Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (2): 402-413.doi: 10.3724/SP.J.1006.2023.24031

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Role of calmodulin gene (HcCaM7) and its protein acetylation is involved in kenaf response to abiotic stress

HUANG Zhen1(), WU Qi-Jing1, CHEN Can-Ni1, WU Xia1, CAO Shan1, ZHANG Hui1, YUE Jiao1, HU Ya-Li1, LUO Deng-Jie1, LI Yun1, LIAO Chang-Jun3, LI Ru2, CHEN Peng1,*()   

  1. 1College of Agriculture, Guangxi University / Key Laboratory of Plant Genetics and Breeding, Nanning 530004, Guangxi, China
    2College of Life Science and Technology, Guangxi University, Nanning 530004, Guangxi, China
    3Guangxi Bossco Environmental Protection Technology, Nanning 530007, Guangxi, China
  • Received:2022-01-25 Accepted:2022-06-07 Online:2022-07-04 Published:2022-07-04
  • Contact: CHEN Peng E-mail:549935163@qq.com;hustwell@gmail.com
  • Supported by:
    National Natural Science Foundation of China(31960368);China Agriculture Research System of MOF and MARA(CARS-16-E14);Guangxi Bossco Environmental Protection Technology Co., Ltd.(GXU-BFY-2020-015)

Abstract:

Calmodulin (CaM) is a kind of calcium-dependent regulatory proteins involved in plant growth and development, stress tolerance, and other biological processes. In the previous study in kenaf acetylome, our team found that the protein acetylation modification calmodulin protein7 (CaM7) was involved in the regulation pollen development in kenaf. In order to explore its specific mechanism, we cloned the calmodulin gene HcCaM7 from kenaf P3B binuclear anther by using the PCR cloning way. Its maximum open reading frame (ORF) was 450 bp, encoding a protein containing 149 amino acids with a molecular weight of 16.85 kD. Subcellular localization revealed that HcCaM7 was mainly located in cytoplasm and cell membrane. Silencing HcCaM7 by virus induced gene silencing technique caused growth inhibition in kenaf. Furthermore, the protein HcCaM7mut with acetylation modification site was successfully obtained in vitro and the expression of HcCaM7 without acetylation modification was successfully induced. Acetylation of HcCaM7 protein significantly promoted NADK (NAD kinase) activity, indicating HcCaM7 acetylation involved in its functional regulation. The recombinant bacteria containing HcCaM7 protein and HcCaM7mut protein were detected in NaCl (400 mmol L-1 and 500 mmol L-1 NaCl), drought (400 mmol L-1 and 600 mmol L-1 mannitol) and heavy metals (30 μmol L-1 and 50 μmol L-1) by dot plate method. The results showed that the survival rate of recombinant bacteria containing HcCaM7 protein was significantly higher than that of empty control bacteria, in addition, the survival rate of recombinant bacteria containing acetylated HcCaM7mut protein was further improved. The results indicated that HcCaM7 protein could enhance the abiotic stress resistance of E.coli, and the effect of acetylation modification was better. Therefore, HcCaM7 gene regulated the growth and development of kenaf and abiotic stress resistance, and acetylation modification could promote the role of HcCaM7 protein.

Key words: kenaf, calmodulin protein 7, protein acetylation modification, virus induced gene silencing, gene codon extension technology, abiotic stress

Table 1

Primers used in the study"

引物名称
Primer name
引物序列
Primer sequence (5°-3°)
HcCaM7-F ATGGCCGATCAGCTCACC
HcCaM7-R CTTGGCCATCATCACTTTGA
HcCaM7-GFP-F CAGGATATCCAGATCCAGTGGGATCCATGGCCGATCAGCTCACC
HcCaM7-GFP-R TAAGCTTGGTACCGAGCTCACCCGGGGATCCCTTGGCCATCATCACTTTGA
HcCaM7- pTRV2-F GATTCTGTGAGTAAGGTTACCGAATTCGGCGGAACTCCAAGATATGA
HcCaM7- pTRV2-R CCCCATGGAGGCCTTCTAGAGAATTCACCATCAACATCGGCTTCAC
HcCaM7mut-F GGTGTTTGACtAGGATCAGAATGGTTTCATATCTGC
HcCaM7mut-R GATCCTaGTCAAACACCCTGAATGCCTCTTTA
HcCaM7-pET32α-F AAGCTTGTCGACGGAGCTC GAATTCCTTGGCCATCATCACTTTGA
HcCaM7-pET32α-R CATGGCTGATATCGGATCC GAATTCATGGCCGATCAGCTCACC
HcCaM7-qPCR-F GATGCTGATGGAAACGGG
HcCaM7-qPCR-R CCATCACCATCAACATCGG

Fig. 1

Cloning and relative expression analysis of HcCaM7 A: PCR amplification product of HcCaM7; M: DL2000 marker; 1: HcCaM7 ORF amplification product. B: expression analysis of HcCaM7 gene in different tissues of kenaf P3A and P3B. The error bar represents ± SD of three biological replication. Different lowercase letters are significantly different at the 0.05 probability level."

Fig. 2

Bioinformatics of HcCaM7 A: the prediction of conserved domains of HcCaM7; B: the predicted 3D structure of HcCaM7 protein; C: the phylogenetic tree of HcCaM7 proteins."

Fig. 3

Subcellular localization of HcCaM7 protein A: Mcherry channel; B: GFP channel; C: bright channel; D: merge channel."

Fig. 4

VIGS silencing of HcCaM7 A: the qRT-PCR of transgenic plants. The control plant of empty vector is pTRV2. 1-9 represents gene silencing plants of HcCaM7. B: phenotypic characters of HcCaM7 silencing plants; C: the fresh weight of kenaf CaM7-pTRV2; D: plant height of kenaf CaM7-pTRV2. Values are means ± SDs of three biological replication. Different lowercase letters are significantly different at the 0.05 probability level."

Fig. 5

Quantitative expression analysis of HcCaM7 and its protein in kenaf anther of P3A and P3B A: the relative expression levels of HcCaM7 genes in kenaf P3A and P3B anthers; B: the relative expression level of HcCaM7 protein in the anthers of P3A and P3B of kenaf, 1 and 2 represent the anther of P3A and P3B, respectively. Values are means ± SDs with three biological replication. Different lowercase letters are significantly different at the 0.05 probability level."

Fig. 6

Site-directed mutation of HcCaM7 protein acetylation modification site"

Fig. 7

Purification results of HcCaM7 protein and its point mutant protein and detection of His label and acetylation modification A: the purification results of HcCaM7mut protein; B: the purification results of HcCaM7 protein; C: His-Tag Western-blot detection results, 1 is HcCaM7mut protein, 2 is HcCaM7 protein; D is the acetylation modification test result, 1 is HcCaM7mut protein and 2 is HcCaM7 protein."

Fig. 8

Effect of HcCaM7 acetylation modification on NADK activity Values are means ± SDs with three biological replication. Different lowercase letters are significantly different at the 0.05 probability level."

Fig. 9

Detection of HcCaM7 resistance to abiotic stress in Ecoli A: salt stress; B: mannitol stress; C: CdCl2 stress; D: cold stress; a, b, c, d: the colony survival number diluted 104 times after cold stress. Values are means ± SDs with three biological replication. Different lowercase letters are significantly different at the 0.05 probability level."

[1] Chen P, Wei F, Li R, Li Z Q, Kashif M H, Zhou R Y. Comparative acetylomic analysis reveals differentially acetylated proteins regulating anther and pollen development in kenaf cytoplasmic male sterility line. Physiol Plant, 2019, 166: 960-978.
doi: 10.1111/ppl.12850 pmid: 30353937
[2] Chen P, Li Z Q, Luo D J, Jia R X, Lu H, Tang M Q, Hu Y L, Yue J, Huang Z. Comparative transcriptomic analysis reveals key genes and pathways in two different cadmium tolerance kenaf (Hibiscus cannabinus L.) cultivars. Chemosphere, 2021, 263: 12.
[3] Tang M Q, Yue J, Huang Z, Hu Y L, Li Z Q, Luo D J, Cao S, Zhang H, Pan J, Wu X, Wu Q J, Chen P. Physiological and DNA methylation analysis provides epigenetic insights into chromium tolerance in kenaf. Environ Exp Bot, 2022, 194: 11.
[4] Kashif M H, Wei F, Tang D F, Tang M Q, Luo D J, Hai L, Li R, Chen P. iTRAQ-based comparative proteomic response analysis reveals regulatory pathways and divergent protein targets associated with salt-stress tolerance in kenaf (Hibiscus cannabinus L.). Ind Crops Prod, 2020, 153: 13.
[5] 林亚, 李世国, 谢莉萍, 张荣庆. 栉孔扇贝钙调素类似蛋白基因的克隆及其与钙调素基因表达特征的比较分析. 水产科学, 2014, 33: 692-701.
Lin Y, Li S G, Xie L P, Zhang R Q. Cloning of calmodulin-like protein gene from Scallop chlamys farreri and comparison of its expression characteristics with calmodulin gene. Fish Sci, 2014, 33: 692-701. (in Chinese)
[6] 顾采琴. Ca2+、CaM及其目标酶与乙烯诱导番茄和草莓果实成熟衰老关系的研究. 浙江大学博士学位论文,浙江杭州, 2003.
Gu C Q. Studies of Relationship between Ca2+, CaM, Its Target Enzymes and Ethylene Inducing Maturation, Ripening and Senescence of Tomato and Strawberry Fruits. PhD Dissertation of Zhejiang University, Hangzhou, Zhejiang, China, 2003. (in Chinese with English abstract)
[7] 马力耕, 崔素娟, 徐小冬, 孙大业. G蛋白在细胞外钙调素启动花粉萌发和花粉管伸长中的作用. 自然科学进展, 1997, (6): 149-116.
Ma L G, Cui S J, Xu X D, Sun D Y. Role of G protein in extracellular calmodulin-activated pollen germination and pollen tube elongation. Prog Nat Sci, 1997, (6): 149-116. (in Chinese)
[8] Hrabak E M, Chan C W M, Gribskov M, Harper J F, Choi J H, Halford N, Kudla J, Luan S, Nimmo H G, Sussman M R, Thomas M, Walker-Simmons K, Zhu J K, Harmon A C. The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol, 2003, 132: 666-680.
doi: 10.1104/pp.102.011999
[9] Kim K N, Lee J S, Han H, Choi S A, Go S J, Yoon I S. Isolation and characterization of a novel rice Ca2+-regulated protein kinase gene involved in responses to diverse signals including cold, light, cytokinins, sugars and salts. Plant Mol Biol, 2003, 52: 1191-1202.
doi: 10.1023/B:PLAN.0000004330.62660.a2
[10] Zhou S, Jia L, Chu H, Wu D, Peng X, Liu X, Zhang J, Zhao J, Chen K, Zhao L. Arabidopsis CaM1 and CaM4 promote nitric oxide production and salt resistance by inhibiting S-nitrosoglutathionereductase via direct binding. PLoS Genet, 2016, 12: 28.
[11] Xuan Y, Zhou S, Wang L, Cheng Y, Zhao L. Nitric oxide functions as a signal and acts upstream of AtCaM3 in thermotolerance in Arabidopsis seedlings. Plant Physiol, 2010, 153: 1895-1906.
doi: 10.1104/pp.110.160424 pmid: 20576787
[12] Cha J Y, Su'udi M, Kim W Y, Kim D R, Kwak Y S, Son D. Functional characterization of orchardgrass cytosolic Hsp70 (DgHsp70) and the negative regulation by Ca2+/AtCaM2 binding. Plant Physiol Biochem, 2012, 58: 29-36.
doi: 10.1016/j.plaphy.2012.06.006
[13] Yoo J H, Park C Y, Kim J C, Heo W D, Cheong M S, Park H C, Kim M C, Moon B C, Choi M S, Kang Y H, Lee J H, Kim H S, Lee S M, Yoon H W, Lim C O, Yun D J, Lee S Y, Chung W S, Cho M J. Direct interaction of a divergent CaM isoform and the transcription factor, MYB2, enhances salt tolerance in Arabidopsis. J Biol Chem, 2005, 280: 3697-3706.
doi: 10.1074/jbc.M408237200 pmid: 15569682
[14] Wu H C, Luo D L, Vignols F, Jinn T L. Heat shock-induced biphasic Ca2+ signature and OsCaM1-1 nuclear localization mediate downstream signalling in acquisition of thermotolerance in rice (Oryza sativa L.). Plant Cell Environ, 2012, 35: 1543-1557.
doi: 10.1111/j.1365-3040.2012.02508.x
[15] Yang J, Ji L, Liu S, Jing P, Xie G. The CaM1-Associated CCaMK-MKK1/6 cascade positively affects the lateral root growth through auxin signaling under salt stress in rice. J Exp Bot, 2021, 72: 6611-6627.
doi: 10.1093/jxb/erab287 pmid: 34129028
[16] Reddy A S N, Ali G S, Celesnik H, Day I S. Coping with stresses: roles of calcium and calcium/calmodulin-regulated gene expression. Plant Cell, 2011, 23: 2010-2032.
doi: 10.1105/tpc.111.084988
[17] Yang N, Peng C, Cheng D, Huang Q, Xu G, Gao F, Chen L. The over-expression of calmodulin from Antarctic notothenioid fish increases cold tolerance in tobacco. Gene, 2013, 521: 32-37.
doi: 10.1016/j.gene.2013.03.048 pmid: 23528224
[18] Mann M, Jensen O N. Proteomic analysis of post-translational modifications. Nat Biotechnol, 2003, 21: 255-261.
pmid: 12610572
[19] Kahn P. Molecular biology: from genome to proteome: looking at a cell’s proteins. Science, 1995, 369-370.
[20] Rardin M J, Newman J C, Held J M, Cusack M P, Sorensen D J, Li B A, Schilling B, Mooney S D, Kahn C R, Verdin E, Gibson B W. Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways. Proc Natl Acad Sci USA, 2013, 110: 6601-6606.
doi: 10.1073/pnas.1302961110
[21] Choudhary C, Kumar C, Gnad F, Nielsen M L, Rehman M, Walther T C, Olsen J V. Mann M. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science, 2009, 325: 834-840.
doi: 10.1126/science.1175371 pmid: 19608861
[22] Wang Q J, Zhang Y K, Yang C, Xiong H, Lin Y, Yao J, Li H, Xie L, Zhao W, Yao Y F, Ning Z B, Zeng R, Xiong Y, Guan K L, Zhao S M, Zhao G P. Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. Science, 2010, 327: 1004-1007.
doi: 10.1126/science.1179687 pmid: 20167787
[23] Zhou C, Lin Z, Duan J, Miki B, Wu K. HISTONE DEACETYLASE19 is involved in jasmonic acid and ethylene signaling of pathogen response in arabidopsis. Plant Cell, 2005, 17: 1196-1204.
doi: 10.1105/tpc.104.028514
[24] Sridha S, Wu K. Identification of AtHD2C as a novel regulator of abscisic acid responses in Arabidopsis. Plant J, 2006, 46: 124-133.
pmid: 16553900
[25] Kim J M, To T K, Matsui A, Tanoi K, Kobayashi N I, Matsuda F, Habu Y, Ogawa D, Sakamoto T, Matsunaga S. Acetate-mediated novel survival strategy against drought in plants. Mol Cell, 2017, 3: 1.
doi: 10.1016/S1097-2765(00)80169-0
[26] Zhao J, Zhang J, Wei Z, Wu K, Duan J. Expression and functional analysis of the plant-specific histone deacetylase HDT701 in rice. Front Plant Sci, 2014, 5: 8.
[27] Li T, Su H, Li Z, Xu X, Wang H, Li Y, Li Z. Genome-wide identification and expression analysis in biotic and abiotic stress of HDACs gene family in tomato. Chin J Trop Crops, 2015, 36: 1994-2001.
[28] Fan C, Xiong H, Reynolds N M, Soell D. Rationally evolving tRNA(Pyl) for efficient incorporation of noncanonical amino acids. Nucleic Acids Res, 2015, 43: 10230-10235.
[29] Shi N N, Yang Q, Zhang H R, Lu J Q, Lin H S, Yang X, Abulimiti A, Cheng J L, Wang Y, Tong L, Wang T C, Zhang X D, Chen H M, Xia Q. Restoration of dystrophin expression in mice by suppressing a nonsense mutation through the incorporation of unnatural amino acids. Nat Biomed Engin, 2021, 6: 195-206.
doi: 10.1038/s41551-021-00774-1
[30] Nikic-Spiegel I. Expanding the genetic code for neuronal studies. Chem Biol Chem, 2020, 21: 3169-3179.
doi: 10.1002/cbic.202000300
[31] Li Z Q, Hu Y L, Chang M M, Kashif M H, Tang M Q, Luo D J, Cao S, Lu H, Zhang W, Huang Z, Yue J, Chen P. 5-azacytidine pre-treatment alters DNA methylation levels and induces genes responsive to salt stress in kenaf (Hibiscus cannabinus L.). Chemosphere, 2021, 271: 10.
[32] Bryson D I, Fan C, Guo L T, Miller C, Soll D, Liu D R. Continuous directed evolution of aminoacyl-tRNA synthetases. Nat Chem Biol, 2017, 13: 1253-1260.
doi: 10.1038/nchembio.2474 pmid: 29035361
[33] Wang L, Brock A, Herberich B, Schultz P G. Expanding the genetic code of Escherichia coli. Science, 2001, 292: 498-500.
pmid: 11313494
[34] Tharp J M, Liu W R. Genetic code expansion: Synthetases pick up the PACE. Nat Chem Biol, 2017, 13: 1205-1206.
doi: 10.1038/nchembio.2516 pmid: 29161249
[35] Venkat S, Chen H, Stahman A, Hudson D, McGuire P, Gan Q, Fan C. Characterizing lysine acetylation of isocitrate dehydrogenase in Escherichia coli. J Mol Biol, 2018, 430: 1901-1911.
doi: S0022-2836(18)30342-5 pmid: 29733852
[36] Weinert B T, Iesmantavicius V, Wagner S A, Scholz C, Gummesson B, Beli P, Nystrom T, Choudhary C. Acetyl-phosphate is a critical determinant of lysine acetylation in E. coli. Mol Cell, 2013, 51: 265-272.
doi: 10.1016/j.molcel.2013.06.003 pmid: 23830618
[37] Berridge M J, Bootman M D, Li P. Calcium: a life and death signal. Nature, 1998, 395: 645-648.
doi: 10.1038/27094
[38] Kong D, Ju C, Parihar A, Kim S, Cho D, Kwak J M. Arabidopsis glutamate receptor homolog3.5 modulates cytosolic Ca2+ level to counteract effect of abscisic acid in seed germination. Plant Physiol, 2015, 167: 1630-1642.
doi: 10.1104/pp.114.251298
[39] Cheval C, Aldon D, Galaud J P, Ranty B. Calcium/calmodulin- mediated regulation of plant immunity. BBA-Mol Cell Res, 2013, 1833: 1766-1771.
[40] Stephan C, Laval-Martin D L. Changes in NAD(+) kinase activity during germination of Phaseolus vulgaris and P. acutifolius, and effects of drought stress. J Plant Physiol, 2000, 157: 65-73.
doi: 10.1016/S0176-1617(00)80137-6
[41] Jiang X, Gao Y, Zhou H, Chen J, Wu J, Zhang S. Apoplastic calmodulin promotes self-incompatibility pollen tube growth by enhancing calcium influx and reactive oxygen species concentration in Pyrus pyrifolia. Plant Cell Rep, 2014, 33: 255-263.
doi: 10.1007/s00299-013-1526-y pmid: 24145911
[42] Chung H H, Benson D R, Schultz P G. Probing the structure and mechanism of Ras protein with an expanded genetic code. Science, 1993, 259: 806-9.
pmid: 8430333
[43] Tang H, Zhang P, Luo X. Recent technologies for genetic code expansion and their implications on synthetic biology applications. J Mol Biol, 2021, 434: 167382-167382.
doi: 10.1016/j.jmb.2021.167382
[44] Uttamapinant C, Howe J D, Lang K, Beranek V, Davis L, Mahesh M, Barry N P, Chin J W. Genetic code expansion enables live-cell and super resolution imaging of site-specifically labeled cellular proteins. J Am Chem Soc, 2018, 140: 13986-13986.
doi: 10.1021/jacs.8b10479 pmid: 30351131
[45] Hallows W C, Lee S, Denu J M. Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc Natl Acad Sci USA, 2006, 103: 10230-10235.
doi: 10.1073/pnas.0604392103
[1] DENG Zhao, JIANG Huan-Qi, CHENG Li-Sha, LIU Rui, HUANG Min, LI Man-Fei, DU He-Wei. Identification of abiotic stress-related gene co-expression networks in maize by WGCNA [J]. Acta Agronomica Sinica, 2023, 49(3): 672-686.
[2] ZHANG Cheng, ZHANG Zhan, YANG Jia-Bao, MENG Wan-Qiu, ZENG Ling-Lu, SUN Li. Genome-wide identification and relative expression analysis of DGATs gene family in sunflower [J]. Acta Agronomica Sinica, 2023, 49(1): 73-85.
[3] WANG Heng-Bo, ZHANG Chang, WU Ming-Xing, LI Xiang, JIANG Zhong-Li, LIN Rong-Xiao, GUO Jin-Long, QUE You-Xiong. Genome-wide identification of NAC transcription factors ATAF subfamily in Sacchrum spontaneum and functional analysis of its homologous gene ScNAC2 in sugarcane cultivar [J]. Acta Agronomica Sinica, 2023, 49(1): 46-61.
[4] WU Yan-Fei, HU Qin, ZHOU Qi, DU Xue-Zhu, SHENG Feng. Genome-wide identification and expression analysis of Elongator complex family genes in response to abiotic stresses in rice [J]. Acta Agronomica Sinica, 2022, 48(3): 644-655.
[5] MA Wen-Jing, LIU Zhen, LI Zhi-Tao, ZHU Jin-Yong, LI Hong-Yang, CHEN Li-Min, SHI Tian-Bin, ZHANG Jun-Lian, LIU Yu-Hui. Genome-wide identification and expression analysis of BBX gene family in potato (Solanum tuberosum L.) [J]. Acta Agronomica Sinica, 2022, 48(11): 2797-2812.
[6] WANG Yan-Peng, LING Lei, ZHANG Wen-Rui, WANG Dan, GUO Chang-Hong. Genome-wide identification and expression analysis of B-box gene family in wheat [J]. Acta Agronomica Sinica, 2021, 47(8): 1437-1449.
[7] LI Wen-Lan, LI Wen-Cai, SUN Qi, YU Yan-Li, ZHAO Meng, LU Shou-Ping, LI Yan-Jiao, MENG Zhao-Dong. A study of expression pattern of auxin response factor family genes in maize (Zea mays L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1138-1148.
[8] LI Zeng-Qiang, DING Xin-Chao, LU Hai, HU Ya-Li, YUE Jiao, HUANG Zhen, MO Liang-Yu, CHEN Li, CHEN Tao, CHEN Peng. Physiological characteristics and DNA methylation analysis under lead stress in kenaf (Hibiscus cannabinus L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1031-1042.
[9] ZHOU Bu-Jin, LI Gang, JIN Gang, ZHOU Rui-Yang, LIU Dong-Mei, TANG Dan-Feng, LIAO Xiao-Fang, LIU Yi-Ding, ZHAO Yan-Hong, WANG Yi-Ning. Creation of male sterile germplasm using the partial length gene of HcPDIL5-2a in kenaf [J]. Acta Agronomica Sinica, 2021, 47(6): 1043-1053.
[10] LI Hui, LI De-Fang, DENG Yong, PAN Gen, CHEN An-Guo, ZHAO Li-Ning, TANG Hui-Juan. Expression analysis of abiotic stress response gene HcWRKY71 in kenaf and transformation of Arabidopsis [J]. Acta Agronomica Sinica, 2021, 47(6): 1090-1099.
[11] JIA Xiao-Ping, LI Jian-Feng, ZHANG Bo, QUAN Jian-Zhang, WANG Yong-Fang, ZHAO Yuan, ZHANG Xiao-Mei, WANG Zhen-Shan, SANG Lu-Man, DONG Zhi-Ping. Responsive features of SiPRR37 to photoperiod and temperature, abiotic stress and identification of its favourable allelic variations in foxtail millet (Setaria italica L.) [J]. Acta Agronomica Sinica, 2021, 47(4): 638-649.
[12] MENG Yu-Yu, WEI Chun-Ru, FAN Run-Qiao, YU Xiu-Mei, WANG Xiao-Dong, ZHAO Wei-Quan, WEI Xin-Yan, KANG Zhen-Sheng, LIU Da-Qun. TaPP2-A13 gene shows induced expression pattern in wheat responses to stresses and interacts with adaptor protein SKP1 from SCF complex [J]. Acta Agronomica Sinica, 2021, 47(2): 224-236.
[13] LU Hai, LI Zeng-Qiang, TANG Mei-Qiong, LUO Deng-Jie, CAO Shan, YUE Jiao, HU Ya-Li, HUANG Zhen, CHEN Tao, CHEN Peng. DNA methylation in response to cadmium stress and expression of different methylated genes in kenaf [J]. Acta Agronomica Sinica, 2021, 47(12): 2324-2334.
[14] Jin-Feng ZHAO,Yan-Wei DU,Gao-Hong WANG,Yan-Fang LI,Gen-You ZHAO,Zhen-Hua WANG,Yu-Wen WANG,Ai-Li YU. Identification of PEPC genes from foxtail millet and its response to abiotic stress [J]. Acta Agronomica Sinica, 2020, 46(5): 700-711.
[15] LIANG Si-Wei,JIANG Hao-Liang,ZHAI Li-Hong,WAN Xiao-Rong,LI Xiao-Qin,JIANG Feng,SUN Wei. Genome-wide identification and expression analysis of HD-ZIP I subfamily genes in maize [J]. Acta Agronomica Sinica, 2020, 46(4): 532-543.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!