Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (2): 426-437.doi: 10.3724/SP.J.1006.2023.14251

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Cloning and function analysis of a HaLACS9 gene in Helianthus annuus L.

YANG Jia-Bao1(), ZHANG Zhan2, ZHOU Zhi-Ming1, LYU Xin-Hua1, SUN Li1,*()   

  1. 1College of Life Sciences, Shihezi University, Shihezi 832003, Xinjiang, China
    2Bingtuan Xingxin Vocational and Technical College, Tiemenguan 841007, Xinjiang, China
  • Received:2021-12-29 Accepted:2022-06-07 Online:2022-07-07 Published:2022-07-07
  • Contact: SUN Li E-mail:2516040371@qq.com;sunlishz@126.com
  • Supported by:
    National Natural Science Foundation of China(31760064);National Natural Science Foundation of China(31360052)

Abstract:

Long-chain acyl-coenzyme A (CoA) synthetase (LACS) catalyzes the formation of acyl-CoAs from free fatty acids, which plays important roles in lipid metabolism in plant. Here, a LACS family gene named HaLACS9 was screened and cloned from sunflower (Helianthus annuus L.). Homologous protein comparison showed that HaLACS9 had conserved LACS domains and had higher homology with Arabidopsis thaliana, Lactuca sativa, and Cynara cardunculus LACS9 proteins. Subcellular localization prediction indicated that HaLACS9 was localized in the chloroplast. The promoter region of HaLACS9 gene contained a large number of hormone and stress responses related elements. The qRT-PCR revealed that HaLACS9 gene was ubiquitously expressed in sunflower organs, and the highest expressed in seeds at 10 days after flowering. The transcription levels of HaLACS9 were induced by drought, salt, ABA, and GA3 treatments in sunflower roots, stems, and leaves. The relative expression pattern of HaLACS9 at seed developmental stages in sunflower was higher at the early seed developmental stages, related to sunflower seed oil rapid accumulation periods. The relative expression of HaLACS9 was gradually decreased at late stages of seed development and the slow accumulation rate of oil. HaLACS9 was proved to have the synthetase activity of acyl-CoA in complementation test of deficient yeast mutant and prefers to activate oleic acid substrate. It was speculated that HaLACS9 participated in the regulation of sunflower seed lipid biosynthesis and abiotic stress responses.

Key words: sunflower, HaLACS9, expression patterns, yeast complementation

Table 1

Primers used in this study"

引物名称
Primer name
引物序列
Primer sequence (5°-3°)
用途
Function
HaLACS9-F ATGAGTGCATATATTGTTGGAGTTT 全长cDNA克隆
Full-length cDNA cloning
HaLACS9-R TCAAGACTGGTAGAACTTTTCTAGC
18S rRNA-F CTACCACATCCAAGGAAGGCAG 实时荧光定量PCR
qRT-PCR
18S rRNA-R CGACAGAAGGGACGAGTAAACC
HaLACS9-qRT-F ACTCTCGCCCTTCGGAAATC 实时荧光定量PCR
qRT-PCR
HaLACS9- qRT-R TTTCAAATGCCCTCCCGTCT
pHaLACS9-F GGGGTACCATGAGTGCATATATTGTTGG (Kpn I) pYES2-HaLACS9载体构建
Construction of pYES2-HaLACS9 vector
pHaLACS9-R TGCTCTAGATTAAGACTGGTAGAACTTTT (Xba I)

Fig. 1

Cloning (A) and chromosome location (B) of HaLACS9 gene in Helianthus annuus L."

Fig. 2

Sequence analysis of HaLACS9 and its homologous proteins At: Arabidopsis thaliana; Ha: Helianthus annuus L.; Cc: Cynara cardunculus; Ps: Prunus sibirica; Os: Oryza sativa; Ta: Triticum aestivum; Ls: Lactuca sativa."

Fig. 3

Conserved motif distribution (A) and conservative motif (B) of LACS9 in different plant species At: Arabidopsis thaliana; Ha: Helianthus annuus L.; Cc: Cynara cardunculus; Ps: Prunus sibirica; Os: Oryza sativa; Ta: Triticum aestivum; Ls: Lactuca sativa."

Fig. 4

Structural analysis of HaLACS9 A: the tertiary structure prediction of HaLACS9 and the AMP binding domain are shown in red box. B: the signal peptide prediction of HaLACS9."

Fig. 5

Phylogenetic tree of HaLACS9 and its homologous proteins At: Arabidopsis thaliana; Ha: Helianthus annuus L.; Ls: Lactuca sativa; Cc: Cynara cardunculus; Si: Sesamum indicum; Rc: Ricinus communis; Ps: Prunus sibirica; Gm: Glycine max; Ah: Arachis hypogaea; Eg: Elaeis guineensis; Bn: Brassica napus; Zm: Zea mays; Os: Oryza sativa; Ta: Triticum aestivum. Red triangle indicates the target protein."

Fig. 6

Cis-acting elements of HaLACS9 promoter"

Fig. 7

Relative expression patterns of HaLACS9 genes Different lowercase letters indicate there are significantly different at P < 0.05."

Fig. 8

Effects of PEG (A) and NaCl (B) stress on the relative expression of HaLACS9 genes Different lowercase letters indicate there are significantly different at P < 0.05."

Fig. 9

Effects of ABA (A) and GA3 (B) stress on the relative expression of HaLACS9 genes Different lowercase letters indicate there are significantly different at P < 0.05."

Fig. 10

Relative expression level of HaLACS9 and oil contents in developing kernel of sunflower Different lowercase letters indicate there are significantly different at P < 0.05."

Fig. 11

Yeast growth status Different lowercase letters indicate there are significantly different at P < 0.05."

[1] Fulda M, Schnurr J, Abbadi A, Heinz E, Browse J. Peroxisomal acyl-CoA synthetase activity is essential for seedling development in Arabidopsis thaliana. Plant Cell, 2004, 16: 394-405.
pmid: 14742880
[2] Judy S, Jay S, John B. The acyl-CoA synthetase encoded by LACS2 is essential for normal cuticle development in Arabidopsis. Plant Cell, 2004, 16: 629-642.
doi: 10.1105/tpc.017608
[3] Li-Beisson Y, Shorrosh B, Beisson F, Andersson M X, Arondel V, Bates P D, Baud S, Bird D, Debono A, Durrett T P, Franke R B, Graham I A, Katayama K, Kelly A A, Larson T, Markham J E, Miquel M, Molina I, Nishida I, Rowland O, Samuels L, Schmid K M, Wada H, Welti R, Xu C C, Zallot R, Ohlrogge J. Acyl-lipid metabolism. Arabidopsis Book, 2013, 11: e0161.
doi: 10.1199/tab.0161
[4] Grevengoed T J, Klett E L, Coleman R A. Acyl-CoA metabolism and partitioning. Annu Rev Nutr, 2014, 34: 1-30.
doi: 10.1146/annurev-nutr-071813-105541 pmid: 24819326
[5] Jessen D, Roth C, Wiermer M, Fulda M. Two activities of long-chain acyl-coenzyme a synthetase are involved in lipid trafficking between the endoplasmic reticulum and the plastid in Arabidopsis. Plant Physiol, 2015, 167: 351-366.
doi: 10.1104/pp.114.250365 pmid: 25540329
[6] Fich E A, Segerson N A, Rose J K C. The plant polyester cutin: biosynthesis, structure, and biological roles. Annu Rev Plant Biol, 2016, 67: 207-233.
doi: 10.1146/annurev-arplant-043015-111929 pmid: 26865339
[7] Ingram G, Nawrath C. The roles of the cuticle in plant development: organ adhesions and beyond. J Exp Bot, 2017, 68: 5307-5321.
doi: 10.1093/jxb/erx313 pmid: 28992283
[8] Shockey J M, Fulda M S, Browse J A. Arabidopsis contains nine long-chain acyl-coenzyme a synthetase genes that participate in fatty acid and glycerolipid metabolism. Plant Physiol, 2002, 129: 1710-1722.
pmid: 12177484
[9] Lyu S Y, Song T, Kosma D K, Parsons E P, Rowland O, Jenks M A. Arabidopsis CER8 encodes long-chain acyl-CoA synthetase 1 (LACS1) that has overlapping functions with LACS2 in plant wax and cutin synthesis. Plant J, 2009, 59: 553-564.
doi: 10.1111/j.1365-313X.2009.03892.x
[10] Shockey J, Browse J. Genome-level and biochemical diversity of the acyl-activating enzyme superfamily in plants. Plant J, 2011, 66: 143-160.
doi: 10.1111/j.1365-313X.2011.04512.x
[11] Schnurr J, Shockey J, Browse J. The acyl-CoA synthetase encoded by LACS2 is essential for normal cuticle development in Arabidopsis. Plant Cell, 2004, 16: 629-642.
pmid: 14973169
[12] Fulda M, Shockey J, Werber M, Wolter F P, Heinz E. Two long-chain acyl-CoA synthetases from Arabidopsis thaliana involved in peroxisomal fatty acid beta-oxidation. Plant J, 2002, 32: 93-103.
doi: 10.1046/j.1365-313X.2002.01405.x
[13] Babbitt P C. Ancestry of the 4-chlorobenzoate dehalogenase: analysis of amino acid sequence identities among families of acyl: adenyl ligases, enoyl-CoA hydratases/isomerases, and acyl-CoA thioesterases. Biochemistry, 1992, 31: 5594-5604.
pmid: 1351742
[14] Iijima H, Fujino T, Minekura H, Suzuki H, Kang M J, Yamamoto T. Biochemical studies of two rat acyl-CoA synthetases, ACS1 and ACS2. Eur J Biochem, 1996, 242: 186-190.
pmid: 8973631
[15] Steinberg S J, Morgenthaler J, Heinzer A K. Very long-chain acyl-CoA synthetases. Human “bubblegum” represents a new family of proteins capable of activating very long-chain fatty acids. J Biol Chem, 2000, 275: 35162-35169.
doi: 10.1074/jbc.M006403200 pmid: 10954726
[16] Jessen D, Olbrich A, Knufer J, Kruger A, Hoppert M, Polle A, Fulda M. Combined activity of LACS1 and LACS4 is required for proper pollen coat formation in Arabidopsis. Plant J, 2011, 68: 715-726.
doi: 10.1111/j.1365-313X.2011.04722.x
[17] Schnurr J A, Shockey J M, de Boer G J, Browse1 J A. Fatty acid export from the chloroplast. Molecular characterization of a major plastidial acyl-coenzyme a synthetase from Arabidopsis. Plant Physiol, 2002, 129: 1700-1709.
pmid: 12177483
[18] Zhao L F, Katavic V, Li F L, Haughn G W, Kunst L. Insertional mutant analysis reveals that long-chain acyl-CoA synthetase 1 (LACS1), but not LACS8, functionally overlaps with LACS9 in Arabidopsis seed oil biosynthesis. Plant J, 2010, 64: 1048-1058.
doi: 10.1111/j.1365-313X.2010.04396.x
[19] Zhao L F, Haslam T M, Sonntag A, Molina I, Kunst L. Functional overlap of long-chain acyl-CoA synthetases in Arabidopsis. Plant Cell Physiol, 2019, 60: 1041-1054.
doi: 10.1093/pcp/pcz019 pmid: 30715495
[20] Ding L N, Gu S L, Zhu F G, Ma Z Y, Li J, Li M, Wang Z, Tan X L. Long-chain acyl-CoA synthetase 2 is involved in seed oil production in Brassica napus. BMC Plant Biol, 2020, 20: 21.
doi: 10.1186/s12870-020-2240-x pmid: 31931712
[21] Zhang C L, Mao K, Zhou L J, Wang G L, Zhang Y L, Li Y Y, Hao Y J. Genome-wide identification and characterization of apple long-chain acyl-CoA synthetases and expression analysis under different stresses. Plant Physiol Biochem, 2018, 132: 320-332.
doi: 10.1016/j.plaphy.2018.09.004
[22] Zhang C L, Zhang Y L, Hu X, Xiao X, Wang G L, You C X, Li Y Y, Hao Y J. An apple long-chain acyl-CoA synthetase, MdLACS4, induces early flowering and enhances abiotic stress resistance in Arabidopsis. Plant Sci, 2020, 297: 110529.
doi: 10.1016/j.plantsci.2020.110529
[23] Wang X L, Li X B. The GhACS1 gene encodes an acyl-CoA synthetase which is essential for normal microsporogenesis in early anther development of cotton. Plant J, 2009, 57: 473-486.
doi: 10.1111/j.1365-313X.2008.03700.x
[24] Dyer J M, Stymne S, Green A G, Carlsson A S. High-value oils from plants. Plant J, 2008, 54: 640-655.
doi: 10.1111/j.1365-313X.2008.03430.x
[25] Hryvusevich P, Navaselsky I, Talkachova Y, Straltsova D, Keisham M, Viatoshkin A, Samokhina V, Smolich I, Sokolik A, Huang X, Yu M, Bhatla S C, Demidchik V. Sodium influx and potassium efflux currents in sunflower root cells under high salinity. Front Plant Sci, 2020, 11: 613936.
doi: 10.3389/fpls.2020.613936
[26] Li J J, Liu H, Yang C, Wang J, Yan G J, Si P, Bai Q J, Lu Z Y, Zhou W J, Xu L. Genome-wide identification of MYB genes and expression analysis under different biotic and abiotic stresses in Helianthus annuus L. Ind Crop Prod, 2020, 143: 111924.
doi: 10.1016/j.indcrop.2019.111924
[27] Livak Kenneth J A, Schmittgen Thomas D B. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[28] Harwood H J. Oleochemicals as a fuel: mechanical and economic feasibility. J Am Oil Chem Soc, 1984, 61: 315-324.
doi: 10.1007/BF02678788
[29] Knoll L J. Complementation of Saccharomyces cerevisiae strains containing fatty acid activation gene (FAA) deletion with a mammalian acyl-CoA synthetase. J Biol Chem, 1995, 270: 10861-10867.
doi: 10.1074/jbc.270.18.10861 pmid: 7738025
[30] Færgeman N J, Black P N, Zhao X D. The acyl-CoA synthetases encoded within FAA1 and FAA4 in Saccharomyces cerevisiae function as components of the fatty acid transport system linking import, activation, and intracellular utilization. J Biol Chem, 2001, 276: 37051-37059.
doi: 10.1074/jbc.M100884200
[31] Li H, Melton E M, Quackenbush S, DiRusso C C, Black P N. Mechanistic studies of the long chain acyl-CoA synthetase Faa1p from Saccharomyces cerevisiae. Biochim Biophys Acta, 2007, 1771: 1246-1253.
doi: 10.1016/j.bbalip.2007.05.009 pmid: 17604220
[32] Gietz R D, Schiestl R H. Frozen competent yeast cells that can be transformed with high efficiency using the LiAc/SS carrier DNA/PEG method. Nat Protoc, 2007, 2: 1-4.
pmid: 17401330
[33] 宋燕子, 贾彬, 林柏成, 胡章立, 黄瑛. 莱茵衣藻酰基辅酶A合成酶cDNA克隆及其酵母表达. 生物技术通报, 2015, 31: 119-124.
doi: 10.13560/j.cnki.biotech.bull.1985.2015.09.016
Song Y Z, Jia B, Lin B C, Hu Z L, Huang Y. cDNA cloning and yeast expression of acyl-CoA synthetase of Chlamydomonas reinhardtii. Biotechnol Bull, 2015, 31: 119-124. (in Chinese with English abstract)
[34] Aznar-Moreno J A, Venegas Calerón M, Martínez-Force E, Garcés R, Mullen R, Gidda S K, Salas J J. Sunflower (Helianthus annuus) long-chain acyl-coenzyme a synthetases expressed at high levels in developing seeds. Physiol Plant, 2014, 150: 363-373.
doi: 10.1111/ppl.12107 pmid: 24102504
[35] 于莉莉, 谭小力, 侯文胜. 大豆长链脂酰辅酶A合成酶基因GmLACS在酵母中的表达. 大豆科学, 2011, 30: 719-722.
Yu L L, Tan X L, Hou W S. Enzyme activity analysis of GmLACS in Saccharomyces cerevisiae. Soybean Sci, 2011, 30: 719-722. (in Chinese with English abstract)
[36] Chlo G, Thierry J, Julien S, Philippe L, Virginie V, MawussD T A, Thierry B, Dany S, Philippe A, James T, Tristan D G, Fabienne M, Stphane D. Gene coexpression network analysis of oil biosynthesis in an interspecific backcross of oil palm. Plant J, 2016, 87: 423-441.
doi: 10.1111/tpj.13208
[37] Kitajima-Koga A, Baslam M, Hamada Y, Ito N, Taniuchi T, Takamatsu T, Oikawa K, Kaneko K, Mitsui T. Functional analysis of rice long-chain acyl-CoA synthetase 9 (OsLACS9) in the chloroplast envelope membrane. Int J Mol Sci, 2020, 21: 2223.
doi: 10.3390/ijms21062223
[38] McFarlane H E, Watanabe Y, Yang W, Huang Y, Ohlrogge J, Samuels A L. Golgi- and trans-Golgi network-mediated vesicle trafficking is required for wax secretion from epidermal cells. Plant Physiol, 2014, 164: 1250-1260.
doi: 10.1104/pp.113.234583 pmid: 24468625
[1] ZHANG Cheng, ZHANG Zhan, YANG Jia-Bao, MENG Wan-Qiu, ZENG Ling-Lu, SUN Li. Genome-wide identification and relative expression analysis of DGATs gene family in sunflower [J]. Acta Agronomica Sinica, 2023, 49(1): 73-85.
[2] HUANG Cheng, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome wide analysis of BnAPs gene family in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(3): 597-607.
[3] Pin LYU, Hai-Feng YU, Jian-Hua HOU. QTL Mapping of Yield Traits Using Drought Tolerance Selected Backcrossing Introgression Lines in Sunflower [J]. Acta Agronomica Sinica, 2018, 44(03): 385-396.
[4] LYU Pin,YU Hai-Feng,YU Zhi-Xian,ZHANG Yong-Hu,ZHANG Yan-Fang,WANG Ting-Ting,HOU Jian-Hua. Construction of High-density Genetic Map and QTL Mapping for Seed Germination Traits in Sunflower under Two Water Conditions [J]. Acta Agron Sin, 2017, 43(01): 19-30.
[5] YUAN Huan-Huan,SUN Guang-Hua,YAN Lei,GUO Lin,FAN Xiao-Cong,XIAO Yang,MENG Fan-Hua,SONG Mei-Fang,ZHAN Ke-Hui,YANG Qing-hua, YANG Jian-Ping. Molecular Cloning of ZmPP6C Gene and Its Expression Patterns in Response to Light and Stress Treatments in Maize (Zea mays L.) [J]. Acta Agron Sin, 2016, 42(02): 170-179.
[6] LI Wei,SHANG Hai-Hong,WANG Shao-Gan,FAN Sen-Miao,LI Jun-Wen,LIU Ai-Ying,SHI Yu-Zhen,GONG Ju-Wu,GONG Wan-Kui,WANG Tao,BAI Zhi-Chuan,YUAN You-Lu. Cloning and Expression Analysis of Three Aquaporin Genes in Upland Cotton (Gossypium hirsutum L.) [J]. Acta Agron Sin, 2013, 39(02): 222-229.
[7] LIU Jie;ZHANG Mei-Li;ZHANG Yi;SHI De-Cheng. Effects of Simulated Salt and Alkali Conditions on Seed Germination and Seedling Growth of Sunflower (Helianthus annuus L.) [J]. Acta Agron Sin, 2008, 34(10): 1818-1825.
[8] LIU Gong-She;XU Su-Xia;LIU Xiao-Li. Characteristics of “NEWFREE” CMS Line and Utilization in Ornamental Sunflower [J]. Acta Agron Sin, 2006, 32(11): 1752-1755.
[9] XU Su-Xia;LIU Gong-She. Mechanism and Application of Cytoplasmic Male-sterility in Sunflower (Helianthus annuus L.) [J]. Acta Agron Sin, 2006, 32(10): 1573-1578.
[10] TAO Jun; TAN Ru-Fang and LI Ling. Genetic Transformation of Sunflower (Helianthus Annuus L.) Mediated by Agrobacterium rhizogenes [J]. Acta Agron Sin, 2006, 32(05): 743-748.
[11] Mo Jiesheng Liu Jie;Liu Gongshe. Identification of Seed Purity of Oilseed Sunflower (Helianthus annuus L.) Hybrid A15 with RAPD [J]. Acta Agron Sin, 2001, 27(01): 85-90.
[12] Ji Jing;Wang Gang;Wu Ying;Wang Ping. Molecular Genetic Studies on the Restoration and Maintenance in CMS Sunflower [J]. Acta Agron Sin, 1999, 25(06): 683-685.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!