Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (2): 414-425.doi: 10.3724/SP.J.1006.2023.24022

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Identification and expression analysis of PIN-LIKES gene family in sugarcane

PAN Jie-Ming1(), TIAN Shao-Rui3, LIANG Yan-Lan2, ZHU Yu-Lin1, ZHOU Ding-Gang4, QUE You-Xiong2, LING Hui1,*(), HUANG Ning1,*()   

  1. 1College of Agriculture, Yulin Normal University, Yulin 537000, Guangxi, China
    2Key Laboratory of Sugarcane Biology and Genetic Breeding (Fujian), Ministry of Agriculture and Rural Affairs / Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
    3College of Plant Protection, Southwest University, Chongqing 400700, China
    4College of Life Science, Hunan University of Science and Technology/ Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Xiangtan 411201, Hunan, China
  • Received:2022-01-17 Accepted:2022-05-05 Online:2022-05-12 Published:2022-05-12
  • Contact: LING Hui,HUANG Ning E-mail:jiemingpan@163.com;linghuich@163.com;hning2012@126.com
  • Supported by:
    National Natural Science Foundation of China(31801424);National Natural Science Foundation of China(32160435);Scientific Research Foundation of Yulin Normal University(G2020ZK03)

Abstract:

PILS (PIN-LIKES) is a newly reported auxin efflux carrier, which is involved in the polar transport of auxin. In this study, bioinformatics analysis indicated that 11 SsPILS genes and 4 ScPILS genes were identified from the Saccharum spontaneum genomic and the sugarcane cultivars transcriptomic data. 11 SsPILS gene family members were located at 6 chromosomes, and had 5-11 introns, respectively. Phylogenetic tree analysis showed that these PILS from S. spontaneum was clustered into 3 different branches and had highly homologous with PILS from Oryza sativa. The transcriptomic data revealed that, ScPILS1c, the ortholog of SsPILS1c, was differentially expressed in the sugarcane cultivars under Sorghum mosaic virus and Sporisorium scitamineum stress. ScPILS1c (NCBI accession number: OM258732), cloned by RT-PCR, had 1332 bp in length, containing a 1233 bp complete open reading frame and encoding 410 amino acids residues. The isoelectric point, instability coefficient, and average hydrophobicity value of ScPILS1c were 6.17, 39.31, and 0.689, respectively. The ScPILS1c was predicted as a stable acid hydrophobicity protein. The secondary structure of ScPILS1c protein was mainly composed of α-helix (48.54%) and random coils (35.37%) and was highly consistent with the prediction of tertiary structure. The qRT-PCR demonstrated that the relative expression of ScPILS1c was tissue-specific and the highest expression was observed in epidermis while the lowest in pith. ScPILS1c was significantly induced by H2O2 treatment and Sporisorium scitamineum infection. Transient expression on Nicotiana benthamiana leaves suggested that ScPILS1c was localized on cell membrane. This study provides a reference for further research on the structure and function of PILS gene in sugarcane.

Key words: sugarcane, PILS gene, bioinformatics, qRT-PCR, gene family

Table 1

Primers used in this study"

引物
Primer name
引物序列
Primer sequence (5'-3')
PILS1c-F GCGCGGTTGTTGAGGATAAG
PILS1c-R ACGACAATACAACACTTCGGC
YFP-PILS1c-F CGAACGATACTCGAGGTCGACATGGATCTCGTACAACTCTTCATC
YFP-PILS1c-R GCTCACCATACTAGTGGATCCCGACAGCGTCCACATGAAGAAG
q-PILS1c-F AGCTCTTTGCTCCTTCGACC
q-PILS1c-R GACAACTATGACGCCGGCTA
CUL-F TGCTGAATGTGTTGAGCAGC
CUL-R TTGTCGCGCTCCAAGTAGTC
CAC-F ACAACGTCAGGCAAAGCAAA
CAC-R AGATCAACTCCACCTCTGCG

Fig. 1

Chromosomal distribution (A) and syntenic analysis (B) of PILS gene family in Saccharum spontaneum The red line indicates synteny within PILS and the grey line indicates synteny within all genes in Saccharum spontaneum genome."

Table 2

Analysis of physicochemical properties and subcellular localizations prediction of PILS proteins in Saccharum spontaneum"

蛋白名称Protein name 基因编号
Genetic code
氨基酸个数Number of amino acids 等电点
pI
分子量
Molecular weight (kD)
亚细胞定位
Subcellular localization
SsPILS1a Sspon.02G0011550-3C 847 9.76 89.11 质膜 Plasma membrane
SsPILS1b Sspon.02G0011610-1A 436 7.47 46.48 质膜 Plasma membrane
SsPILS1c Sspon.02G0011610-2B 422 7.63 45.10 质膜 Plasma membrane
SsPILS1d Sspon.02G0011610-3C 436 8.02 46.47 质膜 Plasma membrane
SsPILS1e Sspon.02G0011550-1A 412 8.02 44.08 质膜 Plasma membrane
SsPILS5a Sspon.01G0050600-1C 339 7.59 36.61 质膜 Plasma membrane
SsPILS5b Sspon.01G0001780-4D 431 7.01 47.33 质膜 Plasma membrane
SsPILS6a Sspon.03G0003950-1P 433 8.52 46.92 质膜 Plasma membrane
SsPILS6b Sspon.03G0003950-2C 433 8.56 46.97 质膜 Plasma membrane
SsPILS7a Sspon.02G0008260-1A 337 8.10 36.37 质膜 Plasma membrane
SsPILS7b Sspon.02G0008260-2B 301 6.12 32.59 质膜 Plasma membrane

Fig. 2

Phylogenetic tree of PILS in Saccharum spontaneum (Ss), Arabidopsis thaliana (At), and Oryza sativa (Os)"

Fig. 3

Conserved motifs (A)and gene structures (B) of S. spontaneum PILS gene family Different colored boxes indicate different conserved motifs, and black lines indicate amino acid sequences in Fig. 3-A. Different colored boxes indicate different gene structures, and black lines indicate introns in Fig. 3-B."

Fig. 4

Relative expression level of ScPILS genes under different biotic stresses A: Sorghum mosaic virus infection; B: Sporisorium scitamineum infection."

Fig. 5

Bioinformatics analysis of ScPILS1c protein A: the open reading frame of SsPILS1c gene and its encoded protein; B: the conserved domain of ScPILS1c protein; C: the transmembrane helices of ScPILS1c protein; D: the comparison of third structure model of ScPILS1c with 5aymA; E: the third structure model of ScPILS1c, and red color indicates transmembrane domain."

Fig. 6

Predicted hydrophobicity/hydrophilicity of the amino acid sequence of ScPILS1c protein"

Fig. 7

Relative expression level of ScPILS1c genes in different tissues Different lowercase letters above the bars indicate significant difference at the 0.05 probability level."

Fig. 8

Relative expression of ScPILS1c genes under different stresses A: H2O2 stress; B: Sporisorium scitamineum stress. Different lowercase letters above the bars indicate significant difference at the 0.05 probability level."

Fig. 9

Subcellular localization of ScPILS1c in the lower epidermal cells of Nicotiana benthamiana"

[1] Gao Y B, Zhang Y, Zhang D, Dai X H, Estelle M, Zhao Y D. Auxin binding protein 1 (ABP1) is not required for either auxin signaling or Arabidopsis development. Proc Natl Acad Sci USA, 2015, 112: 2275-2280.
doi: 10.1073/pnas.1500365112
[2] Enders T A, Strader L C. Auxin activity: past, present, and future. Am J Bot, 2015, 102: 180-196.
doi: 10.3732/ajb.1400285 pmid: 25667071
[3] Chandler J W. Auxin response factors. Plant Cell Environ, 2016, 39: 1014-1028.
doi: 10.1111/pce.12662
[4] Miao Z Q, Zhao P X, Mao J L, Yu L H, Yang Y, Hui T, Liu Z B, Xiang C B. HOMEOBOX PROTEIN52 mediates the crosstalk between ethylene and auxin signaling during primary root elongation by modulating auxin transport-related gene expression. Plant Cell, 2018, 30: 2761-2778.
doi: 10.1105/tpc.18.00584
[5] Ishida J K, Wakatake T, Yoshida S, Takebayashi Y, Kasahara H, Wafula E, Depamphilis C W, Namba S, Shirasu K. Local auxin biosynthesis mediated by a YUCCA flavin monooxygenase regulates haustorium development in the parasitic plant Phtheirospermum japonicum. Plant Cell, 2016, 28: 1795-1814.
doi: 10.1105/tpc.16.00310
[6] Di Mambro R, De Ruvo M, Pacifici E, Salvi E, Sozzani R, Benfey P N, Busch W, Novak O, Ljung K, Di Paola L, Mare A F, Costantino P, Grieneisen V A, Sabatini S. Auxin minimum triggers the developmental switch from cell division to cell differentiation in the Arabidopsis root. Proc Natl Acad Sci USA, 2017, 114: E7641-E7649.
[7] 颜爽爽, 邱正坤, 余炳伟, 明方艳, 陈长明, 雷建军, 曹必好. 植物生长素响应高温胁迫研究进展. 园艺学报, 2020, 47: 2238-2246.
Yan S S, Qiu Z K, Yu B W, Ming F Y, Chen C M, Lei J J, Cao B H. Advances in phytohormone auxin response to high temperature. Act Hortic Sin, 2020, 47: 2238-2246. (in Chinese with English abstract)
[8] Schaker P D, Palhares A C, Taniguti L M, Peters L P, Creste S, Aitken K S, Van Sluys M A, Kitajima J P, Vieira M L, Monteiro-Vitorello C B. RNAseq transcriptional profiling following whip development in sugarcane smut disease. PLoS One, 2016, 11: e0162237.
doi: 10.1371/journal.pone.0162237
[9] Yang Y Y, Gao S W, Su Y C, Lin Z L, Guo J L, Li M J, Wang Z J, Que Y X, Xu L P. Transcripts and low nitrogen tolerance: regulatory and metabolic pathways in sugarcane under low nitrogen stress. Environ Exp Bot, 2019, 163: 97-111.
doi: 10.1016/j.envexpbot.2019.04.010
[10] Strader L C, Zhao Y. Auxin perception and downstream events. Curr Opin Plant Biol, 2016, 33: 8-14.
doi: S1369-5266(16)30061-9 pmid: 27131035
[11] 邹纯雪, 门淑珍. 生长素的外输载体PIN蛋白家族研究进展. 中国细胞生物学学报, 2013, 35: 574-582.
Zou C X, Men S Z. Research advances in auxin efflux carrier PIN proteins. Chin J Cell Biol, 2013, 35: 574-582. (in Chinese with English abstract)
[12] 潘建伟, 张晨燕, 周哉材. 生长素极性输出载体PIN的研究进展. 浙江师范大学学报(自然科学版), 2018, 41: 436-443.
Pan J W, Zhang C Y, Zhou J C. Research progress of auxin efflux transporter PIN proteins. J Zhejiang Norm Univ (Nat Sci Edn), 2018, 41: 436-443. (in Chinese with English abstract)
[13] Barbez E, Kubeš M, Rolčík J, Béziat C, Pěnčík A, Wang B, Rosquete M R, Zhu J, Dobrev P I, Lee Y, Zažímalovà E, Petrášek J, Geisler M, Friml J, Kleine-Vehn J. A novel putative auxin carrier family regulates intracellular auxin homeostasis in plants. Nature, 2012, 485: 119-122.
doi: 10.1038/nature11001
[14] Santos F, Teale W, Fleck C, Volpers M K, Ruperti B, Palme K. Modelling polar auxin transport in developmental patterning. Plant Biol, 2010, 12: 1438-8677.
[15] Wang J, Jin Z, Yin H, Yan B, Ren Z Z, Xu J, Mu C J, Zhang Y, Wang M Q, Liu H. Auxin redistribution and shifts in PIN gene expression during Arabidopsis grafting. Russ J Plant Physiol, 2014, 61: 688-696.
doi: 10.1134/S102144371405015X
[16] Friml J. Subcellular trafficking of PIN auxin efflux carriers in auxin transport. Eur J Cell Biol, 2010, 89: 231-235.
doi: 10.1016/j.ejcb.2009.11.003 pmid: 19944476
[17] Murphy A S. Seven things we think we know about auxin transport. Mol Plant, 2011, 4: 487-504.
doi: 10.1093/mp/ssr034 pmid: 21505044
[18] Zwiewka M, Bilanoviová V, Seifu Y W, Nodzyński T. The buts and bolts of PIN auxin efflux carriers. Front Plant Sci, 2019, 10: 985.
doi: 10.3389/fpls.2019.00985 pmid: 31417597
[19] Luschnig C, Vert G. The dynamics of plant plasma membrane proteins: PINs and beyond. Development, 2014, 141: 2924-2938.
doi: 10.1242/dev.103424 pmid: 25053426
[20] Adamowski M, Friml J. PIN-dependent auxin transport: action, regulation, and evolution. Plant Cell, 2015, 27: 20.
doi: 10.1105/tpc.114.134874
[21] Habets M E, Offringa R. PIN-driven polar auxin transport in plant developmental plasticity: a key target for environmental and endogenous signal. New Phytol, 2014, 203: 362-377.
doi: 10.1111/nph.12831
[22] Feraru E, Vosolsobe S, Feraru M I, Petrasek J, Kleine-Vehn J. Evolution and structural diversification of PILS putative auxin carriers in plants. Front Plant Sci, 2012, 3: 227.
doi: 10.3389/fpls.2012.00227 pmid: 23091477
[23] Mohanta T K, Mohanta N, Bae H. Identification and expression analysis of PIN-Like (PILS) gene family of rice treated with auxin and cytokinin. Genes (Basel), 2015, 6: 622-640.
doi: 10.3390/genes6030622
[24] Song S L, Wang Z P, Ren Y M, Sun H M. Full-length transcriptome analysis of the ABCB, PIN/PIN-LIKES, and AUX/LAX families involved in somatic embryogenesis of Lilium pumilum DC. Fisch. Int J Mol Sci, 2020, 21: 453.
doi: 10.3390/ijms21020453
[25] Feraru E, Feraru M I, Barbez E, Waidmann S, Sun L, Gaidora A, Kleine-Vehn J. PILS6 is a temperature-sensitive regulator of nuclear auxin input and organ growth in Arabidopsis thaliana. Proc Natl Acad Sci USA, 2019, 116: 3893-3898.
doi: 10.1073/pnas.1814015116
[26] Beziat C, Barbez E, Feraru M I, Lucyshyn D, Kleine-Vehn J. Light triggers PILS-dependent reduction in nuclear auxin signalling for growth transition. Nat Plants, 2017, 3: 17105.
doi: 10.1038/nplants.2017.105 pmid: 28714973
[27] Guo J L, Xu L P, Su Y C, Wang H B, Gao S W, Xu J S, Que Y X. ScMT2-1-3, a metallothionein gene of sugarcane, plays an important role in the regulation of heavy metal tolerance/accumulation. Biomed Res Int, 2013, 2013: 904769.
[28] Verma A K, Agarwal A K, Dubey R S, Solomon S, Singh S B. Sugar partitioning in sprouting lateral bud and shoot development of sugarcane. Plant Physiol Biochem, 2013, 62: 111-115.
doi: 10.1016/j.plaphy.2012.10.021
[29] 刘燕群, 李玉萍, 梁伟红, 宋启道, 秦小立, 叶露. 国外甘蔗产业发展现状. 世界农业, 2015, (8): 147-152.
Liu Y Q, Li Y P, Liang H W, Song Q D, Qin X L, Ye L. Current status and development of the abroad sugarcane industry. World Agric, 2015, (8): 147-152. (in Chinese with English abstract)
[30] 王明强, 李文凤, 黄应昆, 王晓燕, 卢文洁, 罗志明. 我国大陆蔗区发生的甘蔗病毒病及防控对策. 中国糖料, 2010, (4): 55-58.
Wang M Q, Li Y P, Huang Y K, Wang X Y, Lu W J, Luo Z M. Occurrence and controlling strategies on sugarcane viral diseases in Chinese mainland. Sugar Crops China, 2010, (4): 55-58. (in Chinese with English abstract)
[31] 周晚秋, 娄春, 何子林, 傅峻涛. 巴西生物燃料技术现状与发展. 中外能源, 2017, 22: 24-31.
Zhou W Q, Lou C, He Z L, Fu J T. Status quo and development of Brazilian biofuel technologies. Sino-global Energy, 2017, 22: 24-31. (in Chinese with English abstract)
[32] 翁卓, 黄寒. 中国制糖产业竞争力对比与政策建议—基于对巴西、印度、泰国考察的比较. 甘蔗糖业, 2015, (4): 65-72.
Weng Z, Huang H. Comparative analysis on China’s sugar industry competitiveness: based on the comparison of Brazil, India and Thailand sugar industry. Sugar Canesugar, 2015, (4): 65-72. (in Chinese with English abstract)
[33] 刘晓雪, 王新超. 2017/18榨季中国食糖生产形势分析与2018/19榨季展望. 农业展望, 2018, 14(11): 40-46.
Liu X X, Wang X C. Domestic sugar production situation in 2017/18 crushing season and its prospect for 2018/19 crushing season. Outlook Agric, 2018, 14(11): 40-46. (in Chinese with English abstract)
[34] 李谭面. 来宾市甘蔗高产稳产高糖栽培技术. 乡村科技, 2017, (15): 63-64.
Li T M. Cultivation techniques of sugarcane with high and stable yield and sugar in Laibin city. Rural Sci Technol, 2017, (15): 63-64. (in Chinese with English abstract)
[35] 李瑞美, 潘世明, 王水琦, 林一心. 糖能兼用甘蔗新品种闽糖92-142的选育研究. 福建农业学报, 2006, 21: 98-100.
Li R M, Pan S M, Wang S Q, Lin Y X. Selection and breeding of new sugarcane variety mintang 92-142. Fujian J Agric Sci, 2006, 21: 98-100. (in Chinese with English abstract)
[36] 蔡文燕, 吴水金. 能源甘蔗—甘蔗糖业发展的新亮点. 甘蔗糖业, 2006, (3): 22-25.
Cai W Y, Wu S J. Energy sugarcane-a new bright spot in the development of cane sugar industry. Sugarc Canes, 2006, (3): 22-25. (in Chinese with English abstract)
[37] Lalman J A, Shewa W A, Gallagher J, Ravella S. Biofuels production from renewable feedstocks. Springer, 2016, pp. 193-220.
[38] Zhang J, Zhang X, Tang H, Zhang Q, Hua X, Ma X, Zhu F, Jones T, Zhu X, Bowers J, Wai C M, Zheng C, Shi Y, Chen S, Xu X, Yue J, Nelson D R, Huang L, Li Z, Xu H, Zhou D, Wang Y, Hu W, Lin J, Deng Y, Pandey N, Mancini M, Zerpa D, Nguyen J K, Wang L, Yu L, Xin Y, Ge L, Arro J, Han J O, Chakrabarty S, Pushko M, Zhang W, Ma Y, Ma P, Lv M, Chen F, Zheng G, Xu J, Yang Z, Deng F, Chen X, Liao Z, Zhang X, Lin Z, Lin H, Yan H, Kuang Z, Zhong W, Liang P, Wang G, Yuan Y, Shi J, Hou J, Lin J, Jin J, Cao P, Shen Q, Jiang Q, Zhou P, Ma Y, Zhang X, Xu R, Liu J, Zhou Y, Jia H, Ma Q, Qi R, Zhang Z, Fang J, Fang H, Song J, Wang M, Dong G, Wang G, Chen Z, Ma T, Liu H, Dhungana S R, Huss S E, Yang X, Sharma A, Trujillo J H, Martinez M C, Hudson M, Riascos J J, Schuler M, Chen L Q, Braun D M, Li L, Yu Q, Wang J, Wang K, Schatz M C, Heckerman D, Van Sluys M A, Souza G M, Moore P H, Sankoff D, Van Buren R, Paterson A H, Nagai C, Ming R. Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L. Nat Genet, 2018, 50: 1565-1573.
doi: 10.1038/s41588-018-0237-2
[39] Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190
[40] Ling H, Huang N, Wu Q, Su Y, Peng Q, Ahmed W, Gao S, Su W, Que Y, Xu L. Transcriptional insights into the sugarcane-sorghum mosaic virus interaction. Trop Plant Biol, 2018, 11: 163-176.
doi: 10.1007/s12042-018-9210-6
[41] Que Y, Su Y, Guo J, Wu Q, Xu L. A global view of transcriptome dynamics during sporisorium scitamineum challenge in sugarcane by RNA-Seq. PLoS One, 2014, 9: e106476.
doi: 10.1371/journal.pone.0106476
[42] Zhang D, Gao F L, Jakovlić I, Zou H, Zhang J, Li W X, Wang G T. PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol Ecol Resour, 2020, 20: 348-355.
doi: 10.1111/1755-0998.13096 pmid: 31599058
[43] Ling H, Wu Q B, Guo J L, Xu L P, Que Y X. Comprehensive selection of reference genes for gene expression normalization in sugarcane by real time quantitative RT-PCR. PLoS One, 2014, 9: e97469.
doi: 10.1371/journal.pone.0097469
[44] 黄宁, 惠乾龙, 方振名, 李姗姗, 凌辉, 阙友雄, 袁照年. 甘蔗β-胡萝卜素异构酶基因家族的鉴定、定位和表达分析. 作物学报, 2021, 47: 882-893.
doi: 10.3724/SP.J.1006.2021.04128
Huang N, Hui Q L, Fang Z M, Li S S, Ling H, Que Y X, Yuan Z N. Identification, localization and expression analysis of beta-carotene isomerase gene family in sugarcane. Acta Agron Sin, 2021, 47: 882-893. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.04128
[45] Staff P O. Correction: comprehensive selection of reference genes for gene expression normalization in sugarcane by real time quantitative RT-PCR. PLoS One, 2015, 10: e0118444.
doi: 10.1371/journal.pone.0118444
[46] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-∆∆CT method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[47] Heisler M G, Ohno C, Das P, Sieber P, Reddy G V, Long J A, Meyerowitz E M. Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Curr Biol, 2005, 15: 1899-1911.
pmid: 16271866
[48] Geldner N. Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature, 2001, 413: 425-428.
doi: 10.1038/35096571
[49] Zhou J J, Luo J. The PIN-FORMED auxin efflux carriers in plants. Int J Mol Sci, 2018, 19: 2759.
doi: 10.3390/ijms19092759
[50] Sun L, Feraru E, Feraru M I, Wang Z Y, Correspondence K V. PIN-likes coordinate brassinosteroid signaling with nuclear auxin input in Arabidopsis thaliana. Curr Biol, 2020, 30: 1579-1588.
doi: S0960-9822(20)30175-5 pmid: 32169207
[51] Béziat C, Kleine-Vehn J. The road to auxin-dependent growth repression and promotion in apical hooks. Curr Biol, 2018, 28: 519-525.
doi: S0960-9822(18)30102-7 pmid: 29689235
[52] Sauer M, Kleine-Vehn J. PIN-FORMED and PIN-LIKES auxin transport facilitators. Development, 2019, 146: dev168088.
doi: 10.1242/dev.168088
[53] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能初探. 作物学报, 2021, 47: 1-20.
Dong Y K, Huang D Q, Gao Z, Chen Y. Preliminary study of identification, expression profile of soybean PIN-like (PILS) gene family and its function in symbiotic nitrogen fixation in root nodules. Acta Agron Sin, 2021, 47: 1-20. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.02021
[54] Zou X, Long J, Zhao K, Peng A, Chen M, Long Q, He Y, Chen S. Overexpressing GH3.1 and GH3.1L reduces susceptibility to Xanthomonas citri subsp. citri by repressing auxin signaling in citrus (Citrus sinensis Osbeck). PLoS One, 2019, 14: e0220017.
doi: 10.1371/journal.pone.0220017
[55] Fan S, Chang Y, Liu G, Shang S, Tian L, Shi H. Molecular functional analysis of auxin/indole-3-acetic acid proteins (Aux/IAAs) in plant disease resistance in cassava. Physiol Planta, 2020, 168: 88-97.
doi: 10.1111/ppl.12970
[56] 陈倩, 卓维, 李佳皓, 鲁黎明, 李立芹. 烟草Nt14-3-3基因的克隆及生物信息学和表达模式分析. 烟草科技, 2018, 51(1): 1-7.
Chen Q, Zhuo W, Li J H, Lu L M, Li L Q. Cloning, bioinformatics and expression pattern analysis of Nt14-3-3. Tob Sci Technol, 2018, 51(1): 1-7. (in Chinese with English abstract)
[57] 郭玉敏, 张云华. 玉米ZmWRKY53基因克隆及诱导表达分析. 分子植物育种, 2020, 18: 719-728.
Guo Y M, Zhang Y H. Cloning and induced expression analysis of ZmWRKY53 in Zea mays. Mol Plant Breed, 2020, 18: 719-728. (in Chinese with English abstract)
[58] 于永昂, 睢晓湉, 张蕾, 张夏冰. 小麦转录因子TaWRKY28基因克隆与抗旱性分析. 西北农林科技大学学报(自然科学版), 2022, 50(4): 32-41.
Yu Y A, Sui X T, Zhang L, Zhang X B. Cloning and function against drought stress of TaWRKY28transcription factor gene. J North A&F Univ (Nat Sci Edn), 2022, 50(4): 32-41. (in Chinese with English abstract)
[59] 秦朋飞, 尚小光, 宋健, 郭旺珍. 棉花酰基辅酶A结合蛋白(ACBP)家族基因的发掘及在非生物胁迫抗性中的功能鉴定. 作物学报, 2016, 42: 1577-1591.
doi: 10.3724/SP.J.1006.2016.01577
Qin P F, Shang X G, Song J, Guo W Z. Genome-wide identification of acyl-CoA-binding protein (ACBP) gene family and their functional analysis in abiotic stress tolerance in cotton. Acta Agron Sin, 2016, 42: 1577-1591. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2016.01577
[60] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析. 作物学报, 2022, 48: 608-623.
doi: 10.3724/SP.J.1006.2022.14004
Ji R, Jiang W, Liu M, Zhao P, Zhang Q Q, Li T X, Wang D F, Fan W J, Zhang A J, Tang Z H. Genome-wide characterization and expression analysis of Dof family genes in sweetpotato. Acta Agron Sin, 2022, 48: 608-623. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.14004
[61] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析. 作物学报, 2022, 48: 840-850.
doi: 10.3724/SP.J.1006.2022.14061
Yuan D S, Deng W Y, Wang Z, Peng X, Zhang X L, Yao M N, Miu W J, Zhu D M, Li J N, Liang Y. Cloning and functional analysis of BnMAPK2 gene in Brassica napus. Acta Agron Sin, 2022, 48: 840-850. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.14061
[62] 黄宁, 范金燕, 赖洁玲, 刘秦, 阙友雄, 朱宇林, 凌辉. 甘蔗类质子梯度调节蛋白基因的生物信息学及表达分析. 分子植物育种, 2021.
Huang N, Fan J Y, Lai J L, Liu Q, Que Y X, Zhu Y L, Ling H. The bioinformatics and expression analysis of a sugarcane proton gradient regulation like 1 gene. Mol Plant Breed, 2021. (in Chinese with English abstract)
[63] 孟钰玉, 魏春茹, 范润侨, 于秀梅, 王逍冬, 赵伟全, 魏新燕, 康振生, 刘大群. 小麦TaPP2-A13基因的表达响应逆境胁迫并与SCF复合体接头蛋白TaSKP1相互作用. 作物学报, 2021, 47: 224-236.
doi: 10.3724/SP.J.1006.2021.01042
Meng Y Y, Wei C R, Fan R Q, Yu X M, Wang X D, Zhao W Q, Wei X Y, Kang Z S, Liu D Q. TaPP2-A13 gene shows induced expression pattern in wheat responses to stresses and interacts with adaptor protein SKP1 from SCF complex. Acta Agron Sin, 2021, 47: 224-236. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.01042
[1] QI Yan-Ni, LI Wen-Juan, ZHAO Li-Rong, LI Wen, WANG Li-Min, XIE Ya-Ping, ZHAO Wei, DANG Zhao, ZHANG Jian-Ping. Identification and expression analysis of CYP79 gene family, a key enzyme for cyanogenic glycoside synthesis in flax [J]. Acta Agronomica Sinica, 2023, 49(3): 687-702.
[2] XIAO Jian, WEI Xing-Xuan, YANG Shang-Dong, LU Wen, TAN Hong-Wei. Effects of intercropping with watermelons on cane yields, soil physicochemical properties and micro-ecology in rhizospheres of sugarcanes [J]. Acta Agronomica Sinica, 2023, 49(2): 526-538.
[3] PU Xue, WANG Kai-Tong, ZHANG Ning, SI Huai-Jun. Relative expression analysis of StMAPKK4 gene and screening and identification of its interacting proteins in potato (Solanum tuberosum L.) [J]. Acta Agronomica Sinica, 2023, 49(1): 36-45.
[4] ZHANG Cheng, ZHANG Zhan, YANG Jia-Bao, MENG Wan-Qiu, ZENG Ling-Lu, SUN Li. Genome-wide identification and relative expression analysis of DGATs gene family in sunflower [J]. Acta Agronomica Sinica, 2023, 49(1): 73-85.
[5] WANG Heng-Bo, ZHANG Chang, WU Ming-Xing, LI Xiang, JIANG Zhong-Li, LIN Rong-Xiao, GUO Jin-Long, QUE You-Xiong. Genome-wide identification of NAC transcription factors ATAF subfamily in Sacchrum spontaneum and functional analysis of its homologous gene ScNAC2 in sugarcane cultivar [J]. Acta Agronomica Sinica, 2023, 49(1): 46-61.
[6] MA Li, BAI Jing, ZHAO Yu-Hong, SUN Bo-Lin, HOU Xian-Fei, FANG Yan, WANG Wang-Tian, PU Yuan-Yuan, LIU Li-Jun, XU Jia, TAO Xiao-Lei, SUN Wan-Cang, WU Jun-Yan. Protein and physiological differences under cold stress, and identification and analysis of BnGSTs in Brassica napus L. [J]. Acta Agronomica Sinica, 2023, 49(1): 153-166.
[7] KE Hui-Feng, ZHANG Zhen, GU Qi-Shen, ZHAO Yan, LI Pei-Yu, ZHANG Dong-Mei, CUI Yan-Ru, WANG Xing-Fen, WU Li-Qiang, ZHANG Gui-Yin, MA Zhi-Ying, SUN Zheng-Wen. Genome-wide association study of root biomass related traits at seeding stage under low phosphorus stress in cotton (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2022, 48(9): 2168-2179.
[8] ZHANG Tian-Yu, WANG Yue, LIU Ying, ZHOU Ting, YUE Cai-Peng, HUANG Jin-Yong, HUA Ying-Peng. Bioinformatics analysis and core member identification of proline metabolism gene family in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(8): 1977-1995.
[9] CHEN Lu, ZHOU Shu-Qian, LI Yong-Xin, CHEN Gang, LU Guo-Quan, YANG Hu-Qing. Identification and expression analysis of uncoupling protein gene family in sweetpotato [J]. Acta Agronomica Sinica, 2022, 48(7): 1683-1696.
[10] LI Pei-Ting, ZHAO Zhen-Li, HUANG Chao-Hua, HUANG Guo-Qiang, XU Liang-Nian, DENG Zu-Hu, ZHANG Yu, ZHAO Xin-Wang. Analysis of drought responsive regulatory network in sugarcane based on transcriptome and WGCNA [J]. Acta Agronomica Sinica, 2022, 48(7): 1583-1600.
[11] LI Xu-Juan, LI Chun-Jia, WU Zhuan-Di, TIAN Chun-Yan, HU Xin, QIU Li-Hang, WU Jian-Ming, LIU Xin-Long. Expression characteristic and gene diversity analysis of ScHTD2 in sugarcane [J]. Acta Agronomica Sinica, 2022, 48(7): 1601-1613.
[12] YANG Xin, LI Yu, LIU Chuan-Bing, ZHANG Li-Lan, HE Qin-Yao, QI Jian-Min, ZHANG Li-Wu. Reference genes screening for expression analysis of secondary cell wall synthesis related genes in jute (Corchorus capsularis) [J]. Acta Agronomica Sinica, 2022, 48(7): 1614-1624.
[13] CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371.
[14] WANG Xia, YIN Xiao-Yu, Yu Xiao-Ming, LIU Xiao-Dan. Effects of drought hardening on contemporary expression of drought stress memory genes and DNA methylation in promoter of B73 inbred progeny [J]. Acta Agronomica Sinica, 2022, 48(5): 1191-1198.
[15] XIAO Jian, CHEN Si-Yu, SUN Yan, YANG Shang-Dong, TAN Hong-Wei. Characteristics of endophytic bacterial community structure in roots of sugarcane under different fertilizer applications [J]. Acta Agronomica Sinica, 2022, 48(5): 1222-1234.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!