Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (4): 966-977.doi: 10.3724/SP.J.1006.2023.21023

• CROP GENETICS & BREEDING · GERMPLASM RESOURCES · MOLECULAR GENETICS • Previous Articles     Next Articles

Screening of active LTR retrotransposons in wheat (Triticum aestivum L.) seedlings and analysis of their responses to abiotic stresses

ZHOU Bin-Han1(), YANG Zhu1, WANG Shu-Ping1, FANG Zheng-Wu1, HU Zan-Min2, XU Zhao-Shi3, ZHANG Ying-Xin1,*()   

  1. 1College of Agriculture, Yangtze University, Hubei Collaborative Innovation Center for Grain Industry, Jingzhou 434025, Hubei, China
    2Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
    3Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement/Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
  • Received:2022-03-29 Accepted:2022-07-21 Online:2023-04-12 Published:2022-08-22
  • Contact: *E-mail: zhangyingxin1985@126.com
  • Supported by:
    National Key Research and Development Programs of China(2017YFD0100800);National Major Project for Developing New GM Crops(2018ZX0800909B);Key Research and Development Program of Hubei Province(2022BBA0035);Major Project for Special Technology Innovation of Hubei Province(2018ABA085)

Abstract:

LTR (long terminal repeat) retrotransposable elements account for more than 60% of rye genome. It is of great significance to screen active LTR retrotransposons from wheat genome and analyze their transposition, the relative expression levels, and methylation levels under abiotic stress in exploring the role of retrotransposable elements in improving wheat anti-stress ability. Four active LTR retrotransposons (Fatima, Wis, Angela, and Babara) with complete structure were selected from the TREP database by bioinformatics analysis. The relative expression levels, methylation dynamics, and transposition activity of the four LTR retrotransposons were then analyzed at seedling stage (two leaves with one heart) leaves and roots of the stress-treated (NaCl, ABA, H2O2, and PEG) wheat seedlings by qRT-PCR, methylation-specific polymerase chain reaction (MSP), and transposon display method. The results suggested that the four retrotransposons had basic transcription activity under normal conditions, which could be changed under stress conditions, and their variation tendency was similar in the same stress conditions. The up-regulation of Fatima, Angela, and Babara was due to their down-regulated methylation levels, while Wis was opposite. The 3′LTR of LTR retrotransposons contained many stress-responsive cis-elements, but the regulatory effect of which were not obvious under stress treatments. Compared with that in leaves, the four LTR retrotransposons in roots were more sensitive to stresses and had higher transposition activity. This study will help to further reveal the response regularity of LTR retrotransposons under stress conditions and accumulate data for improving of stress resistance breeding wheat by using transposable elements.

Key words: wheat (Triticum aestivum L.), abiotic stress, LTR retrotransposons, the relative expression level, transposition

Table 1

Primers for qRT-PCR"

基因
Gene name
正向引物
Forward sequence (5′-3′)
反向引物
Reverse sequence (5′-3′)
TaActin CTCCCTCACAACAACCGC TACCAGGAACTTCCATACCAAC
Fatima AAAAAGACCAGGCTGCAACG GCGCTGATATGTTGTGCTGG
Wis CGACTTGTGGCGAAGAGTTTG GCGATGCTTAAGTCCGTCAG
Angela GTTGGCGATTGCCGCATTTT TCAACAAAACCTTCCGGTTGC
Babara GGATTACGTTGCTGCTGAGG AGCAGCTGTGCCAAATTCCT

Table 2

Primers for MSP"

引物名称
Primer name
正向引物
Forward sequence (5'-3')
反向引物
Reverse sequence (5'-3')
M-Fatima GGTTCGAATTTGGGTAAAAATATC AACATCCTTCCTAATAACGACGAC
U-Fatima GGTTCGAATTTGGGTAAAAATATC AAACATCCTTCCTAATAACAACAAC
M-Wis TAAGATTGAATAAGGTATTGGGATATC GACTCTCTAATCAACCAACAACGA
U-Wis AATAAGATTGAATAAGGTATTGGGATATT CAACTCTCTAATCAACCAACAACAA
M-Angela GATATTTTGTTGGATCGGAGTTC AAAAATAATCGTACGTCTTCACGAT
U-Angela GATATTTTGTTGGATTGGAGTTTG AAAAATAATCATACATCTTCACAAT
M-Babara TATTTAAGTGAGGTAAGTTTTTCGT AATAATACTATCATACATCCACGTT
U-Babara TATTTAAGTGAGGTAAGTTTTTTGT AATAATACTATCATACATCCACATT

Table 3

Primers for TD"

引物名称
Primer name
序列
Sequence (5'-3')
引物名称
Primer name
序列
Sequence (5'-3')
Fatima-1 CTCCCTCAGTCAGTGTCAAAA M-CA GACGATGAGTCCTGAGTAACA
Fatima-2 GGTCCCGAACTGTGCGTCT M-CC GACGATGAGTCCTGAGTAACC
Wis-1 ATGATTGTTGTTCGTCCTAT M-CG GACGATGAGTCCTGAGTAACG
Wis-2 CTCCCTCAGTCAGTGTCAAAA M-CT GACGATGAGTCCTGAGTAACT
Angela-1 ACAATTCTAGCATGAATAA M-GA GACGATGAGTCCTGAGTAAGA
Angela-2 AACTTTATTATTGCCTCTA M-GC GACGATGAGTCCTGAGTAAGC
Babara-1 TTAGCCAATCCTTTGTCCT M-GG GACGATGAGTCCTGAGTAAGG
Babara-2 TTGAAGGAGTTCCCACAAC M-GT GACGATGAGTCCTGAGTAAGT
M-0 GACGATGAGTCCTGAGTAA M-TA GACGATGAGTCCTGAGTAATA
M-AA GACGATGAGTCCTGAGTAAAA M-TC GACGATGAGTCCTGAGTAATC
M-AC GACGATGAGTCCTGAGTAAAC M-TG GACGATGAGTCCTGAGTAATG
M-AG GACGATGAGTCCTGAGTAAAG M-TT GACGATGAGTCCTGAGTAATT
M-AT GACGATGAGTCCTGAGTAAAT

Fig. 1

Structural analysis of four LTR retrotransposons in wheat GAG: group specific antigen; AP: aspartic proteases; INT: integrase; RT: the reverse transcriptase; RH: RNaseH."

Fig. 2

Relative expression pattern of LTR retrotransposon in leaves and roots of wheat seedlings under different abiotic stresses A: Fatima; B: Wis; C: Angela; D: Babara; Mock: control. Tukey method is used to test, *, **, and *** indicate significantly different at P < 0.05, P < 0.01, and P < 0.001, respectively."

Table 4

Cis-acting elements related to stress response in wheat retrotransposons"

转座子
Exist in Tes
胁迫应答
Stress response
顺式
作用因子
CREs
序列(核苷酸)
Sequence
(nucleotides)
参考文献
Reference
Fatima 光学响应元件 Light response element Box 4 ATTAAT
无氧反应响应元件 Anaerobic reaction response element ARE AAACCA
Wis 脱落酸响应元件 Cis-acting element involved in abscisic acid responsiveness ABRE ACGTG [26]
ABRE TACGTGTC [27]
干旱响应元件 Drought response element MYC CATGTG [30]
MYC CANNTG [31]
光学响应元件 Light response element ACE GACACGTATG
G-Box CACGTT
G-box CACGAC
无氧反应响应元件 Anaerobic reaction response element ARE AAACCA
Angela 脱落酸响应元件 Cis-acting element involved in abscisic acid responsiveness DRE1 ACCGAGA [28]
LTRE CCGAC [29]
干旱响应元件 Drought response element MYC CATGTG [30]
MYC CANNTG [31]
LTRE CCGAC [29]
光学响应元件 Light response element G-box CACGAC
低温响应元件 Low temperature response element LTR CCGAAA
Babara 脱落酸响应元件 Cis-acting element involved in abscisic acid responsiveness ABRE ACGTG [26]
DRE1 ACCGAGA [28]
干旱响应元件 Drought response element MYC CATGTG [30]
MYC CANNTG [31]
光学响应元件 Light response element G-Box CACGTT
无氧反应响应元件 Anaerobic reaction response element ARE AAACCA
低温响应元件 Low temperature response element LTR CCGAAA
赤霉素响应元件 Gibberellin response element TATC-box TATCCCA

Fig. 3

Comparison of retrotransposon methylation level in leaves and roots of wheat seedlings under different abiotic stresses A: Fatima; B: Wis; C: Angela; D: Babara; m: marker; M: methylation band; U: demethylation band."

Fig. 4

Transposition activity of Fatima and Wis in leaves and roots of wheat seedlings M: marker; 1, 5: the salt stress treatment. 2, 6: ABA stress treatment. 3, 7: H2O2 stress treatment. 4, 8: the drought stress treatment. The bands labelled by black arrows indicate new transposition sites in wheat genome. AA, AT, TT, CG, GG, AC, AG, CA, CT, GT, TC, TG, TA, CC, GC, and GA represent the last two bases of the amplication primers used in TD, respectively."

Fig. 5

Transposition activity analysis of Angela and Babara in leaves and roots of wheat seedlings M: marker; 1, 5: the salt stress treatment. 2, 6: ABA stress treatment. 3, 7: H2O2 stress treatment. 4, 8: the drought stress treatment. The bands labelled by black arrows indicate new transposition sites in wheat genome. AA, AT, TT, CG, GG, AC, AG, CA, CT, GT, TC, TG, TA, CC, GC, and GA represent the last two bases of the amplication primers used in TD, respectively."

[1] Feschotte C, Jiang N, Wessler S R. Plant transposable elements: where genetics meets genomics. Nat Rev Genet, 2002, 3: 329-341.
doi: 10.1038/nrg793 pmid: 11988759
[2] Hou J, Lu D, Mason A S, Li B, Xiao M, An S, Fu D. Non-coding RNAs and transposable elements in plant genomes: emergence, regulatory mechanisms and roles in plant development and stress responses. Planta, 2019, 250: 23-40.
doi: 10.1007/s00425-019-03166-7 pmid: 30993403
[3] Ning J. Plant transposable Elements:Beyond Insertions and Interruptions. New York: Springer-Verlag, 2018.
[4] Roquis D, Robertson M, Yu L, Thieme M, Julkowska M, Bucher E. Genomic impact of stress-induced transposable element mobility in Arabidopsis. Nucleic Acids Res, 2021, 49: 10431-10447.
doi: 10.1093/nar/gkab828
[5] Wicker T, Gundlach H, Spannagl M, Uauy C, Borrill P, Ramírez-González R H, De Oliveira R. International Wheat Genome Sequencing Consortium, Mayer Kfx, Paux E, Choulet F. Impact of transposable elements on genome structure and evolution in bread wheat. Genome Biol, 2018, 19: 103.
doi: 10.1186/s13059-018-1479-0 pmid: 30115100
[6] Alonge M, Shumate A, Puiu D, Zimin A V, Salzberg S L. Chromosome-scale assembly of the bread wheat genome reveals thousands of additional gene copies. Genetics, 2020, 216: 599-608.
doi: 10.1534/genetics.120.303501 pmid: 32796007
[7] Hirsch C D, Springer N M. Transposable element influences on gene expression in plants. Biochim Biophys Acta Gene Regul Mech, 2017, 1860: 157-165.
doi: 10.1016/j.bbagrm.2016.05.010
[8] Piégu B, Bire S, Arensburger P, Bigot Y. A survey of transposable element classification systems: a call for a fundamental update to meet the challenge of their diversity and complexity. Mol Phylogenet Evol, 2015, 86: 90-109.
doi: 10.1016/j.ympev.2015.03.009
[9] Ramakrishnan M, Satish L, Kalendar R, Narayanan M, Kandasamy S, Sharma A, Emamverdian A, Wei Q, Zhou M. The dynamism of transposon methylation for plant development and stress adaptation. Int J Mol Sci, 2021, 22: 11387.
doi: 10.3390/ijms222111387
[10] Galindo-González L, Sarmiento F, Quimbaya M A. Shaping plant adaptability, genome structure and gene expression through transposable element epigenetic control: focus on methylation. Agronomy, 2018, 8: 180.
doi: 10.3390/agronomy8090180
[11] Saze H. Epigenetic regulation of intragenic transposable elements: a two-edged sword. J Biochem, 2018, 164: 323-328.
doi: 10.1093/jb/mvy060 pmid: 30010918
[12] Yates-Stewart A D, Daron J, Wijeratne S, Shahid S, Edgington H A, Slotkin R K, Michel A. Soybean aphids adapted to host-plant resistance by down regulating putative effectors and up regulating transposable elements. Insect Biochem Mol Biol, 2020, 121: 103363.
doi: 10.1016/j.ibmb.2020.103363
[13] Kimura Y, Tosa Y, Shimada S, Sogo R, Kusaba M, Sunaga T, Betsuyaku S, Eto Y, Nakayashiki H, Mayama S. OARE-1, a Ty1-copia retrotransposon in oat activated by abiotic and biotic stresses. Plant Cell Physiol, 2001, 42: 1345-1354.
doi: 10.1093/pcp/pce171 pmid: 11773527
[14] Woodrow P, Pontecorvo G, Fantaccione S, Fuggi A, Kafantaris I, Parisi D, Carillo P. Polymorphism of a new Ty1-copia retrotransposon in durum wheat under salt and light stresses. Theor Appl Genet, 2010, 121: 311-322.
doi: 10.1007/s00122-010-1311-z pmid: 20237753
[15] Roquis D, Robertson M, Yu L, Thieme M, Julkowska M, Bucher E. Genomic impact of stress-induced transposable element mobility in Arabidopsis. Nucleic Acids Res, 2021, 49: 10431-10447.
doi: 10.1093/nar/gkab828
[16] Zhao Y, Wu L, Fu Q, Wang D, Li J, Yao B, Yu S, Jiang L, Qian J, Zhou X, Han L, Zhao S, Ma C, Zhang Y, Luo C, Dong Q, Li S, Zhang L, Jiang X, Li Y, Luo H, Li K, Yang J, Luo Q, Li L, Peng S, Huang H, Zuo Z, Liu C, Wang L, Li C, He X, Friml J, Du Y. INDITTO2 transposon conveys auxin-mediated DRO1 transcription for rice drought avoidance. Plant Cell Environ, 2021, 44: 1846-1857.
doi: 10.1111/pce.14029
[17] Marcussen T, Sandve S R, Heier L, Spannagl M, Pfeifer M, International Wheat Genome Sequencing Consortium, Jakobsen K S, Wulff B B, Steuernagel B, Mayer K F, Olsen O A. Ancient hybridizations among the ancestral genomes of bread wheat. Science, 2014, 345: 1250092.
doi: 10.1126/science.1250092
[18] 郭靖宇. 小麦中国春全基因组转座元件的特征分析. 河南大学硕士学位论文, 河南郑州, 2020.
Guo J Y. Genome-wide Analysis of Transposable Elements in Bread Wheat. MS Thesis of Henan University, Zhengzhou, Henan, China, 2020. (in Chinese with English abstract)
[19] Nian L L, Liu X L, Yang Y B, Zhu X L, Yi X F, Haider F U. Genome-wide identification, phylogenetic, and expression analysis under abiotic stress conditions of LIM gene family in Medicago sativa L. PLoS One, 2021, 16: e0252213.
doi: 10.1371/journal.pone.0252213
[20] Mani B, Agarwal M, Katiyar-Agarwal S. Comprehensive expression profiling of rice Tetraspanin genes reveals diverse roles during development and abiotic stress. Front Plant Sci, 2015, 6: 1088.
doi: 10.3389/fpls.2015.01088 pmid: 26697042
[21] Zhou Y B, Li Y, Qi X L, Liu R B, Dong J H, Jing W H, Guo M M, Si Q L, Xu Z S, Li L C, Wang C S, Cheng X G, Ma Y Z, Chen M. Overexpression of V-type H+pyrophosphatase gene EdVP1 from Elymus dahuricus increases yield and potassium uptake of transgenic wheat under low potassium conditions. Sci Rep, 2020, 10: 5020.
doi: 10.1038/s41598-020-62052-5
[22] Mosoni P, Chaucheyras-Durand F, Béra-Maillet C, Forano E. Quantification by real-time PCR of cellulolytic bacteria in the rumen of sheep after supplementation of a forage diet with readily fermentable carbohydrates: effect of a yeast additive. J Appl Microbiol, 2007, 103: 2676-2685.
pmid: 18045448
[23] Feldman M, Levy A A. Genome evolution due to allopolyploidization in wheat. Genetics, 2012, 192: 763-774.
doi: 10.1534/genetics.112.146316 pmid: 23135324
[24] Mcclelland M, Nelson M, Raschke E. Effect of site-specific modification on restriction endonucleases and DNA modification methyltransferases. Nucleic Acids Res, 1994, 22: 3640-3659.
pmid: 7937074
[25] Pan Y P, Bo K L, Cheng Z H, Weng Y Q. The loss-of-function GLABROUS 3 mutation in cucumber is due to LTR- retrotransposon insertion in a class IV HD-ZIP transcription factor gene CsGL3 that is epistatic over CsGL1. BMC Plant Biol, 2015, 15: 302.
doi: 10.1186/s12870-015-0693-0
[26] Simpson S D, Nakashima K, Narusaka Y, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Two different novel cis-acting elements of erd1, a clpA homologous Arabidopsis gene function in induction by dehydration stress and dark-induced senescence. Plant J, 2003, 33: 259-270.
doi: 10.1046/j.1365-313x.2003.01624.x pmid: 12535340
[27] Hattori T, Terada T, Hamasuna S. Regulation of the Osem gene by abscisic acid and the transcriptional activator VP1: analysis of cis-acting promoter elements required for regulation by abscisic acid and VP1. Plant J, 1995, 7: 913-925.
pmid: 7599651
[28] Busk P K, Jensen A B, Pagès M. Regulatory elements in vivo in the promoter of the abscisic acid responsive gene rab17 from maize. Plant J, 1997, 11: 1285-1295.
pmid: 9225468
[29] Baker S S, Wilhelm K S, Thomashow M F. The 5'-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Mol Biol, 1994, 24: 701-713.
doi: 10.1007/BF00029852 pmid: 8193295
[30] Hartmann U, Sagasser M, Mehrtens F, Stracke R, Weisshaar B. Differential combinatorial interactions of cis-acting elements recognized by R2R3-MYB, BZIP, and BHLH factors control light-responsive and tissue-specific activation of phenylpropanoid biosynthesis genes. Plant Mol Biol, 2005, 57: 155-171.
doi: 10.1007/s11103-004-6910-0 pmid: 15821875
[31] Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi- Shinozaki K. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell, 2003, 15: 63-78.
doi: 10.1105/tpc.006130
[32] Hirochika H. Activation of tobacco retrotransposons during tissue culture. EMBO J, 1993, 12: 2521-2528.
doi: 10.1002/j.1460-2075.1993.tb05907.x pmid: 8389699
[33] Wendel J F, Wessler S R. Retrotransposon-mediated genome evolution on a local ecological scale. Proc Natl Acad Sci USA, 2000, 97: 6250-6252.
pmid: 10841529
[34] Aliyev A T, Lobianco F, Krager K J, Aykin-Burns N. Assessment of cellular oxidation using a subcellular compartment-specific redox-sensitive green fluorescent protein. J Vis Exp, 2020, 160: 10.3791/61229.
[35] Galindo-González L, Mhiri C, Deyholos M K, Grandbastien M A. LTR-retrotransposons in plants: engines of evolution. Gene, 2017, 626: 14-25.
doi: S0378-1119(17)30322-0 pmid: 28476688
[36] Georgiev S, Dekova T, Atanassov I, Angelova Z, Dimitrova A, Mirkova V, Stoilov L. Transposable elements in wheat and Triticale sphaerococcum mutant forms. Biotechnol Biotechnol Equip, 2000, 14: 25-32.
doi: 10.1080/13102818.2000.10819057
[37] Gu Y Q, Crossman C, Kong X, Luo M, You F M, Coleman-Derr D, Dubcovsky J, Anderson O D. Genomic organization of the complex α-gliadin gene loci in wheat. J Appl Genet, 2004, 109: 648-657.
[38] Kashkush K, Feldman M, Levy A A. Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nat Genet, 2003, 33: 102-106.
doi: 10.1038/ng1063 pmid: 12483211
[39] Murphy G, Lucas H, Moore G, Flavell R. Sequence analysis of WIS-2-1A, a retrotransposon-like element from wheat. Plant Mol Biol, 1992, 20: 991-995.
doi: 10.1007/BF00027169 pmid: 1334439
[40] Roquis D, Robertson M, Yu L, Thieme M, Julkowska M, Bucher E. Genomic impact of stress-induced transposable element mobility in Arabidopsis. Nucleic Acids Res, 2021, 49: 10431-10447.
doi: 10.1093/nar/gkab828
[41] Wicker T, Stein N, Albar L, Feuillet C, Schlagenhauf E, Keller B. Analysis of a contiguous 211 kb sequence in diploid wheat (Triticum monococcum L.) reveals multiple mechanisms of genome evolution. Plant J, 2001, 26: 307-316.
pmid: 11439119
[42] Gu Y Q, Crossman C, Kong X, Luo M, You F M, Coleman-Derr D, Dubcovsky J, Anderson O D. Genomic organization of the complex alpha-gliadin gene loci in wheat. Theor Appl Genet, 2004, 109: 648-657.
pmid: 15103408
[43] Li W, Zhang P, Fellers J P, Friebe B, Gill B S. Sequence composition, organization, and evolution of the core Triticeae genome. Plant J, 2004, 40: 500-511.
doi: 10.1111/j.1365-313X.2004.02228.x
[44] Lee S C, Martienssen R A. Regulation of retrotransposition in Arabidopsis. Biochem Soc Trans, 2021, 49: 2241-2251.
doi: 10.1042/BST20210337
[45] Merkulov P, Omarov M, Gvaramiya S, Kirov I. Detection of active LTR retrotransposons via eccDNA analysis in Helianthus annuus L., Arabidopsis thaliana and triticale. In: Salina E A, ed. Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk, Russia: The 6th International Scientific Conference, 2021 (in Russian and English).
[1] JIA Yu-Ku, GAO Hong-Huan, FENG Jian-Chao, HAO Zi-Rui, WANG Chen-Yang, XIE Ying-Xin, GUO Tian-Cai, MA Dong-Yun. Genome-wide identification and expression analysis of G2-like transcription factors family genes in wheat [J]. Acta Agronomica Sinica, 2023, 49(5): 1410-1425.
[2] SUN Quan-Xi, YUAN Cui-Ling, MOU Yi-Fei, YAN Cai-Xia, ZHAO Xiao-Bo, WANG Juan, WANG Qi, SUN Hui, LI Chun-Juan, SHAN Shi-Hua. Genome-wide identification and expression analysis of SWEET genes from peanut genomes [J]. Acta Agronomica Sinica, 2023, 49(4): 938-954.
[3] XU Zi-Yin, YU Xiao-Ling, ZOU Liang-Ping, ZHAO Ping-Juan, LI Wen-Bin, GENG Meng-Ting, RUAN Meng-Bin. Expression pattern analysis and interaction protein screening of cassava MYB transcription factor MeMYB60 [J]. Acta Agronomica Sinica, 2023, 49(4): 955-965.
[4] QI Yan-Ni, LI Wen-Juan, ZHAO Li-Rong, LI Wen, WANG Li-Min, XIE Ya-Ping, ZHAO Wei, DANG Zhao, ZHANG Jian-Ping. Identification and expression analysis of CYP79 gene family, a key enzyme for cyanogenic glycoside synthesis in flax [J]. Acta Agronomica Sinica, 2023, 49(3): 687-702.
[5] DENG Zhao, JIANG Huan-Qi, CHENG Li-Sha, LIU Rui, HUANG Min, LI Man-Fei, DU He-Wei. Identification of abiotic stress-related gene co-expression networks in maize by WGCNA [J]. Acta Agronomica Sinica, 2023, 49(3): 672-686.
[6] HUANG Zhen, WU Qi-Jing, CHEN Can-Ni, WU Xia, CAO Shan, ZHANG Hui, YUE Jiao, HU Ya-Li, LUO Deng-Jie, LI Yun, LIAO Chang-Jun, LI Ru, CHEN Peng. Role of calmodulin gene (HcCaM7) and its protein acetylation is involved in kenaf response to abiotic stress [J]. Acta Agronomica Sinica, 2023, 49(2): 402-413.
[7] ZHANG Cheng, ZHANG Zhan, YANG Jia-Bao, MENG Wan-Qiu, ZENG Ling-Lu, SUN Li. Genome-wide identification and relative expression analysis of DGATs gene family in sunflower [J]. Acta Agronomica Sinica, 2023, 49(1): 73-85.
[8] WANG Heng-Bo, ZHANG Chang, WU Ming-Xing, LI Xiang, JIANG Zhong-Li, LIN Rong-Xiao, GUO Jin-Long, QUE You-Xiong. Genome-wide identification of NAC transcription factors ATAF subfamily in Sacchrum spontaneum and functional analysis of its homologous gene ScNAC2 in sugarcane cultivar [J]. Acta Agronomica Sinica, 2023, 49(1): 46-61.
[9] WU Yan-Fei, HU Qin, ZHOU Qi, DU Xue-Zhu, SHENG Feng. Genome-wide identification and expression analysis of Elongator complex family genes in response to abiotic stresses in rice [J]. Acta Agronomica Sinica, 2022, 48(3): 644-655.
[10] MA Wen-Jing, LIU Zhen, LI Zhi-Tao, ZHU Jin-Yong, LI Hong-Yang, CHEN Li-Min, SHI Tian-Bin, ZHANG Jun-Lian, LIU Yu-Hui. Genome-wide identification and expression analysis of BBX gene family in potato (Solanum tuberosum L.) [J]. Acta Agronomica Sinica, 2022, 48(11): 2797-2812.
[11] MA Chao, FENG Ya-Lan, WU Shan-Wei, ZHANG Jun, GUO Bin-Bin, XIONG Ying, LI Chun-Xia, LI You-Jun. Effects of shading at grain filling stages on anthocyanin accumulation and related gene expression characteristics in seed coat of black mung bean [J]. Acta Agronomica Sinica, 2022, 48(11): 2826-2839.
[12] XIE Qin-Qin, ZUO Tong-Hong, HU Deng-Ke, LIU Qian-Ying, ZHANG Yi-Zhong, ZHANG He-Cui, ZENG Wen-Yi, YUAN Chong-Mo, ZHU Li-Quan. Molecular cloning and expression analysis of BoPUB9 in self-incompatibility Brassica oleracea [J]. Acta Agronomica Sinica, 2022, 48(1): 108-120.
[13] WANG Yan-Peng, LING Lei, ZHANG Wen-Rui, WANG Dan, GUO Chang-Hong. Genome-wide identification and expression analysis of B-box gene family in wheat [J]. Acta Agronomica Sinica, 2021, 47(8): 1437-1449.
[14] LI Wen-Lan, LI Wen-Cai, SUN Qi, YU Yan-Li, ZHAO Meng, LU Shou-Ping, LI Yan-Jiao, MENG Zhao-Dong. A study of expression pattern of auxin response factor family genes in maize (Zea mays L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1138-1148.
[15] JIANG Peng, ZHANG Xu, WU Lei, HE Yi, ZHANG Ping-Ping, MA Hong-Xiang, KONG Ling-Rang. Genetic analysis for yield related traits of wheat (Triticum aestivum L.) based on a recombinant inbred line population from Ningmai 9 and Yangmai 158 [J]. Acta Agronomica Sinica, 2021, 47(5): 869-881.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .