsen M D, Wittstock U. The Role of Cytochromes P 450 in Biosynthesis and Evolution of Glucosinolates. Amsterdam: Elsevier Science Press, 2002. pp 223-248.
[24] Hu B, Jin J P, Guo A Y, Zhang H, Luo J C, Gao G. GSDS 2.0: anupgraded gene feature visualization server. Bioinformatics, 2015, 31: 1296-1297.
doi: 10.1093/bioinformatics/btu817
[25] Wilkins M R, Gasteiger E, Bairoch A, Sanchez J C, Williams K L, Appel R D, Hochstrasser D F. Protein identification and analysis tools on the ExPASy server. Methods Mol Biol, 1999, 112: 531-552.
pmid: 10027275
[26] Bailey T L, Johnson J, Grant C E, Noble W S. The MEME suite. Nucleic Acids Res, 2015, 43: W39-W49.
[27] Wang Y P, Li J P, Paterson A H. MCScanX-transposed: detecting transposed gene duplications based on multiple collinearity scans. Bioinformatics, 2013, 29: 1458-1460.
doi: 10.1093/bioinformatics/btt150
[28] Lynch M, Conery J S. The evolutionary fate and consequences of duplicate genes. Science, 2000, 290: 1151-1155.
doi: 10.1126/science.290.5494.1151 pmid: 11073452
[29] Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouze P, Rombauts S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res, 2002, 30: 325-327.
[30] Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol, 2013, 30: 2725-2729.
doi: 10.1093/molbev/mst197 pmid: 24132122
[31] Zhang J P, Qi Y N, Wang L M, Wang L L, Yan X C, Dang Z, Li W J, Zhao W, Pei X W, Li X M, Liu M, Tan M L, Wang L, Long Y, Wang J, Zhang X W, Dang Z H, Zheng H K, Liu T M. Genomic comparison and population diversity analysis provide insights into the domestication and improvement of flax. iScience, 2020, 23: 100967.
doi: 10.1016/j.isci.2020.100967
[32] Huis R, Hawkins S, Neutelings G. Selection of reference genes for quantitative gene expression normalization in flax (Linum usitatissimum L.). BMC Plant Biol, 2010, 10: 71.
doi: 10.1186/1471-2229-10-71
[33] Antonov J, Goldstein D R, Oberli A, Baltzer A, Pirotta M, Fleischmann A, Altermatt H J, Jaggi R. Reliable gene expression measurements from degraded RNA by quantitative real-time PCR depend on short amplicons and a proper normalization. Lab Invest, 2005, 85: 1040-1050.
pmid: 15951835
[34] 寇向龙, 徐美蓉, 张建平, 赵宾宾, 韩舜愈. 响应面法优化亚麻籽氢氰酸提取条件. 食品工业科技, 2016, 37(21): 201-204.
Kou X L, Xu M R, Zhang J P, Zhao B B, Han S Y. Optimization of extraction conditions for hydrocyanic acid in flaxseed by response surface methodology. Sci Technol Food Ind, 2016, 37(21): 201-204. (in Chinese with English abstract)
[35] Mikkelsen M D, Hansen C H, Wittstock U, Halkier B A. Cytochrome 450 CYP79B2 from Arabidopsis catalyzes the conversion of tryptophan to indole-3-acetaldoxime, a precursor of indole glucosinolates and indole-3-acetic acid. J Biol Chem, 2000, 275: 33712-33717.
doi: 10.1074/jbc.M001667200 pmid: 10922360
[36] 李占省, 刘玉梅, 方智远, 杨丽梅, 庄木, 张扬勇, 吕红豪. 青花菜 P450 CYP79F1 全长克隆、表达及其与不同器官中莱菔硫烷含量的相关性分析. 中国农业科学, 2018, 51: 2357-2367.
Li Z S, Liu Y M, Fang Z Y, Yang L M, Zhuang M, Zhang Y Y, Lyu H H. Full length cloning, expression and correlation analysis of P450 CYP79F1 gene with sulforaphane content in different broccoli organs. Sci Agric Sin, 2018, 51: 2357-2367. (in Chinese with English abstract)
[37] Ren R, Wang H F, Guo C C, Zhang N, Zeng L P, Chen Y M, Ma H, Qi J. Widespread whole genome duplications contribute to genome complexity and species diversity in angiosperms. Mol Plant, 2018, 11: 414-428.
doi: S1674-2052(18)30022-4 pmid: 29317285
[38] Zhu Y, Wu N N, Song W L, Yin G J, Qin Y J, Yan Y M, Hu Y K. Soybean (Glycine max) expansin gene superfamily origins: segmental and tandem duplication events followed by divergent selection among subfamilies. BMC Plant Biol, 2014, 14: 93.
doi: 10.1186/1471-2229-14-93 pmid: 24720629
[39] 华静静, 陈晓静. 植物体中WD40蛋白的研究进展. 黑龙江农业科学, 2015, (5): 153-156.
Hua J J, Chen X J. Progress of WD40 proteins in plant. Heilongjiang Agric Sci, 2015, (5): 153-156 (in Chinese with English abstract).
[40] Mehlgarten C, Jablonowski D, Wrackmeyer U, Tschitschmann S, Sondermann D, Jäger G, Gong Z, Byström A S, Schaffrath R, Breunig K D. Elongator function in tRNA wobble uridine modification is conserved between yeast and plants. Mol Microbiol, 2010, 76: 1082-1094.
doi: 10.1111/j.1365-2958.2010.07163.x pmid: 20398216
[41] 杨琳, 王宇, 杨剑飞, 李玉花. 花青素积累相关负调控因子的研究进展. 园艺学报, 2014, 41: 1873-1884.
Yang L, Wang Y, Yang J F, Li Y H. Research advances on negative regulators of anthocyanin accumulation. Acta Hortic Sin, 2014, 41: 1873-1884. (in Chinese with English abstract)
[1] ZHOU Bin-Han, YANG Zhu, WANG Shu-Ping, FANG Zheng-Wu, HU Zan-Min, XU Zhao-Shi, ZHANG Ying-Xin. Screening of active LTR retrotransposons in wheat (Triticum aestivum L.) seedlings and analysis of their responses to abiotic stresses [J]. Acta Agronomica Sinica, 2023, 49(4): 966-977.
[2] PAN Jie-Ming, TIAN Shao-Rui, LIANG Yan-Lan, ZHU Yu-Lin, ZHOU Ding-Gang, QUE You-Xiong, LING Hui, HUANG Ning. Identification and expression analysis of PIN-LIKES gene family in sugarcane [J]. Acta Agronomica Sinica, 2023, 49(2): 414-425.
[3] PU Xue, WANG Kai-Tong, ZHANG Ning, SI Huai-Jun. Relative expression analysis of StMAPKK4 gene and screening and identification of its interacting proteins in potato (Solanum tuberosum L.) [J]. Acta Agronomica Sinica, 2023, 49(1): 36-45.
[4] CHEN Lu, ZHOU Shu-Qian, LI Yong-Xin, CHEN Gang, LU Guo-Quan, YANG Hu-Qing. Identification and expression analysis of uncoupling protein gene family in sweetpotato [J]. Acta Agronomica Sinica, 2022, 48(7): 1683-1696.
[5] WU Yan-Fei, HU Qin, ZHOU Qi, DU Xue-Zhu, SHENG Feng. Genome-wide identification and expression analysis of Elongator complex family genes in response to abiotic stresses in rice [J]. Acta Agronomica Sinica, 2022, 48(3): 644-655.
[6] MA Chao, FENG Ya-Lan, WU Shan-Wei, ZHANG Jun, GUO Bin-Bin, XIONG Ying, LI Chun-Xia, LI You-Jun. Effects of shading at grain filling stages on anthocyanin accumulation and related gene expression characteristics in seed coat of black mung bean [J]. Acta Agronomica Sinica, 2022, 48(11): 2826-2839.
[7] JIAN Hong-Ju, SHANG Li-Na, JIN Zhong-Hui, DING Yi, LI Yan, WANG Ji-Chun, HU Bai-Geng, Vadim Khassanov, LYU Dian-Qiu. Genome-wide identification and characterization of PIF genes and their response to high temperature stress in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 86-98.
[8] XIE Qin-Qin, ZUO Tong-Hong, HU Deng-Ke, LIU Qian-Ying, ZHANG Yi-Zhong, ZHANG He-Cui, ZENG Wen-Yi, YUAN Chong-Mo, ZHU Li-Quan. Molecular cloning and expression analysis of BoPUB9 in self-incompatibility Brassica oleracea [J]. Acta Agronomica Sinica, 2022, 48(1): 108-120.
[9] HUANG Wen-Gong, JIANG Wei-Dong, YAO Yu-Bo, SONG Xi-Xia, LIU Yan, CHEN Si, ZHAO Dong-Sheng, WU Guang-Wen, YUAN Hong-Mei, REN Chuan-Ying, SUN Zhong-Yi, WU Jian-Zhong, KANG Qing-Hua. Transcriptome profiling of flax (Linum usttatissimum L.) response to low potassium stress [J]. Acta Agronomica Sinica, 2021, 47(6): 1070-1081.
[10] HUANG Ning, HUI Qian-Long, FANG Zhen-Ming, LI Shan-Shan, LING Hui, QUE You-Xiong, YUAN Zhao-Nian. Identification, localization and expression analysis of beta-carotene isomerase gene family in sugarcane [J]. Acta Agronomica Sinica, 2021, 47(5): 882-893.
[11] NIU Na, LIU Zhen, HUANG Peng-Xiang, ZHU Jin-Yong, LI Zhi-Tao, MA Wen-Jing, ZHANG Jun-Lian, BAI Jiang-Ping, LIU Yu-Hui. Genome-wide identification and expression analysis of potato GAUT gene family [J]. Acta Agronomica Sinica, 2021, 47(12): 2348-2361.
[12] LI Peng, LIU Che, SONG Hao, YAO Pan-Pan, SU Pei-Lin, WEI Yao-Wei, YANG Yong-Xia, LI Qing-Chang. Identification and analysis of non-specific lipid transfer protein family in tobacco [J]. Acta Agronomica Sinica, 2021, 47(11): 2184-2198.
[13] HUANG Xiao-Fang,BI Chu-Yun,SHI Yuan-Yuan,HU Yun-Zhuo,ZHOU Li-Xiang,LIANG Cai-Xiao,HUANG Bi-Fang,XU Ming,LIN Shi-Qiang,CHEN Xuan-Yang. Discovery and analysis of NBS-LRR gene family in sweet potato genome [J]. Acta Agronomica Sinica, 2020, 46(8): 1195-1207.
[14] ZHENG Qing-Lei,YU Chen-Jing,YAO Kun-Cun,HUANG Ning,QUE You-Xiong,LING Hui,XU Li-Ping. Cloning and expression analysis of sugarcane Fe/S precursor protein gene ScPetC [J]. Acta Agronomica Sinica, 2020, 46(6): 844-857.
[15] YAO Jun-Yue,HUA Ying-Peng,ZHOU Ting,WANG Tao,SONG Hai-Xing,GUAN Chun-Yun,ZHANG Zhen-Hua. Identification and function analysis of AVP1, VHA-a2, and VHA-a3 genes in Brassica napus L. [J]. Acta Agronomica Sinica, 2019, 45(8): 1146-1157.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .