Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (3): 672-686.doi: 10.3724/SP.J.1006.2023.23017
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
DENG Zhao(), JIANG Huan-Qi, CHENG Li-Sha, LIU Rui, HUANG Min, LI Man-Fei(), DU He-Wei()
[1] |
Zhang B, Horvath S. A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol, 2005, 4: 17.
pmid: 16646834 |
[2] |
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinfor, 2008, 9: 559.
doi: 10.1186/1471-2105-9-559 |
[3] |
Kuang J F, Wu C J, Guo Y F, Walther D, Shan W, Chen J Y, Chen L, Lu W J. Deciphering transcriptional regulators of banana fruit ripening by regulatory network analysis. Plant Biotechnol J, 2021; 19: 477-489.
doi: 10.1111/pbi.13477 |
[4] |
Sun S, Xiong X P, Zhu Q, Li Y J, Sun J. Transcriptome sequencing and metabolome analysis reveal genes involved in pigmentation of green-colored cotton fibers. Int J Mol Sci, 2019, 20: 4838.
doi: 10.3390/ijms20194838 |
[5] |
Greenham K, Guadagno C R, Gehan M A, Mockler T C, Weinig C, Ewers B E, McClung C R. Temporal network analysis identifies early physiological and transcriptomic indicators of mild drought in Brassica rapa. eLife, 2017, 6: e29655.
doi: 10.7554/eLife.29655 |
[6] |
马娟, 曹言勇, 王利锋, 李晶晶, 王浩, 范艳萍, 李会勇. 利用WGCNA鉴定玉米株高和穗位高基因共表达模块. 作物学报, 2020, 46: 385-394.
doi: 10.3724/SP.J.1006.2020.93021 |
Ma J, Cao Y Y, Wang L F, Li J J, Wang H, Fan Y P, Li H Y. Identification of gene co-expression modules of maize plant height and ear height by WGCNA. Acta Agron Sin, 2020, 46: 385-394 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.93021 |
|
[7] | Larcher W. Physiological Plant Ecology. England: J R Etherington, 1996. pp 630-631. |
[8] |
Krasensky J, Jonak C. Drought, salt, and temperature stress- induced metabolic rearrangements and regulatory networks. J Exp Bot, 2012, 63: 1593-1608
doi: 10.1093/jxb/err460 pmid: 22291134 |
[9] |
Richards R A. Defining selection criteria to improve yield under drought. Plant Growth Regul, 1996, 20: 157-166.
doi: 10.1007/BF00024012 |
[10] |
Cushman J C, Bohnert H J. Genomic approaches to plant stress tolerance. Curr Opin Plant Biol, 2000, 3: 117-124
doi: 10.1016/s1369-5266(99)00052-7 pmid: 10712956 |
[11] |
Li M, Sui N, Lin L, Yang Z, Zhang Y. Transcriptomic profiling revealed genes involved in response to cold stress in maize. Funct Plant Biol, 2019, 46: 830-844.
doi: 10.1071/FP19065 pmid: 31217070 |
[12] |
Frey F P, Pitz M, Schön C C, Hochholdinger F. Transcriptomic diversity in seedling roots of European flint maize in response to cold. BMC Genomics, 2020, 21: 300-310.
doi: 10.1186/s12864-020-6682-1 pmid: 32293268 |
[13] |
Guo J, Li C, Zhang X, Li Y, Zhang D, Shi Y, Song Y, Li Y, Yang D, Wang T. Transcriptome and GWAS analyses reveal candidate gene for seminal root length of maize seedlings under drought stress. Plant Sci, 2020, 292: 110380.
doi: 10.1016/j.plantsci.2019.110380 |
[14] | Cao L, Lu X, Wang G, Zhang P, Fu J, Wang Z, Wei L, Wang T. Transcriptional regulatory networks in response to drought stress and rewatering in maize (Zea mays L.). Mol Genet Genomics, 2021, 6: 1203-1219. |
[15] |
Li W Z, Hao Z F, Pang J L, Zhang M, Wang N, Li X H, Li W H, Wang L, Xu M Y. Effect of water-deficit on tassel development in maize. Gene, 2019, 681: 86-92.
doi: S0378-1119(18)30976-4 pmid: 30253182 |
[16] | Wang H Q, Liu P, Zhang J W, Zhao B, Ren B Z. Endogenous hormones inhibit differentiation of young ears in maize (Zea mays L.) under heat stress. Front Plant Sci, 2020, 11: 533040. |
[17] | Waters A J, Makarevitch I, Noshay J, Burghardt L T, Hirsch C N, Hirsch C D, Springer N M. Natural variation for gene expression responses to abiotic stress in maize. Plant J, 2017, 89: 706-717. |
[18] |
Wang M Q, Wang Y F, Zhang Y F, Li C X, Gong S C, Yan S Q, Li G L, Hu G H, Ren H L, Yang J F, Yu T, Yang K J. Comparative transcriptome analysis of salt-sensitive and salt-tolerant maize reveals potential mechanisms to enhance salt resistance. Genes Genomics, 2019, 41: 781-801.
doi: 10.1007/s13258-019-00793-y |
[19] |
Goldberg D H, Victor J D, Gardner E P, Gardner D. Spike train analysis toolkit: enabling wider application of information- theoretic techniques to neurophysiology. Neuroinformatics, 2009, 7: 165-178.
doi: 10.1007/s12021-009-9049-y pmid: 19475519 |
[20] | Kroll K W, Mokaram N E, Pelletier A R, Frankhouser D E, Westphal M S, Bundschuh R, Blachly J S, Yan P. Quality control for RNA-Seq (QuaCRS): an integrated quality control pipeline. Cancer Inform, 2014, 13: 7-14. |
[21] |
Bolger A M, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics, 2014, 30: 2114-2120.
doi: 10.1093/bioinformatics/btu170 pmid: 24695404 |
[22] |
Kim D, Langmead B, Salzberg S L. HISAT: a fast spliced aligner with low memory requirements. Nat Methods, 2015, 12: 357-360.
doi: 10.1038/nmeth.3317 pmid: 25751142 |
[23] |
Liao Y, Smyth G K, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics, 2014, 30: 923-930.
doi: 10.1093/bioinformatics/btt656 pmid: 24227677 |
[24] |
Ghosh S, Chan C K. Analysis of RNA-Seq data using TopHat and Cufflinks. Methods Mol Biol, 2016, 1374: 339-361.
doi: 10.1007/978-1-4939-3167-5_18 pmid: 26519415 |
[25] |
Tian T, Liu Y, Yan H Y, You Q, Yi X, Du Z, Xu W Y, Su Z. agriGO v2.0: a GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Res, 2017, 45: W122-W129.
doi: 10.1093/nar/gkx382 |
[26] | Su G, Morris J H, Demchak B, Bader G D. Biological network exploration with Cytoscape 3. Curr Prot Bioinfor, 2014, 47: 8.13.1-8.13.24. |
[27] |
Zeng R, Li Z Y, Shi Y T, Fu D, Yin P, Cheng J K, Jiang C F, Yang S H. Natural variation in a type-A response regulator confers maize chilling tolerance. Nat Commun, 2021, 12: 4713.
doi: 10.1038/s41467-021-25001-y pmid: 34354054 |
[28] |
Wang X L, Wang H W, Liu S X, Ferjani A, Li J S, Yan J B, Yang X H, Qin F. Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings. Nat Gene, 2016, 48: 1233-1241.
doi: 10.1038/ng.3636 |
[29] |
Pan Z Y, Liu M, Zhao H L, Tan Z D, Liang K, Sun Q, Gong D M, He H J, Zhou W Q, Qiu F Z. ZmSRL5 is involved in drought tolerance by maintaining cuticular wax structure in maize. J Integr Plant Biol, 2020, 62: 1895-1909.
doi: 10.1111/jipb.12982 |
[30] |
Li X D, Gao Y Q, Wu W H, Chen L M, Wang Y. Two calcium-dependent protein kinases enhance maize drought tolerance by activating anion channel ZmSLAC1 in guard cells. Plant Biotechnol J, 2022, 20: 143-157.
doi: 10.1111/pbi.13701 |
[31] | Xiang Y L, Sun X P, Gao S, Qin F, Dai M Q. Deletion of an endoplasmic reticulum stress response element in a ZmPP2C-A gene facilitates drought tolerance of maize seedlings. Mol Plants, 2017, 10: 456-469. |
[32] |
Mao H D, Wang H W, Liu S X, Li Z Q, Yang X H, Yan J B, Li J S, Tran L S P, Qin F. A transposable element in a NAC gene is associated with drought tolerance in maize seedlings. Nat Commun, 2015, 6: 8326.
doi: 10.1038/ncomms9326 pmid: 26387805 |
[33] |
Li L, Du Y C, He C, Dietrich C R, Li J K, Ma X L, Wang R, Liu Q, Liu S Z, Wang G Y, Schnable P S, Zheng J. Maize glossy6 is involved in cuticular wax deposition and drought tolerance. J Exp Bot, 2019, 70: 3089-3099.
doi: 10.1093/jxb/erz131 pmid: 30919902 |
[34] |
Vaughan M M, Christensen S, Schmelz E A, Huffaker A, McAuslane H J, Alborn H T, Romero M, Allen L H, Teal P E. Accumulation of terpenoid phytoalexins in maize roots is associated with drought tolerance. Plant Cell Environ, 2015, 38: 2195-2207.
doi: 10.1111/pce.12482 |
[35] |
Zhu D, Chang Y, Pei T, Zhang X L, Liu L, Li Y, Zhuang J H, Yang H L, Qin F, Song C P, Ren D T. MAPK-like protein 1 positively regulates maize seedling drought sensitivity by suppressing ABA biosynthesis. Plant J, 2020, 102: 747-760.
doi: 10.1111/tpj.14660 |
[36] |
Zhu J T, Wang G L, Li C L, Li Q Q, Gao Y K, Chen F G, Xia G M. Maize Sep15-like functions in endoplasmic reticulum and reactive oxygen species homeostasis to promote salt and osmotic stress resistance. Plant Cell Environ, 2019, 42: 1486-1502.
doi: 10.1111/pce.13507 |
[37] |
Lund A A, Blum P H, Bhattramakki D, Elthon T E. Heat-stress response of maize mitochondria. Plant Physiol, 1998, 116: 1097-1110.
pmid: 9501143 |
[38] |
Li Z X, Srivastava R, Tang J, Zheng Z H, Howell S H. Cis-effects condition the induction of a major unfolded protein response factor, ZmHSF60, in response to heat stress in maize. Front Plant Sci, 2018, 9: 833.
doi: 10.3389/fpls.2018.00833 |
[39] | Zhang N, Huang X Q. Mapping quantitative trait loci and predicting candidate genes for leaf angle in maize. PLoS One, 2021, 16: e0245129. |
[40] |
Li Z X, Howell S H. Heat stress responses and thermotolerance in maize. Int J Mol Sci, 2021, 22: 948.
doi: 10.3390/ijms22020948 |
[41] |
Holubová Ľ, Švubová R, Slováková Ľ, Bokor B, Kročková V C, Renčko J, Uhrin F, Medvecká V, Zahoranová A, Gálová E. Cold atmospheric pressure plasma treatment of maize grains-induction of growth, enzyme activities and heat shock proteins. Int J Mol Sci, 2021, 22: 8509.
doi: 10.3390/ijms22168509 |
[42] |
Jiang Y L, Zheng Q Q, Chen L, Liang Y N, Wu J D. Ectopic overexpression of maize heat shock transcription factor gene Zmhsf04 confers increased thermos- and salt-stress tolerance in transgenic Arabidopsis. Acta Physiol Plant, 2018, 40: 9.
doi: 10.1007/s11738-017-2587-2 |
[43] | Jiménez-González A S, Fernández N, Martínez-Salas E, Sánchez de Jiménez E. Functional and structural analysis of maize hsp101 IRES. PLoS One, 2014, 9: e107459. |
[44] |
Luo X, Wang B C, Gao S, Zhang F, Terzaghi W, Dai M Q. Genome-wide association study dissects the genetic bases of salt tolerance in maize seedlings. J Integr Plant Biol, 2019, 61: 658-674.
doi: 10.1111/jipb.12797 |
[45] |
Augustine R C, York S L, Rytz T C, Vierstra R D. Defining the SUMO system in maize: SUMOylation is up-regulated during endosperm development and rapidly induced by stress. Plant Physiol, 2016, 171: 2191-2210.
doi: 10.1104/pp.16.00353 pmid: 27208252 |
[46] |
Gu L K, Liu Y K, Zong X J, Liu L, Li D P, Li D Q. Overexpression of maize mitogen-activated protein kinase gene, ZmSIMK1 in Arabidopsis increases tolerance to salt stress. Mol Biol Rep, 2010, 37: 4067-4073.
doi: 10.1007/s11033-010-0066-6 |
[47] |
Li H Y, Du H M, Huang K F, Chen X, Liu T Y, Gao S B, Liu H L, Tang Q L, Rong T Z, Zhang S Z. Identification, and functional and expression analyses of the CorA/MRS2/MGT-Type magnesium transporter family in maize. Plant Cell Physiol, 2016, 57: 1153-1168.
doi: 10.1093/pcp/pcw064 pmid: 27084594 |
[48] |
Zhu J T, Wang G L, Li C L, Li Q Q, Gao Y K, Chen F G, Xia G M. Maize Sep15-like functions in endoplasmic reticulum and reactive oxygen species homeostasis to promote salt and osmotic stress resistance. Plant Cell Environ, 2019, 42: 1486-1502.
doi: 10.1111/pce.13507 |
[49] |
Ma H Z, Liu C, Li Z X, Ran Q J, Xie G N, Wang B M, Fang S, Chu J F, Zhang J R. ZmbZIP4 contributes to stress resistance in maize by regulating ABA synthesis and root development. Plant Physiol, 2018, 178: 753-770.
doi: 10.1104/pp.18.00436 pmid: 30126870 |
[50] |
Kong M S, Luo M J, Li J N, Feng Z, Zhang Y X, Song W, Zhang R Y, Wang R H, Wang Y D, Zhao J R, Tao Y S, Zhao Y X. Genome-wide identification, characterization, and expression analysis of the monovalent cation-proton antiporter superfamily in maize, and functional analysis of its role in salt tolerance. Genomics, 2021, 113: 1940-1951.
doi: 10.1016/j.ygeno.2021.04.032 pmid: 33895282 |
[51] |
Cao Y B, Zhang M, Liang X Y, Li F R, Shi Y L, Yang X H, Jiang C F. Natural variation of an EF-hand Ca2+-binding-protein coding gene confers saline-alkaline tolerance in maize. Nat Commun, 2020, 11: 186.
doi: 10.1038/s41467-019-14027-y |
[52] | Fang X, Li W, Yuan H T, Chen H W, Bo C, Ma Q, Cai R H. Mutation of ZmWRKY86 confers enhanced salt stress tolerance in maize. Plant Physiol Biochem, 2021, 67: 840-850. |
[53] |
Luo J, Yu C M, Yan M, Chem Y H. Molecular characterization of the promoter of the stress-inducible ZmMYB30 gene in maize. Biol Plant, 2020, 64: 200-210.
doi: 10.32615/bp.2020.011 |
[54] | Lin M, Matschi S, Vasquez M, Chamness J, Kaczmar N, Baseggio M, Miller M, Stewart E L, Qiao P F, Scanlon M J, Molina I, Smith L G, Gore M A. Genome-wide association study for maize leaf cuticular conductance identifies candidate genes involved in the regulation of cuticle development. Genes Genom Genet (Bethesda), 2020, 10: 1671-1683. |
[55] |
Ge C X, Wang Y G, Lu S, Zhao X Y, Hou B K, Balint-Kurti P J, Wang G F. Multi-omics analyses reveal the regulatory network and the function of ZmUGTs in maize defense response. Front Plant Sci, 2021, 12: 738261.
doi: 10.3389/fpls.2021.738261 |
[56] |
Sallam N, Moussa M. DNA methylation changes stimulated by drought stress in ABA-deficient maize mutant vp10. Plant Physiol Biochem, 2021, 160: 218-224.
doi: 10.1016/j.plaphy.2021.01.024 |
[57] | Shao H B, Chu L Y, Shao M A, Jaleel C A, Mi H M. Higher plant antioxidants and redox signaling under environmental stresses. Comp Rendus Biol, 2008, 331: 433-441. |
[58] | Wang J F, Shen Q R. Roles of organic acid metabolism in plant adaptation to nutrient deficiency and aluminum toxicity stress. Chin J Appl Ecol, 2006, 17: 2210-2216. |
[59] | Raina M, Kisku A V, Joon S, Kumar S, Kumar D. Calcium Transport Elements in Plants. The United States of America: Academic Press, 2021. pp 231-248. |
[60] |
Shigeoka S, Maruta T. Cellular redox regulation, signaling, and stress response in plants. Biosci Biotechnol Biochem, 2014, 78: 1457-1470.
doi: 10.1080/09168451.2014.942254 |
[61] |
Jang J C. Arginine-rich motif-tandem CCCH zinc finger proteins in plant stress responses and post-transcriptional regulation of gene expression. Plant Sci, 2016, 252: 118-124.
doi: 10.1016/j.plantsci.2016.06.014 |
[62] |
Wu X W, Bacic A, Johnson K L, Humphries J. The role of brachypodium distachyon Wall-Associated Kinases (WAKs) in cell expansion and stress responses. Cells, 2020, 9: 2478.
doi: 10.3390/cells9112478 |
[1] | ZHANG Jin-Xin, GE Jun-Zhu, MA Wei, DING Zai-Song, WANG Xin-Bing, LI Cong-Feng, ZHOU Bao-Yuan, ZHAO Ming. Research advance on annual water use efficiency of winter wheat-summer maize cropping system in North China Plain [J]. Acta Agronomica Sinica, 2023, 49(4): 879-892. |
[2] | ZHOU Bin-Han, YANG Zhu, WANG Shu-Ping, FANG Zheng-Wu, HU Zan-Min, XU Zhao-Shi, ZHANG Ying-Xin. Screening of active LTR retrotransposons in wheat (Triticum aestivum L.) seedlings and analysis of their responses to abiotic stresses [J]. Acta Agronomica Sinica, 2023, 49(4): 966-977. |
[3] | XU Zi-Yin, YU Xiao-Ling, ZOU Liang-Ping, ZHAO Ping-Juan, LI Wen-bin, GENG Meng-Ting, RUAN Meng-Bin. Expression pattern analysis and interaction protein screening of cassava MYB transcription factor MeMYB60 [J]. Acta Agronomica Sinica, 2023, 49(4): 955-965. |
[4] | LUAN Yi, BAI Yan, LU Shi, LI Lei-Xin, WANG De-Qiang, GAO Ting-Ting, SHI Jie, YANG Hong-Ming, LU Ming. Multi-disease resistance evaluation of spring maize varieties for the national regional test in Northeast and North China during 2016–2020 [J]. Acta Agronomica Sinica, 2023, 49(4): 1122-1131. |
[5] | SUN Quan-Xi, YUAN Cui-Ling, MOU Yi-Fei, YAN Cai-Xia, ZHAO Xiao-Bo, WANG Juan, WANG Qi, SUN Hui, LI Chun-Juan, SHAN Shi-Hua. Genome-wide identification and expression analysis of SWEET genes from peanut genomes [J]. Acta Agronomica Sinica, 2023, 49(4): 938-954. |
[6] | WU Xi, WANG Jia-Rui, HAO Miao-Yi, ZHANG Hong-Jun, ZHANG Ren-He. Effects of planting density on solar and heat resource utilization and yield of maize varieties at different growth stages [J]. Acta Agronomica Sinica, 2023, 49(4): 1065-1078. |
[7] | XU Jia-Bo, WU Peng-Hao, HUANG Bo-Wen, CHEN Zhan-Hui, MA Yue-Hong, REN Jiao-Jiao. QTL locating and genomic selection for tassel-related traits using F2:3 lineage haploids [J]. Acta Agronomica Sinica, 2023, 49(3): 622-633. |
[8] | MA Ya-Jie, BAO Jian-Xi, GAO Yue-Xin, LI Ya-Nan, QIN Wen-Xuan, WANG Yan-Bo, LONG Yan, LI Jin-Ping, DONG Zhen-Ying, WAN Xiang-Yuan. Genome-wide association analysis of plant height and ear height related traits in maize [J]. Acta Agronomica Sinica, 2023, 49(3): 647-661. |
[9] | LIU Yue, MING Bo, LI Yao-Yao, WANG Ke-Ru, HOU Peng, XUE Jun, LI Shao-Kun, XIE Rui-Zhi. Analysis on high yield planting density of spring maize in Northeast China from root and shoot coordinated development [J]. Acta Agronomica Sinica, 2023, 49(3): 795-807. |
[10] | LIU Shan-Shan, PANG Ting, YUAN Xiao-Ting, LUO Kai, CHEN Ping, FU Zhi-Dan, WANG Xiao-Chun, YANG Feng, YONG Tai-Wen, YANG Wen-Yu. Effects of row spacing on root nodule growth and nitrogen fixation potential of different nodulation characteristics soybeans in intercropping [J]. Acta Agronomica Sinica, 2023, 49(3): 833-844. |
[11] | FANG Ya-Ting, REN Tao, ZHANG Shun-Tao, ZHOU Xiang-Qi, ZHAO Jian, LIAO Shi-Peng, CONG Ri-Huan, LU Jian-Wei. Different effects of nitrogen, phosphorus and potassium fertilizers on oilseed rape yield and nutrient utilization between continuous upland and paddy-upland rotations [J]. Acta Agronomica Sinica, 2023, 49(3): 772-783. |
[12] | YIN Fang-Bing, LI Ya-Nan, BAO Jian-Xi, MA Ya-Jie, QIN Wen-Xuan, WANG Rui-Pu, LONG Yan, LI Jin-Ping, DONG Zhen-Ying, WAN Xiang-Yuan. Genome-wide association study and candidate genes predication of yield related ear traits in maize [J]. Acta Agronomica Sinica, 2023, 49(2): 377-391. |
[13] | HUANG Zhen, WU Qi-Jing, CHEN Can-Ni, WU Xia, CAO Shan, ZHANG Hui, YUE Jiao, HU Ya-Li, LUO Deng-Jie, LI Yun, LIAO Chang-Jun, LI Ru, CHEN Peng. Role of calmodulin gene (HcCaM7) and its protein acetylation is involved in kenaf response to abiotic stress [J]. Acta Agronomica Sinica, 2023, 49(2): 402-413. |
[14] | SONG Jie, WANG Shao-Xiang, LI Liang, HUANG Jin-Ling, ZHAO Bin, ZHANG Ji-Wang, REN Bai-Zhao, LIU Peng. Effects of potassium application rate on NPK uptake and utilization and grain yield in summer maize (Zea mays L.) [J]. Acta Agronomica Sinica, 2023, 49(2): 539-551. |
[15] | LIU Meng, ZHANG Yao, GE Jun-Zhu, ZHOU Bao-Yuan, WU Xi-Dong, YANG Yong-An, HOU Hai-Peng. Effects of nitrogen application and harvest time on grain yield and nitrogen use efficiency of summer maize under different rainfall years [J]. Acta Agronomica Sinica, 2023, 49(2): 497-510. |
|