Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (1): 211-224.doi: 10.3724/SP.J.1006.2023.11100

• TILLAGE & CULTIVATION ·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effect of amount of nitrogen fertilizer applied on photosynthetic physiological characteristics of drip irrigated spring wheat leaves

WANG Hai-Qi(), WANG Rong-Rong, JIANG Gui-Ying(), YIN Hao-Jie, YAN Shi-Jie, CHE Zi-Qiang   

  1. College of Agronomy, Shihezi University, Shihezi 832000, Xinjiang, China
  • Received:2021-11-16 Accepted:2022-06-07 Online:2023-01-12 Published:2022-11-08
  • Contact: JIANG Gui-Ying E-mail:1486410951@qq.com;jgy67@126.com
  • Supported by:
    National Natural Science Foundation of China(31760346);Southern Xinjiang Key Industry Innovation and Development Support Plan(2021DB010)

Abstract:

The objective of this study is to clarify the regulatory effects of different N fertilizer applications on photosynthetic characteristics and assimilate accumulation in drip irrigated spring wheat leaves under the climatic conditions of northern Xinjiang. A split-zone experimental design was used to investigate the effects of N application on the photosynthetic enzyme activities, gas exchange parameters, chlorophyll fluorescence parameters, dry matter accumulation partitioning, and yield of wheat leaves at CK1 (300 kg hm-2), A1 (255 kg hm-2), B1 (210 kg hm-2), and CK2 (0 kg hm-2) levels, in order to investigate the effects of N application on the activities of key photosynthetic enzymes, gas exchange parameters, chlorophyll fluorescence parameters, dry matter accumulation distribution, yield, and NUE of wheat leaves. The results showed that the photosynthetic key enzyme activity, gas exchange parameters, chlorophyll fluorescence parameters, aboveground dry matter accumulation (SDM), reproductive organ dry matter accumulation (SPDM), and yield all had an increasing trend followed by a decreasing trend with increasing N application. There were high RuBPC activity, PEPC enzyme activity, net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), maximum photochemical efficiency (Fv/Fm), actual photochemical efficiency (ΦPSII), SDM, SPDM, yield and NUE in A1 treatment, which were 6.10%-30.45% higher than the rest of the treatments and 10.51%-64.95%, 7.05%-64.95%, 7.49%-26.66%, 11.61%-63.44%, 5.72%-49.85%, 1.68%-28.55%, 5.00%-46.01%, 18.95%-96.45%, 22.95%-177.44%, 4.15%-46.88%, 6.30%-25.42%, and intercellular CO2 concentration (Ci) was reduced by 11.73%-20.95% compared to the rest of the treatments. Correlation analysis revealed that the yield, dry matter accumulation, NUE and Pn, Gs, Tr, ФPSII were highly significantly positively correlated and highly significantly negatively correlated with Ci. The reciprocal effects of N application and variety intercropping reached significant levels for RuBPC enzyme activity at anthesis stage, PEPC enzyme activity from anthesis to milking, Fv/Fm and ΦPSII at nodulation and anthesis. Therefore, the moderate N reduction (255 kg hm-2) under the drip irrigation pattern in Xinjiang improved the photosynthetic performance of wheat and facilitated the distribution and transport of photosynthetic products to reproductive organs on the basis of increased dry matter accumulation, which was beneficial to yield formation.

Key words: drip irrigated spring wheat, N application, photosynthetic characteristics, dry matter accumulation, yield

Fig. 1

Daily average temperature and rainfall during wheat growth period"

Table 1

Major chemical characteristics of the experimental soil"

年份
Year
全氮含量
Total N (g kg-1)
碱解氮含量
Available N
(mg kg-1)
速效磷含量
Available P
(mg kg-1)
速效钾含量
Available K
(mg kg-1)
有机质含量
Organic
(g kg-1)
pH
2020 1.30 61.30 15.24 147.01 18.43 7.7
2021 1.37 58.71 16.96 139.02 17.84 7.6

Table 2

Different treatments of nitrogen fertilizer"

处理
Treatment
(kg hm-2)
基肥
Base fertilizer
(20%)
追肥
Top dressing
(80%)
二叶一心期Two-leaf one-hearted stage (10%) 分蘖期Tillering stage (10%) 拔节期
Jointing stage (40%)
孕穗期Booting stage (20%) 扬花期Flowering stage (15%) 乳熟期
Milky maturity stage (5%)
CK1 (300) 60 240 24 24 96 48 36 12
A1 (255) 51 204 20.4 20.4 81.6 40.8 30.6 10.2
B1 (210) 42 168 16.8 16.8 67.2 33.6 25.2 8.4
CK2 (0) 0 0 0 0 0 0 0 0

Fig. 2

Schematic diagram of drip tape layout"

Fig. 3

Effect of reduced nitrogen fertilizer treatment on RuBPC activity and PEPC activity of spring wheat under drip irrigation Treatments are the same as those given in Table 2. XC37: Xinchun 37; XC6: Xinchun 6. FS: flowering stage; MS: Milky maturity stage; DS: dough stage. Difference letters at the same period mean significant different at P < 0.05 among treatments."

Table 3

ANOVA of nitrogen reduction treatments on photosynthetic physiological indicators in drip irrigated spring wheat"

性状
Trait
RuBPC PEPC Fv/Fm ΦPSII
FS MS DS FS MS DS TS JS BS FS MS DS TS JS BS FS MS DS
Y ns ns ns * ns ns ** ** ** ** ** ns ** ** ** ** ** ns
V ** ns ns ** ** ns ** ** ** ** ** ns ** ** ns ** * ns
N ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **
Y*V ns ns ns ns ns ns ns ns ns ** ** ns ** ns ns ns ns ns
V*N ** ns ns ** ** ns ns ** ns ** ** ns * ** ns ** ns ns
Y*N ns ns ns ns ns ns ** ** ** ** ** ns ** ** ** ** ns ns
Y*V*N ns ns ns ns ns ns ns ** ns ** ** ns ns ** ns ns ns ns
性状
Trait
Pn Gs Ci Tr
TS JS BS FS MS DS TS JS BS FS MS DS TS JS BS FS MS DS TS JS BS FS MS DS
Y ** ** ** * ns ** ** * ** ** ** ** ** ** ns ** ** ns ** * ** ** ** ns
V ns ** ** ns ** ** * ** ** ** ** ns * ** ** * ns ns ** ** ** ** ** ns
N ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **
Y*V ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ** ns ns ns
V*N ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ** ** ns ns
Y*N ns ns ** ns ns ns ns ** ** ** ** ns ** ** ** ns ns ns ns ** ** ** ** ns
Y*V*N ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ** ** ns ns

Fig. 4

Effect of reduced nitrogen fertilizer treatment on photosynthetic rate (Pn) and stomatal conductance (Gs) of spring wheat under drip irrigation Treatments are the same as those given in Table 2. XC37: Xinchun 37; XC6: Xinchun 6. TS: tillering stage; JS: jointing stage; BS: booting stage; FS: flowering stage; MS: milky maturity stage; DS: dough stage. Difference letters at the same period mean significant different at P < 0.05 among treatments."

Fig. 5

Effect of reduced nitrogen fertilizer treatment on intercellular CO2 concentration (Ci) and transpiration rate (Tr) of spring wheat under drip irrigation Abbreviations are the same as those given in Fig. 4. Treatments are the same as those given in Table 2. Difference letters at the same period mean significant different at P < 0.05 among treatments."

Fig. 6

Effect of reduced nitrogen fertilizer treatment on the maximum photochemical efficiency (Fv/Fm) of spring wheat under drip irrigation Abbreviations are the same as those given in Fig. 4. Difference letters at the same period mean significant different at P < 0.05 among treatments."

Fig. 7

Effect of reduced nitrogen fertilizer treatment on actual photochemical efficiency (ΦPSII) of spring wheat under drip irrigation Abbreviations are the same as those given in Fig. 4. Difference letters at the same period mean significant different at P < 0.05 among treatments."

Table 4

Effect of reduced nitrogen fertilizer treatment on shoot dry matter, spike dry matter of spring wheat under drip irrigation"

年份
Years
(Y)
品种
Variety
(V)
施氮量
Nitrogen (N)
地上部干物质重Shoot dry matter (kg hm‒2) 穗重Spike dry matter (kg hm‒2) 产量
Yield
(kg hm‒2)
氮肥利用率NUE
TS JS BS FS MS BS FS MS
2020 新春37号
XC37
CK1 1305.03 b 2258.20 b 10087.33 b 11432.67 b 19744.50 b 2257.07 b 3419.20 b 10633.00 b 6952.75 b 40.20 a
A1 1585.03 a 2753.33 a 11332.87 a 13154.90 a 23486.53 a 2744.07 a 4179.50 a 12561.37 a 7247.82 a 42.23 a
B1 1254.20 b 2211.43 b 8107.63 c 8894.83 c 16470.63 c 1785.40 c 2746.73 c 7978.67 c 6818.60 c 33.67 bc
CK2 1079.77 c 1534.53 c 6701.53 d 8364.33c d 12292.53 d 1336.97 d 2246.93 d 5144.50 d 4986.42 d /
新春6号
XC6
CK1 1298.07 b 2187.80 b 9820.10 b 10911.10 b 17793.80 c 2218.10 b 3408.13 b 9858.90 b 6921.06 b 37.10 b
A1 1556.03 a 2683.33 a 11084.47 a 12805.40 a 22331.77 a 2738.57 a 4155.57 a 11852.27 a 7141.44 a 39.55 ab
B1 1151.23 bc 2186.87 b 7938.37 c 8698.67 c 15844.93 c 1694.80 c 2712.50 c 7820.90 c 6736.09 c 32.51 c
CK2 1014.57 c 1483.60 c 6623.83 d 7539.57 d 11698.87 d 1288.77 d 2222.8 d 4987.57 d 4881.70 d /
F
F-value
V ns ns * * * ns ns ns ns **
N ** ** ** ** ** ** ** ** ** **
N×V ns ns ns ns ns ns ns ns ns ns
2021 新春37号
XC37
CK1 1301.20 bc 2275.45 b 9766.47 b 11627.48 b 19095.80 b 2189.42 bc 3398.32 b 9065.75 b 6930.33 b 35.77 ab
A1 1536.20 a 2743.70 a 10910.15 a 13295.55 a 23703.10 a 2698.60 a 4058.40 a 11670.08 a 7220.33 a 36.86 a
B1 1177.45 cd 2206.00 bc 8104.10 c 8987.90 c 16632.68 c 1534.15 d 2583.35 c 7356.52 c 6782.00 bc 34.25 bc
CK2 1095.05 cd 1511.00 d 6373.93 d 7947.10 d 12220.15 d 1129.08 d 2105.73 d 4602.15 d 5013.00 d /
新春6号
XC6
CK1 1228.40 cd 2118.95 bc 9433.05 b 11150.27 b 18742.00 b 2015.90 c 3240.37 b 8893.95 b 6848.67 bc 34.55 b
A1 1464.85 ab 2587.05 a 10702.25 a 12760.30 a 22582.28 a 2617.85 ab 3917.85 a 11187.35 a 7180.33 a 34.77 ab
B1 1189.30 cd 1969.95 c 7734.10 c 8728.20 c 15638.52 c 1398.70 d 2513.05 c 7079.43 c 6687.33 c 32.71 c
CK2 1048.70 d 1368.80 d 6095.50 d 6220.13 e 11494.90 d 1054.25 d 1768.88 d 4032.30 d 4917.33 d /
F
F-value
V ns * ** ** * ns * * * **
N ** ** ** ** ** ** ** ** ** *
N×V ns ns ns ** ns ns ns ns ns ns

Fig. 8

Effect of reduced nitrogen fertilizer treatment on rate of spike dry matter of spring wheat under drip irrigation Abbreviations are the same as those given in Fig. 4. Treatments are the same as those given in Table 2. XC37: Xinchun 37; XC6: Xinchun 6. Difference letters at the same period mean significant different at the 0.05 probability level among treatment."

Table 5

Correlation coefficients between the measured parameters and shoot and spike dry mass in different periods"

生育时期
Growth
stage
参数
Parameter
Yield NUE SDM SPDM Pn Gs Tr Ci Fv/Fm ΦPSII RuBPC PEPC
孕穗期
Booting
stage
Yield 1
NUE 0.99** 1
SDM 0.87** 0.85** 1
SPDM 0.83** 0.79** 0.99** 1
Pn 0.69** 0.70** 0.82** 0.84** 1
Gs 0.85** 0.83** 0.85** 0.81** 0.74** 1
Tr 0.77** 0.74** 0.80** 0.74** 0.61* 0.91** 1
Ci -0.72** -0.69** -0.91** -0.91** -0.78** -0.83** -0.78** 1
Fv/Fm 0.85** 0.83** 0.93** 0.90** 0.80** 0.97** 0.90** -0.92** 1
ΦPSII 0.89** 0.86** 0.92** 0.86** 0.67** 0.93** 0.94** -0.86** 0.95** 1
扬花期
Flowering stage
Yield 1
NUE 0.99** 1
SDM 0.81** 0.77** 1
SPDM 0.85** 0.82** 0.99** 1
Pn 0.77** 0.76** 0.87** 0.92** 1
Gs 0.72** 0.69** 0.71** 0.73** 0.68** 1
Tr 0.87** 0.85** 0.82** 0.86** 0.85** 0.93** 1
Ci -0.78** -0.77** -0.91** -0.95** -0.87** -0.63** -0.75** 1
Fv/Fm 0.63** 0.60* 0.62** 0.63** 0.56* 0.97** 0.88** -0.51* 1
ΦPSII 0.78** 0.75** 0.90** 0.89** 0.82** 0.46 0.68** -0.81** 0.37 1
RuBPC 0.82** 0.79** 0.94** 0.94** 0.89** 0.74** 0.87** -0.85** 0.69** 0.87** 1
PEPC 0.73** 0.70** 0.89** 0.90** 0.89** 0.67** 0.81** -0.80** 0.62** 0.84** 0.97** 1
乳熟期
Milking
stage
Yield 1
NUE 0.99** 1
SDM 0.88** 0.85** 1
SPDM 0.88** 0.87** 0.98** 1
Pn 0.87** 0.84** 0.97** 0.96** 1
Gs 0.79** 0.72** 0.95** 0.89** 0.91** 1
Tr 0.84** 0.79** 0.91** 0.84** 0.84** 0.92** 1
Ci -0.79** -0.77** -0.91** -0.94** -0.87** -0.82** -0.75** 1
Fv/Fm 0.48 0.43 0.55* 0.41 0.43 0.64** 0.82** -0.31 1
ΦPSII 0.85** 0.79** 0.96** 0.90** 0.92** 0.97** 0.96** -0.80** 0.69** 1
RuBPC 0.91** 0.88** 0.97** 0.96** 0.96** 0.89** 0.88** -0.90** 0.51* 0.92** 1
PEPC 0.81** 0.78** 0.95** 0.93** 0.95** 0.90** 0.84** -0.84** 0.51* 0.89** 0.92** 1
[1] Hawkesford M J. Reducing the reliance on nitrogen fertilizer for wheat production. J Cereal Sci, 2014, 59: 276-283.
pmid: 24882935
[2] 刘兆辉, 薄录吉, 李彦, 孙明, 仲子文, 张英鹏, 井永苹. 氮肥减量施用技术及其对作物产量和生态环境的影响综述. 中国土壤与肥料, 2016, (4): 1-8.
Liu Z H, Bo L J, Li Y, Sun M, Zhong Z W, Zhang Y P, Jing Y P. Effect of nitrogen reduction on crop yield and ecological environment: a review. Soil Fert Sci China, 2016, (4): 1-8. (in Chinese with English abstract)
[3] Liang X, He J Z, Zhang F S, Shen Q R, Wu J S, Young I M, O’Donnell G, Wang L G, Wang E L, Hill J L, Chen D L. Healthy soils for sustainable food production and environmental quality. Front Agric Sci Eng, 2020, 7: 347-355.
doi: 10.15302/J-FASE-2020339
[4] 金书秦, 周芳. 中国的化肥、农药使用量零增长行动: 目标、进展与挑战. 资源与生态学报, 2018, 9(1): 50-58.
Jin S Q, Zhou F. Zero growth of chemical fertilizer and pesticide use: China’s objectives, progress and challenges. J Resour Ecol, 2018, 9(1): 50-58. (in Chinese with English abstract)
[5] Liu Z, Gao J, Gao F, Liu P, Zhao B, Zhang J W. Photosynthetic characteristics and chloroplast ultrastructure of summer maize response to different nitrogen supplies. Front Plant Sci, 2018, 9: 576-588.
doi: 10.3389/fpls.2018.00576 pmid: 29765387
[6] Ting J P, Osmond I B. Photosynthetic phosphoenolpyrurate carboxylases. Plant Physiol, 1973, 51: 439-447.
doi: 10.1104/pp.51.3.439 pmid: 16658348
[7] Foyer C C. Nitrate activation of cytosolic protein kinases diverts photosynthetic carbon from sucrose to amino acid biosynthesis: basis for a new concept. Plant Physiol, 1992, 100: 7-12.
doi: 10.1104/pp.100.1.7 pmid: 16653003
[8] 马冬云, 郭天财, 宋晓, 王晨阳, 韩巧霞, 岳艳君, 查菲娜. 施氮对冬小麦旗叶RuBP羧化酶活性及叶绿素荧光参数的影响. 西北植物学报, 2010, 30: 2197-2202.
Ma D Y, Guo T C, Song X, Wang C Y, Han Q X, Yue Y J, Zha F N. Effects of nitrogen fertilizer application on RuBP carboxylase activity and chlorophyll fluorescence parameters in flag leaves of winter wheat. Acta Bot Boreal-Occident Sin, 2010, 30: 2197-2202. (in Chinese with English abstract)
[9] 苌建峰, 董朋飞, 王秀玲, 刘卫玲, 李潮海. 氮肥运筹对不同夏玉米品种碳氮代谢协调性的影响. 中国农业科学, 2017, 50: 2282-2293.
Chang J F, Dong P F, Wang X L, Liu W L, Li C H. Effect of nitrogen application on carbon and nitrogen metabolism of different summer maize varieties. Sci Agric Sin, 2017, 50: 2282-2293. (in Chinese with English abstract)
[10] Jrg F A, Houman F B. Electrical signaling and gas exchange in maize plants of drying soil. Plant Sci, 1998, 132: 203-213.
doi: 10.1016/S0168-9452(98)00010-7
[11] Ahanger M A, Qin C, Begum N, Qi M, Dong X X, Ei E M, Sheikh E M, Alatar A A, Zhang L. Nitrogen availability prevents oxidative effects of salinity on wheat growth and photosynthesis by up-regulating the antioxidants and osmolytes metabolism, and secondary metabolite accumulation. BMC Plant Biol, 2019, 19: 479-490.
doi: 10.1186/s12870-019-2085-3 pmid: 31703619
[12] 王磊, 董树亭, 刘鹏, 张吉旺, 赵斌. 水氮互作对冬小麦光合生理特性和产量的影响. 水土保持学报, 2018, 32: 301-308.
Wang L, Dong S T, Liu P, Zhang J W, Zhao B. Effects of water and nitrogen interaction on physiological and photosynthetic characteristics and yield of winter wheat. J Soil Water Conserv, 2018, 32: 301-308. (in Chinese with English abstract)
[13] 蔡瑞国, 张敏, 戴忠民, 田雷, 王振林. 施氮水平对优质小麦旗叶光合特性和子粒生长发育的影响. 植物营养与肥料学报, 2006, 12: 49-55.
Cai R G, Zhang M, Dai Z M, Tian L, Wang Z L. Effects of nitrogen application rate on flag leaf photosynthetic characteristics and grain growth and development of high-quality wheat. Plant Nutr Fert Sci, 2006, 12: 49-55. (in Chinese with English abstract)
[14] Laury C, Dik H, Erik D B, Roland V, Dominique V D S. Thermal and chlorophyll-fluorescence imaging distinguish plant-pathogen interactions at an early stage. Plant Cell Physiol, 2004, 45: 887-896.
pmid: 15295072
[15] Wu Y W, Li Q, Jin R, Chen W, Liu X L, Kong F L, Ke Y P, Shi H C, Yuan J C. Effect of low-nitrogen stress on photosynthesis and chlorophyll fluorescence characteristics of maize cultivars with different low-nitrogen tolerances. J Integr Agric, 2019, 18: 1246-1256.
doi: 10.1016/S2095-3119(18)62030-1
[16] 张元帅, 冯伟, 张海艳, 齐双丽, 衡亚蓉, 郭彬彬, 李晓, 王永华, 郭天财. 遮阴和施氮对冬小麦旗叶光合特性及产量的影响. 中国生态农业学报, 2016, 24: 1177-1184.
Zhang Y S, Feng W, Zhang H Y, Qi S L, Heng Y R, Guo B B, Li X, Wang Y H, Guo T C. Effects of shading and nitrogen rate on photosynthetic characteristics of flag leaves and yield of winter wheat. Chin J Eco-Agric, 2016, 24: 1177-1184. (in Chinese with English abstract)
[17] Tian Z W, Liu X X, Gu S L, Yu J H, Zhang L, Zhang W W, Jiang D, Cao W X, Dai T B. Postponed and reduced basal nitrogen application improves nitrogen use efficiency and plant growth of winter wheat. J Integr Agric, 2018, 17: 2648-2661.
doi: 10.1016/S2095-3119(18)62086-6
[18] Wu X Y, Kuai B K, Jia J Z, Jing H C. Regulation of leaf senescence and crop genetic improvement. J Integr Plant Biol, 2012, 54: 936-952.
doi: 10.1111/jipb.12005
[19] Liu X, Yin C M, Xiang L, Jiang W T, Xu S Z, Mao Z Q. Transcription strategies related to photosynthesis and nitrogen metabolism of wheat in response to nitrogen deficiency. BMC Plant Biol, 2020, 20: 448-474.
doi: 10.1186/s12870-020-02662-3 pmid: 33003994
[20] Li B, Li Q R, Mao X G, Li A, Wang J Y, Chang C Y, Hao C Y, Zhang X Y, Jing R L. Two novel AP2/EREBP transcription factor genes TaPARG have pleiotropic functions on plant architecture and yield-related traits in common wheat. Front Plant Sci, 2016, 7: 1191.
doi: 10.3389/fpls.2016.01191 pmid: 27555860
[21] Tang W, Ye J, Yao X M, Zhao P Z, Xuan W, Tian Y L, Zhang Y Y, Xu S, An H Z, Chen G M. Genome-wide associated study identifies NAC42-activated nitrate transporter conferring high nitrogen use efficiency in rice. Nat Commun, 2019, 10: 5279-5290.
doi: 10.1038/s41467-019-13187-1 pmid: 31754193
[22] 郭培武, 赵俊晔, 石玉, 于振文. 水肥一体化条件下施氮量对小麦旗叶叶绿素荧光特性及产量的影响. 麦类作物学报, 2018, 38: 988-994.
Guo P W, Zhao J Y, Shi Y, Yu Z W. Effects of water-fertilizer integration on water use and photosynthetic characteristics of winter wheat. J Triticeae Crops, 2018, 38: 988-994. (in Chinese with English abstract)
[23] 李廷亮, 谢英荷, 洪坚平, 冯倩, 孙丞鸿, 王志伟. 施氮量对晋南旱地冬小麦光合特性、产量及氮素利用的影响. 作物学报, 2013, 39: 704-711.
Li T L, Xie Y H, Hong J P, Feng Q, Sun C H, Wang Z W. Effects of nitrogen application rate on photosynthetic characteristics, yield, and nitrogen utilization in rainfed winter wheat in southern Shanxi. Acta Agron Sin, 2013, 39: 704-711. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.00704
[24] Eissa M A, Rekaby S A, Hegab S A, Ragheb H M. Optimum rate of nitrogen fertilization for drip irrigated wheat under semiarid conditions. J Plant Nutr, 2017, 41: 1414-1424.
doi: 10.1080/01904167.2018.1454956
[25] Tao R, Li J, Hu B W, Shah J A, Chu G X. A 2-year study of the impact of reduced nitrogen application combined with double inhibitors on soil nitrogen transformation and wheat productivity under drip irrigation. J Sci Food Agric, 2020, 101: 1772-1781.
doi: 10.1002/jsfa.10791
[26] Racker E. Ribulose diphosphate carboxylase from spinach leaves. In: Colowick S P, Kaplan N O, eds. Methods in Enzymology. New York: Academic Press, 1962. pp 266-278.
[27] 施教耐, 吴敏贤, 查静娟. 植物磷酸烯醇式丙酮酸羧化酶的研究: I. PEP羧化酶同功酶的分离和变构特性的比较. 植物生理学报, 1979: 225-235.
Shi J N, Wu M X, Zha J J. Study on plant phosphoenolpyruvate carboxylase: I. Isolation of PEP carboxylase isoenzyme and comparison of allosteric characteristics. Plant Physiol J, 1979: 225-235. (in Chinese with English abstract)
[28] Gan Y T, Liang C, Chai Q, Lemke R L, Campbell C A, Zentner R P. Improving farming practices reduces the carbon footprint of spring wheat production. Nat Commun, 2014, 5: 5012.
doi: 10.1038/ncomms6012 pmid: 25405548
[29] 唐湘如. 施氮对饲用杂交稻产量和蛋白质含量的影响及其机理研究. 杂交水稻, 2000, (2): 36-39.
Tang X R. Study on the effect and mechanism of nitrogen application on the yield and protein content of forage hybrid rice. Hybrid Rice, 2000, (2): 36-39. (in Chinese with English abstract)
[30] Li Y P, Li H B, Li Y Y, Zhang S Q. Improving water-use efficiency by decreasing stomatal conductance and transpiration rate to maintain higher ear photosynthetic rate in drought-resistant wheat. Acta Agron Sin, 2017, 5: 231-239.
[31] Iram S, Sajad H, Muhammad A R, Nasir I, Muhammad A A, Ali R, Fan Y F, Maryam M, Muhammad S, Muhammad A, Abdul M, Yang W Y, Yang F. Crop photosynthetic response to light quality and light intensity. J Integr Agric, 2021, 20: 4-23.
doi: 10.1016/S2095-3119(20)63227-0
[32] 史辛凯, 于振文, 赵俊晔, 石玉, 王西芝. 施氮量对高产小麦光合特性、干物质积累分配与产量的影响. 麦类作物学报, 2021, 41: 713-721.
Shi X K, Yu Z W, Zhao J Y, Shi Y, Wang X Z. Effect of nitrogen application ration photosynthetic characteristics, dry matter accumulation and distribution and yield of high-yielding winter wheat. J Triticeae Crops, 2021, 41: 713-721. (in Chinese with English abstract)
[33] 李欣欣, 石祖梁, 王久臣, 王飞, 徐志宇, 江荣风. 施氮量和种植密度对稻茬晚播小麦干物质积累及光合特性的影响. 华北农学报, 2020, 35(5): 140-148.
doi: 10.7668/hbnxb.20191204
Li X X, Shi Z L, Wang J C, Wang F, Xu Z Y, Jiang R F. Effects of nitrogen application amount and planting density on dry matter accumulation and flag leaf photosynthetic characteristics for late-sowing wheat in rice-wheat rotation. Acta Agric Boreali-Sin, 2020, 35(5): 140-148. (in Chinese with English abstract)
doi: 10.7668/hbnxb.20191204
[34] 坚天才, 吴宏亮, 康建宏, 李鑫, 刘根红, 陈倬, 高娣. 氮素缓解春小麦花后高温早衰的荧光特性研究. 中国农业科学, 2021, 54: 3355-3368.
Jian T C, Wu H L, Kang J H, Li X, Liu G H, Chen Z, Gao D. Fluorescence characteristics study of nitrogen in alleviating premature senescence of spring wheat at high temperature after anthesis. Sci Agric Sin, 2021, 54: 3355-3368. (in Chinese with English abstract)
[35] Mu X H, Chen Q W, Chen F J, Yuan L X, Mi G H. A RNA-Seq analysis of the response of photosynthetic system to low nitrogen supply in maize leaf. Int J Mol Sci, 2017, 18: 2624.
doi: 10.3390/ijms18122624
[36] 马建辉, 张利霞, 姜丽娜, 王亚帆, 齐冰玉, 李春喜. 氮肥和密度对冬小麦光合生理和物质积累的影响. 麦类作物学报, 2015, 35: 674-680.
Ma J H, Zhang L X, Jiang L N, Wang Y F, Qi B Y, Li C X. Effect of nitrogen and density on photosynthetic physiology and matter accumulation of winter wheat. J Triticeae Crops, 2015, 35: 674-680. (in Chinese with English abstract)
[37] Sui Y H, Gao J P, Shang Q Y. Characterization of nitrogen metabolism and photosynthesis in a stay-green rice cultivar. Plant Soil Environ, 2019, 65: 283-289.
doi: 10.17221/202/2019-PSE
[38] 宋明丹, 李正鹏, 冯浩. 不同水氮水平冬小麦干物质积累特征及产量效应. 农业工程学报, 2016, 32(2): 119-126.
Song M D, Li Z P, Feng H. Effects of irrigation and nitrogen regimes on dry matter dynamic accumulation and yield of winter wheat. TCSAE, 2016, 32(2): 119-126 (in Chinese with English abstract)
[39] 张小涛, 黄玉芳, 马晓晶, 叶优良. 播种量和施氮量对不同基因型冬小麦干物质累积、转运及产量的影响. 植物生理学报, 2017, 53: 1067-1076.
Zhang X T, Huang Y F, Ma X J, Ye Y L. Effects of seeding rate and nitrogen level on dry matter accumulation, translocation and grain yield in two genotypes of winter wheat. Plant Physiol J, 2017, 53: 1067-1076. (in Chinese with English abstract)
[40] 张磊, 邵宇航, 谷世禄, 胡航, 张微微, 田中伟, 姜东, 戴廷波. 减量施氮下基肥后移对南方冬小麦产量和氮素利用效率的影响. 应用生态学报, 2016, 27: 3953-3960.
doi: 10.13287/j.1001-9332.201612.020
Zhang L, Shao Y H, Gu S L, Hu H, Zhang W W, Tian Z W, Jiang D, Dai T B. Effects of postponed basal nitrogen application with reduced nitrogen rate on grain yield and nitrogen use efficiency of south winter wheat. Chin J Appl Ecol, 2016, 27: 3953-3960. (in Chinese with English abstract)
[1] YIN Fang-Bing, LI Ya-Nan, BAO Jian-Xi, MA Ya-Jie, QIN Wen-Xuan, WANG Rui-Pu, LONG Yan, LI Jin-Ping, DONG Zhen-Ying, WAN Xiang-Yuan. Genome-wide association study and candidate genes predication of yield related ear traits in maize [J]. Acta Agronomica Sinica, 2023, 49(2): 377-391.
[2] SONG Jie, WANG Shao-Xiang, LI Liang, HUANG Jin-Ling, ZHAO Bin, ZHANG Ji-Wang, REN Bai-Zhao, LIU Peng. Effects of potassium application rate on NPK uptake and utilization and grain yield in summer maize (Zea mays L.) [J]. Acta Agronomica Sinica, 2023, 49(2): 539-551.
[3] TAO Shi-Bao, KE Jian, SUN Jie, YIN Chuan-Jun, ZHU Tie-Zhong, CHEN Ting-Ting, HE Hai-Bing, YOU Cui-Cui, GUO Shuang-Shuang, WU Li-Quan. High-yielding population agronomic characteristics of middle-season indica hybrid rice with different panicle sizes in the middle and lower reaches of the Yangtze River [J]. Acta Agronomica Sinica, 2023, 49(2): 511-525.
[4] LIU Meng, ZHANG Yao, GE Jun-Zhu, ZHOU Bao-Yuan, WU Xi-Dong, YANG Yong-An, HOU Hai-Peng. Effects of nitrogen application and harvest time on grain yield and nitrogen use efficiency of summer maize under different rainfall years [J]. Acta Agronomica Sinica, 2023, 49(2): 497-510.
[5] XU Tong, LYU Yan-Jie, SHAO Xi-Wen, GENG Yan-Qiu, WANG Yong-Jun. Effect of different times of spraying chemical regulator on the canopy structure and grain filling characteristics of high planting densities [J]. Acta Agronomica Sinica, 2023, 49(2): 472-484.
[6] ZHANG Xiang-Yu, HU Xin-Hui, GU Shu-Bo, Lin Xiang, YIN Fu-Wei, WANG Dong. Effects of staged potassium application on grain yield and nitrogen use efficiency of winter wheat under reduced nitrogen conditions [J]. Acta Agronomica Sinica, 2023, 49(2): 447-458.
[7] SUN Zhi-Chao, ZHANG Ji-Wang. Physiological mechanism and regulation effect of low light on maize yield formation [J]. Acta Agronomica Sinica, 2023, 49(1): 12-23.
[8] LI Xiu, LI Liu-Long, LI Mu-Rong, YIN Li-Jun, WANG Xiao-Yan. Effects of shading postanthesis on flag leaf chlorophyll content, leaf microstructure and yield of different wheat varieties [J]. Acta Agronomica Sinica, 2023, 49(1): 286-294.
[9] CHEN Jia-Jun, LIN Xiang, GU Shu-Bo, WANG Wei-Yan, ZHANG Bao-Jun, ZHU Jun-Ke, WANG Dong. Effects of foliar spraying of urea post anthesis on nitrogen uptake and utilization and yield in winter wheat [J]. Acta Agronomica Sinica, 2023, 49(1): 277-285.
[10] BAI Zhi-Yuan, CHEN Xiang-Yang, ZHENG A-Xiang, ZHANG Li, ZOU Jun, ZHANG Da-Tong, CHEN Fu, YIN Xiao-Gang. Spatial-temporal variations for agronomic and quality characters of soybeans varieties (strains) tested in America from 1991 to 2019 [J]. Acta Agronomica Sinica, 2023, 49(1): 177-187.
[11] ZOU Xiao-Xia, LIN Yi-Min, ZHAO Ya-Fei, LIU Yan, LIU Juan, WANG Yue-Fu, WANG Wei- Hua. Effects of calcium application on the distribution of photosynthetic carbon in plant-soil system at different peanut pod development stages [J]. Acta Agronomica Sinica, 2023, 49(1): 239-248.
[12] CHEN Bing-Jie, ZHANG Fu-Liang, YANG Shuo, LI Xiao-Li, HE Tang-Qing, ZHANG Chen-Xi, TIAN Ming-Hui, WU Mei, HAO Xiao-Feng, ZHANG Xue-Lin. Effects of arbuscular mycorrhizae fungi on maize physiological characteristics during grain filling stage, yield, and grain quality under different nitrogen fertilizer forms [J]. Acta Agronomica Sinica, 2023, 49(1): 249-261.
[13] ZHOU Qun, YUAN Rui, ZHU Kuan-Yu, WANG Zhi-Qin, YANG Jian-Chang. Characteristics of grain yield and nitrogen absorption and utilization of indica/japonica hybrid rice Yongyou 2640 under different nitrogen application rates [J]. Acta Agronomica Sinica, 2022, 48(9): 2285-2299.
[14] CHEN Zhi-Qing, FENG Yuan, WANG Rui, CUI Pei-Yuan, LU Hao, WEI Hai-Yan, ZHANG Hai-Peng, ZHANG Hong-Cheng. Effects of exogenous molybdenum on yield formation and nitrogen utilization in rice [J]. Acta Agronomica Sinica, 2022, 48(9): 2325-2338.
[15] WANG Yun-Qi, GAO Fu-Li, LI Ao, GUO Tong-Ji, QI Liu-Ran, ZENG Huan-Yu, ZHAO Jian-Yun, WANG Xiao-Ge, GAO Guo-Ying, YANG Jia-Peng, BAI Jin-Ze, MA Ya-Huan, LIANG Yue-Xin, ZHANG Rui. Variation of ear temperature after anthesis and its relationship with yield in wheat [J]. Acta Agronomica Sinica, 2022, 48(9): 2400-2408.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .