Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (2): 485-496.doi: 10.3724/SP.J.1006.2023.21005
• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles Next Articles
WANG Xue(), WANG Wen-Hui, LI Dong, YAO Xia, ZHU Yan, CAO Wei-Xing, CHENG Tao()
[1] | Lyu Z F, Liu X J, Cao W X, Zhu Y. Climate change impacts on regional winter wheat production in main wheat production regions of China. Agric For Meteorol, 2013, 171: 234-248. |
[2] |
Gitelson A A, Gritz Y, Merzlyak M N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J Plant Physiol, 2003, 160: 271-282.
doi: 10.1078/0176-1617-00887 |
[3] |
Li D, Tian L, Wan Z F, Jia M, Yao X, Tian Y C, Zhu Y, Cao W X, Cheng T. Assessment of unified models for estimating leaf chlorophyll content across directional-hemispherical reflectance and bidirectional reflectance spectra. Remot Sens Environ, 2019, 231: 111240.
doi: 10.1016/j.rse.2019.111240 |
[4] |
Dong L, Cheng T, Zhou K, Zheng H B, Yao X, Tain Y C, Zhu Y, Cao W X. WREP: a wavelet-based technique for extracting the red edge position from reflectance spectra for estimating leaf and canopy chlorophyll contents of cereal crops. ISPRS J Photogramm, 2017, 129: 103-117.
doi: 10.1016/j.isprsjprs.2017.04.024 |
[5] | Gitelson A A. Remote estimation of canopy chlorophyll content in crops. Geophy Res Lett, 2005, 32: 8403. |
[6] |
Li D, Chen J M, Zhang X, Yan Y, Zhu J, Zheng H B, Zhou K, Yao X, Tian Y C, Zhu Y, Cheng T, Cao W X. Improved estimation of leaf chlorophyll content of row crops from canopy reflectance spectra through minimizing canopy structural effects and optimizing off-noon observation time. Remot Sens Environ, 2020, 248: 111985.
doi: 10.1016/j.rse.2020.111985 |
[7] |
Jay S, Maupas F, Bendoula R, Gorretta N. Retrieving LAI, chlorophyll and nitrogen contents in sugar beet crops from multi-angular optical remote sensing: comparison of vegetation indices and PROSAIL inversion for field phenotyping. Field Crops Res, 2017, 210: 33-46.
doi: 10.1016/j.fcr.2017.05.005 |
[8] |
Gitelson A A, Merzlyak M N. Remote estimation of chlorophyll content in higher plant leaves. Int J Remote Sens, 1997, 18: 2691-2697.
doi: 10.1080/014311697217558 |
[9] | 童倩倩, 李莉婕, 赵泽英, 岳延滨, 刘海. 基于离散小波算法定量反演贵州百香果叶片叶绿素含量的研究. 西南农业学报, 2020, 33: 2927-2932. |
Tong Q Q, Li L J, Zhao Z Y, Yue Y B, Liu H. Quantitative inversion of chlorophyll content in passiflora edulis leaves based on discrete wavelete algorithm in Guizhou province. Southest China J Agric Sci, 2020, 33: 2927-2932 (in Chinese with English abstract). | |
[10] |
Yoder B J, Pettigrew-Crosby R E. Predicting nitrogen and chlorophyll content and concentrations from reflectance spectra (400-2500 nm) at leaf and canopy scales. Remot Sens Environ, 1995, 53: 199-211.
doi: 10.1016/0034-4257(95)00135-N |
[11] | 王浩云, 曹雪莲, 孙云晓, 闫明壮, 王江波, 徐焕良. 基于光学特性参数反演的绿萝叶绿素含量估测研究. 农业机械学报, 2021, 52(3): 202-209. |
Wang H Y, Cao X L, Sun Y X, Yan M Z, Wang J B, Xu H L. Estimation of chlorophyll content of epipremnum aureum based on optical characteristic parameter inversion. Trans CSAM, 2021, 52(3): 202-209. (in Chinese with English abstract) | |
[12] |
Ma Z G, Chen X, Wang Q, Li P H, Jiapaer G L. Retrieval of leaf biochemical properties by inversed PROSPECT model and hyperspectral indices: an application to Populus euphratica polymorphic leaves. J Arid Land, 2012, 4: 52-62.
doi: 10.3724/SP.J.1227.2012.00052 |
[13] |
Li P H, Wang Q. Retrieval of leaf biochemical parameters using PROSPECT inversion: a new approach for alleviating ill-posed problems. IEEE Trans Geosci Remot, 2011, 49: 2499-2506.
doi: 10.1109/TGRS.2011.2109390 |
[14] |
Chen J. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter. Remot Sens Environ, 2004, 91: 332-344.
doi: 10.1016/j.rse.2004.03.014 |
[15] | Barnes E M, Clarke T R, Richards S E, Colaizzi P D, Thompson T. Coincident Detection of Crop Water Stress, Nitrogen Status, and Canopy Density Using Ground Based Multispectral Data. Proceedings of the 5th International Conference on Precision Agriculture and other resource management July 16-19, 2000, Bloomington, MN USA 2000. |
[16] | Wang W H, Wu Y P, Zhang Q F, Zheng H B, Yao X, Zhu Y, Cao W X, Cheng T. AAVI: a novel approach to estimating leaf nitrogen concentration in rice from unmanned aerial vehicle multispectral imagery at early and middle growth stages. IEEE J-STARS, 2021, 14: 6716-6728. |
[17] |
Cheng T, Rivard B, Sánchez-Azofeifa A G, Féret J B, Jacquemoud S, Ustin S L. Deriving leaf mass per area (LMA) from foliar reflectance across a variety of plant species using continuous wavelet analysis. ISPRS J Photogr, 2014, 87: 28-38.
doi: 10.1016/j.isprsjprs.2013.10.009 |
[18] |
Cheng T, Rivard B, Sánchez-Azofeifa A. Spectroscopic determination of leaf water content using continuous wavelet analysis. Remote Sens Environ, 2010, 115: 659-670.
doi: 10.1016/j.rse.2010.11.001 |
[19] |
Huang J F, Blackburn G A. Optimizing predictive models for leaf chlorophyll concentration based on continuous wavelet analysis of hyperspectral data. Int J Remote Sens, 2011, 32: 9375-9396.
doi: 10.1080/01431161.2011.558130 |
[20] | 李辰, 王延仓, 李旭青, 杨秀峰, 顾晓鹤. 基于小波技术的冬小麦植株组分含水率估测模型. 农业机械学报, 2021, 52(3): 193-201. |
Li C, Wang Y C, Li X Q, Yang X F, Gu X H. Quantitative inversion of water content of plant components in winter wheat based on wavelet technology. Trans CSAM, 2021, 52(3): 193-201. (in Chinese with English abstract) | |
[21] |
张骁, 闫岩, 王文辉, 郑恒彪, 姚霞, 朱艳, 程涛. 基于小波分析的水稻籽粒直链淀粉含量高光谱预测. 作物学报, 2021, 47: 1563-1580.
doi: 10.3724/SP.J.1006.2021.02063 |
Zhang X, Yan Y, Wang W H, Zheng H B, Yao X, Zhu Y, Cheng T. Application of continuous wavelet analysis to laboratory reflectance spectra for the prediction of grain amylose content in rice. Acta Agron Sin, 2021, 47: 1563-1580. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.02063 |
|
[22] |
Yan G, Bo D, Zhu R S, Wu X T, Ma Y, Peng Y. Remote estimation of rapeseed yield with unmanned aerial vehicle (UAV) imaging and spectral mixture analysis. Plant Methods, 2018, 14: 70.
doi: 10.1186/s13007-018-0338-z pmid: 30151031 |
[23] |
Croft H, Arabian J, Chen J M, Shang J L, Liu J G. Mapping within-field leaf chlorophyll content in agricultural crops for nitrogen management using Landsat-8 imagery. Prec Agric, 2020, 21: 856-880.
doi: 10.1007/s11119-019-09698-y |
[24] |
Zhang Y Q, Chen J M, Miller J R, Noland T L. Leaf chlorophyll content retrieval from airborne hyperspectral remote sensing imagery. Remote Sens Environ, 2008, 112: 3234-3247.
doi: 10.1016/j.rse.2008.04.005 |
[25] |
Sims D A, Gamon J A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens Environ, 2002, 81: 337-354.
doi: 10.1016/S0034-4257(02)00010-X |
[26] |
Main R, Cho M A, Mathieu R, Kennedy M M O, Ramoelo A, Koch S. An investigation into robust spectral indices for leaf chlorophyll estimation. ISPRS J Photogr, 2011, 66: 751-761.
doi: 10.1016/j.isprsjprs.2011.08.001 |
[27] |
Féret J B, François C, Gitelson A, Asner G P, Barry K M, Panigada C, Richardson A D, Jacquemoud S. Optimizing spectral indices and chemometric analysis of leaf chemical properties using radiative transfer modeling. Remote Sens Environ, 2011, 115: 2742-2750.
doi: 10.1016/j.rse.2011.06.016 |
[28] |
Maccioni A, Agati G, Mazzinghi P. New vegetation indices for remote measurement of chlorophylls based on leaf directional reflectance spectra. J Photochem Photobiol Biol, 2001, 61: 52-61.
doi: 10.1016/S1011-1344(01)00145-2 |
[29] |
Datt B. Visible/near infrared reflectance and chlorophyll content in Eucalyptus leaves. Int J Remote Sens, 1999, 20: 2741-2759.
doi: 10.1080/014311699211778 |
[30] |
Cheng T, Ria O D, Ustin S L. Detecting diurnal and seasonal variation in canopy water content of nut tree orchards from airborne imaging spectroscopy data using continuous wavelet analysis. Remote Sens Environ, 2014, 143: 39-53.
doi: 10.1016/j.rse.2013.11.018 |
[31] |
Cheng T, Rivard B, Sánchez-Azofeifa A G, Féret J B, Ustin S L. Predicting leaf gravimetric water content from foliar reflectance across a range of plant species using continuous wavelet analysis. J Plant Physiol, 2012, 169: 1134-1142.
doi: 10.1016/j.jplph.2012.04.006 |
[32] |
Cheng T, Rivard B, Sánchez-Azofeifa G A, Feng J, Calvo-polanco M. Continuous wavelet analysis for the detection of green attack damage due to mountain pine beetle infestation. Remote Sens Environ, 2010, 114: 899-910.
doi: 10.1016/j.rse.2009.12.005 |
[33] | Wang Y Y, Zhang K, Tang C L, Cao Q, Tian Y C, Zhu Y, Cao W X, Liu X J. Estimation of rice growth parameters based on linear mixed-effect model using multispectral images from fixed-wing unmanned aerial vehicles. Remote Sens-based, 2019, 11: 1371. |
[34] | Li S Y, Liu X J, Tian Y C, Zhu Y, Cao Q. Comparison RGB digital camera with active canopy sensor based on UAV for rice nitrogen status monitoring. In: 2018 7th International Conference on Agro-geoinformatics, 2018. pp 1-6. |
[35] | Grohs D S, Bredemeier C, Mundstock C M, Poletto N. Model for yield potential estimation in wheat and barley using the GreenSeeker sensor. Eng Agr-jaboticabal, 2009, 29: 101-112. |
[1] | YANG Bin, QIAO Ling, ZHAO Jia-Jia, WU Bang-Bang, WEN Hong-Wei, ZHANG Shu-Wei, ZHENG Xing-Wei, ZHENG Jun. QTL mapping and validation of chlorophyll content of flag leaves in wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2023, 49(3): 744-754. |
[2] | WANG Xue, GU Shu-Bo, LIN Xiang, WANG Wei-Yan, ZHANG Bao-Jun, ZHU Jun-Ke, WANG Dong. Effects of supplemental irrigation with micro-sprinkling hoses and water and fertilizer integration on yield and water and nitrogen use efficiency in winter wheat [J]. Acta Agronomica Sinica, 2023, 49(3): 784-794. |
[3] | GAO Chun-Hua, FENG Bo, LI Guo-Fang, LI Zong-Xin, LI Sheng-Dong, CAO Fang, CI Wen-Liang, ZHAO Hai-Jun. Effects of nitrogen application rate on starch synthesis in winter wheat under high temperature stress after anthesis [J]. Acta Agronomica Sinica, 2023, 49(3): 821-832. |
[4] | LIU Fang-Fang, WAN Ying-Xiu, CAO Wen-Xin, LI Yao, ZHANG Qi-Qi, LI Yan, ZHANG Ping-Zhi. Evaluation method of late spring coldness tolerance in wheat [J]. Acta Agronomica Sinica, 2023, 49(2): 438-446. |
[5] | MENG Yu, TIAN Wen-Zhong, WEN Peng-Fei, DING Zhi-Qiang, ZHANG Xue-Pin, HE Li, DUAN Jian-Zhao, LIU Wan-Dai, GUO Tian-Cai, FENG Wei. Comprehensive evaluation of drought resistance of wheat varieties based on synergy of different developmental stages [J]. Acta Agronomica Sinica, 2023, 49(2): 570-582. |
[6] | ZHANG Xiang-Yu, HU Xin-Hui, GU Shu-Bo, Lin Xiang, YIN Fu-Wei, WANG Dong. Effects of staged potassium application on grain yield and nitrogen use efficiency of winter wheat under reduced nitrogen conditions [J]. Acta Agronomica Sinica, 2023, 49(2): 447-458. |
[7] | LIU Xiao-Ying, ZHANG Chi, WANG Xue-Qing, YANG Chen-Xiao, WANG Guang-Yu, BIAN Yun-Di, FANG Fang, WANG Ying, WANG Zhen-Ying. Cloning and functional analysis of TaRPP13-1B gene related to powdery mildew resistance in wheat cultivar Brock [J]. Acta Agronomica Sinica, 2023, 49(2): 392-401. |
[8] | LI Xiu, LI Liu-Long, LI Mu-Rong, YIN Li-Jun, WANG Xiao-Yan. Effects of shading postanthesis on flag leaf chlorophyll content, leaf microstructure and yield of different wheat varieties [J]. Acta Agronomica Sinica, 2023, 49(1): 286-294. |
[9] | CHEN Jia-Jun, LIN Xiang, GU Shu-Bo, WANG Wei-Yan, ZHANG Bao-Jun, ZHU Jun-Ke, WANG Dong. Effects of foliar spraying of urea post anthesis on nitrogen uptake and utilization and yield in winter wheat [J]. Acta Agronomica Sinica, 2023, 49(1): 277-285. |
[10] | WANG Hai-Qi, WANG Rong-Rong, JIANG Gui-Ying, YIN Hao-Jie, YAN Shi-Jie, CHE Zi-Qiang. Effect of amount of nitrogen fertilizer applied on photosynthetic physiological characteristics of drip irrigated spring wheat leaves [J]. Acta Agronomica Sinica, 2023, 49(1): 211-224. |
[11] | ZHANG Yi-Duo, LI Guo-Qiang, KONG Zhong-Xin, WANG Yu-Quan, LI Xiao-Li, RU Zhen-Gang, JIA Hai-Yan, MA Zheng-Qiang. Breeding of FHB-resistant wheat line Bainong 4299 by gene pyramiding [J]. Acta Agronomica Sinica, 2022, 48(9): 2221-2227. |
[12] | TAN Zhao-Guo, YUAN Shao-Hua, LI Yan-Mei, BAI Jian-Fang, YUE Jie-Ru, LIU Zi-Han, ZHANG Tian-Bao, ZHAO Fu-Yong, ZHAO Chang-Ping, XU Ben-Bo, ZHANG Sheng-Quan, PANG Bin-Shuang, ZHNAG Li-Ping. Cloning of TaPIP1 gene and its potential function in anther dehiscence in wheat [J]. Acta Agronomica Sinica, 2022, 48(9): 2242-2254. |
[13] | FENG Zi-Heng, LI Xiao, DUAN Jian-Zhao, GAO Fei, HE Li, YANG Tian-Chong, RONG Ya-Si, SONG Li, YIN Fei, FENG Wei. Hyperspectral remote sensing monitoring of wheat powdery mildew based on feature band selection and machine learning [J]. Acta Agronomica Sinica, 2022, 48(9): 2300-2314. |
[14] | CAO Ji-Ling, ZENG Qing, ZHU Jian-Guo. Responses of photosynthetic characteristics and gene expression in different wheat cultivars to elevated ozone concentration at grain filling stage [J]. Acta Agronomica Sinica, 2022, 48(9): 2339-2350. |
[15] | LI Yong-Bo, CUI De-Zhou, HUANG Chen, SUI Xin-Xia, FAN Qing-Qi, CHU Xiu-Sheng. Preparation of highly specific wheat ATG8 antibody and its application in the detection of autophagy [J]. Acta Agronomica Sinica, 2022, 48(9): 2390-2399. |
|