Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (3): 672-686.doi: 10.3724/SP.J.1006.2023.23017

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Identification of abiotic stress-related gene co-expression networks in maize by WGCNA

DENG Zhao(), JIANG Huan-Qi, CHENG Li-Sha, LIU Rui, HUANG Min, LI Man-Fei(), DU He-Wei()   

  1. College of Life Sciences, Yangtze University, Jingzhou 434025, Hubei, China
  • Received:2022-02-22 Accepted:2022-06-07 Online:2023-03-12 Published:2022-07-08
  • Contact: LI Man-Fei,DU He-Wei E-mail:282175698@qq.com;mfli_maize@163.com;duhewei666@163.com
  • About author:First author contact:**Contributed equally to this work
  • Supported by:
    National Natural Science Foundation of China(31771801);National Natural Science Foundation of China(32072069);Outstanding Young and Middle-aged Innovation Team Project of Hubei Province(2017T04);College Students’ Innovation and Entrepreneurship Training Program of Hubei Province(Yz2021220)

Abstract:

Weighted Gene Co-expression Network Analysis (WGCNA) is a classic systems biology analysis method, which can be used to identify coexpressed gene modules and explore the biological correlation between modules and target traits, and mine core genes in module networks. In this study, 58 transcriptome data of roots, stems, leaves, and other tissues under low temperature stress, high temperature stress, drought stress, and salt stress in maize (Zea mays L.) were collected, and the gene co-expression network of maize abiotic stress was identified by WGCNA method. After filtering the 12,552 low-expression genes from transcriptome data, the co-expression network was constructed using the remaining 27,204 high-expression genes, and 25 modules were obtained. According to the distribution of abiotic stress-related genes and different expression genes in the modules reported in maize, the mediumpurple4, ivory, coral2, darkseagreen4 modules most related to low temperature stress, high temperature stress, drought and salt stresses, and green modules responding to various stresses were screened out. Subsequently, GO enrichment of the genes in these five modules revealed that genes with functions related to abiotic stress were significantly enriched in these modules, such as stress response, peroxidase activity. Correlation analysis showed that 10 abiotic stress-related core genes were predicted, including Zm00001eb072870, Zm00001eb320970, Zm00001eb037640, Zm00001eb423300, and Zm00001eb265310. This study provides new ideas for the mining of abiotic stress-related genes and the research of abiotic stress regulatory networks in maize.

Key words: maize, abiotic stress, WGCNA, core gene

Fig. 1

Determination of soft-thresholding power (β)"

Fig. 2

Gene cluster dendrograms and module detecting A: the hierarchical clustering tree of samples; B: the dynamic tree cut represents the module divided according to the expression of each gene; C: the merged dynamic is the merging similar modules according to the dynamic tree cut."

Fig. 3

Distribution of reported genes The English words in the figure indicate the module colors, and the percentage indicates the ratio of the number of reported abiotic stress genes to the total number of reported genes in each module."

Fig. 4

Number of stresses related DEGs in modules The abscissa in the figure is the module colors, the ordinate is the number of genes, the pink part represents the number of DEGs, and the gray part represents the number of non-differentially expressed genes in the module. A: five modules with the highest proportion of DEGs in cold stress. B: five modules with the highest percentage of DEGs in heat stress. C: five modules with the highest percentage of DEGs in drought stress. D: five modules with the highest percentage of DEGs in salt stress."

Table 1

GO enrichments of network modules (part)"

胁迫
Stress
模块
Module
基因数目
Number of genes
GO 显著富集的项目
Significantly enriched term
P
P-value
寒冷 Mediumpurple4 6 GO:0007623 昼夜节律 0.0000043
Cold Circadian rhythm
7 GO:0009738 脱落酸激活的信号通路 0.0002
Abscisic acid-activated signaling pathway
7 GO:0009266 对温度刺激的响应 0.0088
Response to temperature stimulus
7 GO:0071215 脱落酸刺激的细胞响应 0.00024
Cellular response to abscisic acid stimulus
高温 Ivory 50 GO:0009408 对热的响应 9.90E-58
Heat Response to heat
21 GO:0034605 细胞对热的响应 9.50E-24
Cellular response to heat
69 GO:0006950 对压力的响应 7.90E-22
Response to stress
76 GO:0050896 对刺激的响应 5.00E-12
Response to stimulus
47 GO:0051082 未折叠蛋白质结合 1.80E-45
Unfolded protein binding
干旱 Coral2 236 GO:0055114 氧化还原过程 0.00000077
Drought Oxidation-reduction process
193 GO:0009056 分解代谢过程 0.00031
Catabolic process
43 GO:0006979 氧化应激响应 0.0014
Response to oxidative stress
26 GO:0042744 过氧化氢分解代谢过程 0.00051
Hydrogen peroxide catabolic process
Darkseagreen4 103 GO:0016054 有机酸分解代谢过程 6.90E-09
Salt Organic acid catabolic process
139 GO:0055114 氧化还原过程 5.50E-13
Oxidation-reduction process
25 GO:0009605 对外源刺激的响应 0.00038
Response to external stimulus
13 GO:0015849 有机酸转运 0.00031
Organic acid transport

Fig. 5

Co-expression network related to abiotic stresses The genes marked in red represent the core genes in the co-expression network."

Table 2

Functional annotation of modular hub genes"

模块分类
Module name
基因名称
Gene name
玉米中基因注释
Annotation in maize
水稻同源基因名称
Homologous gene in rice
水稻中基因注释
Annotation in rice
Mediumpurple4 Zm00001eb072870 MYB转录因子20
MYB-related-transcription factor 20
LOC_Os04g49450 MYB 家族转录因子
MYB family transcription factor
Zm00001eb320970 单加氧酶/氧化还原酶
Monooxygenase/
oxidoreductase
LOC_Os09g37620 含黄素的单加氧酶家族蛋白
Flavin-containing monooxygenase family protein
Ivory Zm00001eb037640 90 kD热休克蛋白 ATPase 的激活剂
Activator of 90 kD heat shock protein ATPase
LOC_Os08g36150 90 kD热休克蛋白ATPase同源物的激活剂
Activator of 90 kD heat shock protein ATPase homolog
Zm00001eb423300 IV类热休克蛋白
Class IV heat shock protein
LOC_Os04g36750 Hsp20/alpha晶状体蛋白家族蛋白
Hsp20/alpha crystallin family protein
Coral2 Zm00001eb265310 类WAK家族受体蛋白激酶
WAK family receptor-like protein kinase
LOC_Os10g07556 类细胞壁相关受体激酶样22前体
Wall-associated receptor kinase-like 22 precursor
Zm00001eb058250 过氧化物酶16
Peroxidase 16
LOC_Os03g55410 过氧化物酶前体
Peroxidase precursor
Darkseagreen4 Zm00001eb401330 富含CHP的锌指蛋白样
CHP-rich zinc finger protein-like
LOC_Os07g42070 含有DC1结构域的蛋白质
DC1 domain-containing protein
Zm00001eb147030 含NAC结构域的蛋白质90
NAC domain-containing protein 90
LOC_Os01g64310 没有顶端分生组织蛋白
No apical meristem protein
Green Zm00001eb375120 2-酮戊二酸(2OG)和Fe (II)依赖性加氧酶超家族蛋白
2-oxoglutarate (2OG) and Fe (II)-dependent oxygenase superfamily protein
LOC_Os06g08023 黄酮醇合成酶/黄烷酮3-羟化酶
Flavonol synthase/flavanone 3-hydroxylase
Zm00001eb323090 异柠檬酸裂解酶1
Isocitrate lyase1
LOC_Os07g34520 异柠檬酸裂解酶
Isocitrate lyase

Fig. 6

Co-expression of abiotic stress genes The words in the figure represent the stress types, and the numbers represent the number of differentially expressed genes."

Fig. 7

Distribution of co-expressed genes in the modules The numbers in the figure represent the number of co-expressed genes, and the five parts represent the proportion of the four modules with a larger number of genes and the remaining genes."

Table 3

GO enrichment of green module (part)"

分类
Class
GO分类
GO term
显著富集的项目
Significantly enriched term
P
P-value
细胞组分 GO:0005886 质膜 0.0000046
Cellular component Plasma membrane
GO:0071944 细胞外围 0.0000072
Cell periphery
GO:0005634 0.023
Nucleus
分子功能 GO:0004674 蛋白质丝氨酸/苏氨酸激酶活性 0.00000063
Molecular function Protein serine/threonine kinase activity
GO:0004672 蛋白激酶活性 0.00000082
Protein kinase activity
GO:0005516 钙调蛋白结合 0.0002
Calmodulin binding
GO:0030246 碳水化合物结合 0.000057
Carbohydrate binding
GO:0016301 激酶活性 0.0001
Kinase activity
GO:0042887 酰胺跨膜转运蛋白活性 0.0024
Amide transmembrane transporter activity
GO:0005342 有机酸跨膜转运蛋白活性 0.038
Organic acid transmembrane transporter activity
GO:0046943 羧酸跨膜转运蛋白活性 0.038
Carboxylic acid transmembrane transporter activity
生物学过程 GO:0006355 转录调控, DNA模板化 0.0000023
Biological process Regulation of transcription, DNA-templated
GO:2001141 调节RNA生物合成过程 0.0000031
Regulation of RNA biosynthetic process
GO:1903506 调节核酸模板化转录 0.0000031
Regulation of nucleic acid-templated transcription
分类
Class
GO分类
GO term
显著富集的项目
Significantly enriched term
P
P-value
GO:2000022 调节茉莉酸介导的信号通路 0.00087
Regulation of jasmonic acid mediated signaling pathway
GO:0015849 有机酸运输 0.045
Organic acid transport
GO:0009755 激素介导的信号通路 0.049
Hormone-mediated signaling pathway
GO:0006796 含磷酸盐化合物代谢过程 0.0022
Phosphate-containing compound metabolic process
GO:0009753 对茉莉花酸的响应 0.0027
Response to jasmonic acid
GO:0009867 茉莉酸介导的信号通路 0.0047
Jasmonic acid mediated signaling pathway
GO:0071395 细胞对茉莉酸刺激的响应 0.0056
Cellular response to jasmonic acid stimulus
GO:0080134 调节对压力的响应 0.019
Regulation of response to stress
GO:0071229 细胞对酸性化学物质的响应 0.025
Cellular response to acid chemical
GO:0043207 对外部生物刺激的响应 0.03
Response to external biotic stimulus
GO:0051707 对其他微生物的响应 0.03
Response to other organism
GO:0003333 氨基酸跨膜转运 0.03
Amino acid transmembrane transport
GO:1903825 有机酸跨膜转运 0.031
Organic acid transmembrane transport
GO:1905039 羧酸跨膜转运 0.031
Carboxylic acid transmembrane transport
GO:0009733 对生长素的响应 0.043
Response to auxin

Fig. 8

Relative expression of core genes after abiotic stress treatments The black bar in the figure represents the relative expression level of genes, and the words below the X-axis represent the corresponding treatments. A and B show the relative expression levels of Zm00001eb072870 and Zm00001eb320970 in the mediumpurple4 module after cold stress; C and D show the relative expression levels of Zm00001eb037640 and Zm00001eb423300 in ivory modules after heat stress; E and F represent the relative expression levels of Zm00001eb265310 and Zm00001eb058250 in the coral2 module after drought stress; G and H show the relative expression levels of Zm00001eb375120 and Zm00001eb323090 in darkseagreen4 modules after salt stress. **: P < 0.05."

Fig. 9

Relative expression level of core genes simultaneously responded to multiple abiotic stresses The black bar in the figure represents the relative expression levels of the genes under normal treatment, the gray bar represents the relative expression levels of the genes after abiotic stress treatment, and the words below the X axis represent different stress treatments. A and B represent the relative expression levels of Zm00001eb401330 and Zm00001eb147030 in green module under cold stress, heat stress, drought stress, and salt stress, respectively. **: P < 0.05."

[1] Zhang B, Horvath S. A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol, 2005, 4: 17.
pmid: 16646834
[2] Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinfor, 2008, 9: 559.
doi: 10.1186/1471-2105-9-559
[3] Kuang J F, Wu C J, Guo Y F, Walther D, Shan W, Chen J Y, Chen L, Lu W J. Deciphering transcriptional regulators of banana fruit ripening by regulatory network analysis. Plant Biotechnol J, 2021; 19: 477-489.
doi: 10.1111/pbi.13477
[4] Sun S, Xiong X P, Zhu Q, Li Y J, Sun J. Transcriptome sequencing and metabolome analysis reveal genes involved in pigmentation of green-colored cotton fibers. Int J Mol Sci, 2019, 20: 4838.
doi: 10.3390/ijms20194838
[5] Greenham K, Guadagno C R, Gehan M A, Mockler T C, Weinig C, Ewers B E, McClung C R. Temporal network analysis identifies early physiological and transcriptomic indicators of mild drought in Brassica rapa. eLife, 2017, 6: e29655.
doi: 10.7554/eLife.29655
[6] 马娟, 曹言勇, 王利锋, 李晶晶, 王浩, 范艳萍, 李会勇. 利用WGCNA鉴定玉米株高和穗位高基因共表达模块. 作物学报, 2020, 46: 385-394.
doi: 10.3724/SP.J.1006.2020.93021
Ma J, Cao Y Y, Wang L F, Li J J, Wang H, Fan Y P, Li H Y. Identification of gene co-expression modules of maize plant height and ear height by WGCNA. Acta Agron Sin, 2020, 46: 385-394 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.93021
[7] Larcher W. Physiological Plant Ecology. England: J R Etherington, 1996. pp 630-631.
[8] Krasensky J, Jonak C. Drought, salt, and temperature stress- induced metabolic rearrangements and regulatory networks. J Exp Bot, 2012, 63: 1593-1608
doi: 10.1093/jxb/err460 pmid: 22291134
[9] Richards R A. Defining selection criteria to improve yield under drought. Plant Growth Regul, 1996, 20: 157-166.
doi: 10.1007/BF00024012
[10] Cushman J C, Bohnert H J. Genomic approaches to plant stress tolerance. Curr Opin Plant Biol, 2000, 3: 117-124
doi: 10.1016/s1369-5266(99)00052-7 pmid: 10712956
[11] Li M, Sui N, Lin L, Yang Z, Zhang Y. Transcriptomic profiling revealed genes involved in response to cold stress in maize. Funct Plant Biol, 2019, 46: 830-844.
doi: 10.1071/FP19065 pmid: 31217070
[12] Frey F P, Pitz M, Schön C C, Hochholdinger F. Transcriptomic diversity in seedling roots of European flint maize in response to cold. BMC Genomics, 2020, 21: 300-310.
doi: 10.1186/s12864-020-6682-1 pmid: 32293268
[13] Guo J, Li C, Zhang X, Li Y, Zhang D, Shi Y, Song Y, Li Y, Yang D, Wang T. Transcriptome and GWAS analyses reveal candidate gene for seminal root length of maize seedlings under drought stress. Plant Sci, 2020, 292: 110380.
doi: 10.1016/j.plantsci.2019.110380
[14] Cao L, Lu X, Wang G, Zhang P, Fu J, Wang Z, Wei L, Wang T. Transcriptional regulatory networks in response to drought stress and rewatering in maize (Zea mays L.). Mol Genet Genomics, 2021, 6: 1203-1219.
[15] Li W Z, Hao Z F, Pang J L, Zhang M, Wang N, Li X H, Li W H, Wang L, Xu M Y. Effect of water-deficit on tassel development in maize. Gene, 2019, 681: 86-92.
doi: S0378-1119(18)30976-4 pmid: 30253182
[16] Wang H Q, Liu P, Zhang J W, Zhao B, Ren B Z. Endogenous hormones inhibit differentiation of young ears in maize (Zea mays L.) under heat stress. Front Plant Sci, 2020, 11: 533040.
[17] Waters A J, Makarevitch I, Noshay J, Burghardt L T, Hirsch C N, Hirsch C D, Springer N M. Natural variation for gene expression responses to abiotic stress in maize. Plant J, 2017, 89: 706-717.
[18] Wang M Q, Wang Y F, Zhang Y F, Li C X, Gong S C, Yan S Q, Li G L, Hu G H, Ren H L, Yang J F, Yu T, Yang K J. Comparative transcriptome analysis of salt-sensitive and salt-tolerant maize reveals potential mechanisms to enhance salt resistance. Genes Genomics, 2019, 41: 781-801.
doi: 10.1007/s13258-019-00793-y
[19] Goldberg D H, Victor J D, Gardner E P, Gardner D. Spike train analysis toolkit: enabling wider application of information- theoretic techniques to neurophysiology. Neuroinformatics, 2009, 7: 165-178.
doi: 10.1007/s12021-009-9049-y pmid: 19475519
[20] Kroll K W, Mokaram N E, Pelletier A R, Frankhouser D E, Westphal M S, Bundschuh R, Blachly J S, Yan P. Quality control for RNA-Seq (QuaCRS): an integrated quality control pipeline. Cancer Inform, 2014, 13: 7-14.
[21] Bolger A M, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics, 2014, 30: 2114-2120.
doi: 10.1093/bioinformatics/btu170 pmid: 24695404
[22] Kim D, Langmead B, Salzberg S L. HISAT: a fast spliced aligner with low memory requirements. Nat Methods, 2015, 12: 357-360.
doi: 10.1038/nmeth.3317 pmid: 25751142
[23] Liao Y, Smyth G K, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics, 2014, 30: 923-930.
doi: 10.1093/bioinformatics/btt656 pmid: 24227677
[24] Ghosh S, Chan C K. Analysis of RNA-Seq data using TopHat and Cufflinks. Methods Mol Biol, 2016, 1374: 339-361.
doi: 10.1007/978-1-4939-3167-5_18 pmid: 26519415
[25] Tian T, Liu Y, Yan H Y, You Q, Yi X, Du Z, Xu W Y, Su Z. agriGO v2.0: a GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Res, 2017, 45: W122-W129.
doi: 10.1093/nar/gkx382
[26] Su G, Morris J H, Demchak B, Bader G D. Biological network exploration with Cytoscape 3. Curr Prot Bioinfor, 2014, 47: 8.13.1-8.13.24.
[27] Zeng R, Li Z Y, Shi Y T, Fu D, Yin P, Cheng J K, Jiang C F, Yang S H. Natural variation in a type-A response regulator confers maize chilling tolerance. Nat Commun, 2021, 12: 4713.
doi: 10.1038/s41467-021-25001-y pmid: 34354054
[28] Wang X L, Wang H W, Liu S X, Ferjani A, Li J S, Yan J B, Yang X H, Qin F. Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings. Nat Gene, 2016, 48: 1233-1241.
doi: 10.1038/ng.3636
[29] Pan Z Y, Liu M, Zhao H L, Tan Z D, Liang K, Sun Q, Gong D M, He H J, Zhou W Q, Qiu F Z. ZmSRL5 is involved in drought tolerance by maintaining cuticular wax structure in maize. J Integr Plant Biol, 2020, 62: 1895-1909.
doi: 10.1111/jipb.12982
[30] Li X D, Gao Y Q, Wu W H, Chen L M, Wang Y. Two calcium-dependent protein kinases enhance maize drought tolerance by activating anion channel ZmSLAC1 in guard cells. Plant Biotechnol J, 2022, 20: 143-157.
doi: 10.1111/pbi.13701
[31] Xiang Y L, Sun X P, Gao S, Qin F, Dai M Q. Deletion of an endoplasmic reticulum stress response element in a ZmPP2C-A gene facilitates drought tolerance of maize seedlings. Mol Plants, 2017, 10: 456-469.
[32] Mao H D, Wang H W, Liu S X, Li Z Q, Yang X H, Yan J B, Li J S, Tran L S P, Qin F. A transposable element in a NAC gene is associated with drought tolerance in maize seedlings. Nat Commun, 2015, 6: 8326.
doi: 10.1038/ncomms9326 pmid: 26387805
[33] Li L, Du Y C, He C, Dietrich C R, Li J K, Ma X L, Wang R, Liu Q, Liu S Z, Wang G Y, Schnable P S, Zheng J. Maize glossy6 is involved in cuticular wax deposition and drought tolerance. J Exp Bot, 2019, 70: 3089-3099.
doi: 10.1093/jxb/erz131 pmid: 30919902
[34] Vaughan M M, Christensen S, Schmelz E A, Huffaker A, McAuslane H J, Alborn H T, Romero M, Allen L H, Teal P E. Accumulation of terpenoid phytoalexins in maize roots is associated with drought tolerance. Plant Cell Environ, 2015, 38: 2195-2207.
doi: 10.1111/pce.12482
[35] Zhu D, Chang Y, Pei T, Zhang X L, Liu L, Li Y, Zhuang J H, Yang H L, Qin F, Song C P, Ren D T. MAPK-like protein 1 positively regulates maize seedling drought sensitivity by suppressing ABA biosynthesis. Plant J, 2020, 102: 747-760.
doi: 10.1111/tpj.14660
[36] Zhu J T, Wang G L, Li C L, Li Q Q, Gao Y K, Chen F G, Xia G M. Maize Sep15-like functions in endoplasmic reticulum and reactive oxygen species homeostasis to promote salt and osmotic stress resistance. Plant Cell Environ, 2019, 42: 1486-1502.
doi: 10.1111/pce.13507
[37] Lund A A, Blum P H, Bhattramakki D, Elthon T E. Heat-stress response of maize mitochondria. Plant Physiol, 1998, 116: 1097-1110.
pmid: 9501143
[38] Li Z X, Srivastava R, Tang J, Zheng Z H, Howell S H. Cis-effects condition the induction of a major unfolded protein response factor, ZmHSF60, in response to heat stress in maize. Front Plant Sci, 2018, 9: 833.
doi: 10.3389/fpls.2018.00833
[39] Zhang N, Huang X Q. Mapping quantitative trait loci and predicting candidate genes for leaf angle in maize. PLoS One, 2021, 16: e0245129.
[40] Li Z X, Howell S H. Heat stress responses and thermotolerance in maize. Int J Mol Sci, 2021, 22: 948.
doi: 10.3390/ijms22020948
[41] Holubová Ľ, Švubová R, Slováková Ľ, Bokor B, Kročková V C, Renčko J, Uhrin F, Medvecká V, Zahoranová A, Gálová E. Cold atmospheric pressure plasma treatment of maize grains-induction of growth, enzyme activities and heat shock proteins. Int J Mol Sci, 2021, 22: 8509.
doi: 10.3390/ijms22168509
[42] Jiang Y L, Zheng Q Q, Chen L, Liang Y N, Wu J D. Ectopic overexpression of maize heat shock transcription factor gene Zmhsf04 confers increased thermos- and salt-stress tolerance in transgenic Arabidopsis. Acta Physiol Plant, 2018, 40: 9.
doi: 10.1007/s11738-017-2587-2
[43] Jiménez-González A S, Fernández N, Martínez-Salas E, Sánchez de Jiménez E. Functional and structural analysis of maize hsp101 IRES. PLoS One, 2014, 9: e107459.
[44] Luo X, Wang B C, Gao S, Zhang F, Terzaghi W, Dai M Q. Genome-wide association study dissects the genetic bases of salt tolerance in maize seedlings. J Integr Plant Biol, 2019, 61: 658-674.
doi: 10.1111/jipb.12797
[45] Augustine R C, York S L, Rytz T C, Vierstra R D. Defining the SUMO system in maize: SUMOylation is up-regulated during endosperm development and rapidly induced by stress. Plant Physiol, 2016, 171: 2191-2210.
doi: 10.1104/pp.16.00353 pmid: 27208252
[46] Gu L K, Liu Y K, Zong X J, Liu L, Li D P, Li D Q. Overexpression of maize mitogen-activated protein kinase gene, ZmSIMK1 in Arabidopsis increases tolerance to salt stress. Mol Biol Rep, 2010, 37: 4067-4073.
doi: 10.1007/s11033-010-0066-6
[47] Li H Y, Du H M, Huang K F, Chen X, Liu T Y, Gao S B, Liu H L, Tang Q L, Rong T Z, Zhang S Z. Identification, and functional and expression analyses of the CorA/MRS2/MGT-Type magnesium transporter family in maize. Plant Cell Physiol, 2016, 57: 1153-1168.
doi: 10.1093/pcp/pcw064 pmid: 27084594
[48] Zhu J T, Wang G L, Li C L, Li Q Q, Gao Y K, Chen F G, Xia G M. Maize Sep15-like functions in endoplasmic reticulum and reactive oxygen species homeostasis to promote salt and osmotic stress resistance. Plant Cell Environ, 2019, 42: 1486-1502.
doi: 10.1111/pce.13507
[49] Ma H Z, Liu C, Li Z X, Ran Q J, Xie G N, Wang B M, Fang S, Chu J F, Zhang J R. ZmbZIP4 contributes to stress resistance in maize by regulating ABA synthesis and root development. Plant Physiol, 2018, 178: 753-770.
doi: 10.1104/pp.18.00436 pmid: 30126870
[50] Kong M S, Luo M J, Li J N, Feng Z, Zhang Y X, Song W, Zhang R Y, Wang R H, Wang Y D, Zhao J R, Tao Y S, Zhao Y X. Genome-wide identification, characterization, and expression analysis of the monovalent cation-proton antiporter superfamily in maize, and functional analysis of its role in salt tolerance. Genomics, 2021, 113: 1940-1951.
doi: 10.1016/j.ygeno.2021.04.032 pmid: 33895282
[51] Cao Y B, Zhang M, Liang X Y, Li F R, Shi Y L, Yang X H, Jiang C F. Natural variation of an EF-hand Ca2+-binding-protein coding gene confers saline-alkaline tolerance in maize. Nat Commun, 2020, 11: 186.
doi: 10.1038/s41467-019-14027-y
[52] Fang X, Li W, Yuan H T, Chen H W, Bo C, Ma Q, Cai R H. Mutation of ZmWRKY86 confers enhanced salt stress tolerance in maize. Plant Physiol Biochem, 2021, 67: 840-850.
[53] Luo J, Yu C M, Yan M, Chem Y H. Molecular characterization of the promoter of the stress-inducible ZmMYB30 gene in maize. Biol Plant, 2020, 64: 200-210.
doi: 10.32615/bp.2020.011
[54] Lin M, Matschi S, Vasquez M, Chamness J, Kaczmar N, Baseggio M, Miller M, Stewart E L, Qiao P F, Scanlon M J, Molina I, Smith L G, Gore M A. Genome-wide association study for maize leaf cuticular conductance identifies candidate genes involved in the regulation of cuticle development. Genes Genom Genet (Bethesda), 2020, 10: 1671-1683.
[55] Ge C X, Wang Y G, Lu S, Zhao X Y, Hou B K, Balint-Kurti P J, Wang G F. Multi-omics analyses reveal the regulatory network and the function of ZmUGTs in maize defense response. Front Plant Sci, 2021, 12: 738261.
doi: 10.3389/fpls.2021.738261
[56] Sallam N, Moussa M. DNA methylation changes stimulated by drought stress in ABA-deficient maize mutant vp10. Plant Physiol Biochem, 2021, 160: 218-224.
doi: 10.1016/j.plaphy.2021.01.024
[57] Shao H B, Chu L Y, Shao M A, Jaleel C A, Mi H M. Higher plant antioxidants and redox signaling under environmental stresses. Comp Rendus Biol, 2008, 331: 433-441.
[58] Wang J F, Shen Q R. Roles of organic acid metabolism in plant adaptation to nutrient deficiency and aluminum toxicity stress. Chin J Appl Ecol, 2006, 17: 2210-2216.
[59] Raina M, Kisku A V, Joon S, Kumar S, Kumar D. Calcium Transport Elements in Plants. The United States of America: Academic Press, 2021. pp 231-248.
[60] Shigeoka S, Maruta T. Cellular redox regulation, signaling, and stress response in plants. Biosci Biotechnol Biochem, 2014, 78: 1457-1470.
doi: 10.1080/09168451.2014.942254
[61] Jang J C. Arginine-rich motif-tandem CCCH zinc finger proteins in plant stress responses and post-transcriptional regulation of gene expression. Plant Sci, 2016, 252: 118-124.
doi: 10.1016/j.plantsci.2016.06.014
[62] Wu X W, Bacic A, Johnson K L, Humphries J. The role of brachypodium distachyon Wall-Associated Kinases (WAKs) in cell expansion and stress responses. Cells, 2020, 9: 2478.
doi: 10.3390/cells9112478
[1] ZHANG Jin-Xin, GE Jun-Zhu, MA Wei, DING Zai-Song, WANG Xin-Bing, LI Cong-Feng, ZHOU Bao-Yuan, ZHAO Ming. Research advance on annual water use efficiency of winter wheat-summer maize cropping system in North China Plain [J]. Acta Agronomica Sinica, 2023, 49(4): 879-892.
[2] ZHOU Bin-Han, YANG Zhu, WANG Shu-Ping, FANG Zheng-Wu, HU Zan-Min, XU Zhao-Shi, ZHANG Ying-Xin. Screening of active LTR retrotransposons in wheat (Triticum aestivum L.) seedlings and analysis of their responses to abiotic stresses [J]. Acta Agronomica Sinica, 2023, 49(4): 966-977.
[3] XU Zi-Yin, YU Xiao-Ling, ZOU Liang-Ping, ZHAO Ping-Juan, LI Wen-bin, GENG Meng-Ting, RUAN Meng-Bin. Expression pattern analysis and interaction protein screening of cassava MYB transcription factor MeMYB60 [J]. Acta Agronomica Sinica, 2023, 49(4): 955-965.
[4] LUAN Yi, BAI Yan, LU Shi, LI Lei-Xin, WANG De-Qiang, GAO Ting-Ting, SHI Jie, YANG Hong-Ming, LU Ming. Multi-disease resistance evaluation of spring maize varieties for the national regional test in Northeast and North China during 2016–2020 [J]. Acta Agronomica Sinica, 2023, 49(4): 1122-1131.
[5] SUN Quan-Xi, YUAN Cui-Ling, MOU Yi-Fei, YAN Cai-Xia, ZHAO Xiao-Bo, WANG Juan, WANG Qi, SUN Hui, LI Chun-Juan, SHAN Shi-Hua. Genome-wide identification and expression analysis of SWEET genes from peanut genomes [J]. Acta Agronomica Sinica, 2023, 49(4): 938-954.
[6] WU Xi, WANG Jia-Rui, HAO Miao-Yi, ZHANG Hong-Jun, ZHANG Ren-He. Effects of planting density on solar and heat resource utilization and yield of maize varieties at different growth stages [J]. Acta Agronomica Sinica, 2023, 49(4): 1065-1078.
[7] XU Jia-Bo, WU Peng-Hao, HUANG Bo-Wen, CHEN Zhan-Hui, MA Yue-Hong, REN Jiao-Jiao. QTL locating and genomic selection for tassel-related traits using F2:3 lineage haploids [J]. Acta Agronomica Sinica, 2023, 49(3): 622-633.
[8] MA Ya-Jie, BAO Jian-Xi, GAO Yue-Xin, LI Ya-Nan, QIN Wen-Xuan, WANG Yan-Bo, LONG Yan, LI Jin-Ping, DONG Zhen-Ying, WAN Xiang-Yuan. Genome-wide association analysis of plant height and ear height related traits in maize [J]. Acta Agronomica Sinica, 2023, 49(3): 647-661.
[9] LIU Yue, MING Bo, LI Yao-Yao, WANG Ke-Ru, HOU Peng, XUE Jun, LI Shao-Kun, XIE Rui-Zhi. Analysis on high yield planting density of spring maize in Northeast China from root and shoot coordinated development [J]. Acta Agronomica Sinica, 2023, 49(3): 795-807.
[10] LIU Shan-Shan, PANG Ting, YUAN Xiao-Ting, LUO Kai, CHEN Ping, FU Zhi-Dan, WANG Xiao-Chun, YANG Feng, YONG Tai-Wen, YANG Wen-Yu. Effects of row spacing on root nodule growth and nitrogen fixation potential of different nodulation characteristics soybeans in intercropping [J]. Acta Agronomica Sinica, 2023, 49(3): 833-844.
[11] FANG Ya-Ting, REN Tao, ZHANG Shun-Tao, ZHOU Xiang-Qi, ZHAO Jian, LIAO Shi-Peng, CONG Ri-Huan, LU Jian-Wei. Different effects of nitrogen, phosphorus and potassium fertilizers on oilseed rape yield and nutrient utilization between continuous upland and paddy-upland rotations [J]. Acta Agronomica Sinica, 2023, 49(3): 772-783.
[12] YIN Fang-Bing, LI Ya-Nan, BAO Jian-Xi, MA Ya-Jie, QIN Wen-Xuan, WANG Rui-Pu, LONG Yan, LI Jin-Ping, DONG Zhen-Ying, WAN Xiang-Yuan. Genome-wide association study and candidate genes predication of yield related ear traits in maize [J]. Acta Agronomica Sinica, 2023, 49(2): 377-391.
[13] HUANG Zhen, WU Qi-Jing, CHEN Can-Ni, WU Xia, CAO Shan, ZHANG Hui, YUE Jiao, HU Ya-Li, LUO Deng-Jie, LI Yun, LIAO Chang-Jun, LI Ru, CHEN Peng. Role of calmodulin gene (HcCaM7) and its protein acetylation is involved in kenaf response to abiotic stress [J]. Acta Agronomica Sinica, 2023, 49(2): 402-413.
[14] SONG Jie, WANG Shao-Xiang, LI Liang, HUANG Jin-Ling, ZHAO Bin, ZHANG Ji-Wang, REN Bai-Zhao, LIU Peng. Effects of potassium application rate on NPK uptake and utilization and grain yield in summer maize (Zea mays L.) [J]. Acta Agronomica Sinica, 2023, 49(2): 539-551.
[15] LIU Meng, ZHANG Yao, GE Jun-Zhu, ZHOU Bao-Yuan, WU Xi-Dong, YANG Yong-An, HOU Hai-Peng. Effects of nitrogen application and harvest time on grain yield and nitrogen use efficiency of summer maize under different rainfall years [J]. Acta Agronomica Sinica, 2023, 49(2): 497-510.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .