Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (1): 200-210.doi: 10.3724/SP.J.1006.2023.12083

• TILLAGE & CULTIVATION ·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of nitrogen panicle fertilizer application on physicochemical properties and fine structure of japonica rice starch and its relationship with eating quality

JIANG Yan1(), ZHAO Can1, CHEN Yue1, LIU Guang-Ming1, ZHAO Ling-Tian1, LIAO Ping-Qiang1, WANG Wei-Ling1, XU Ke1, LI Guo-Hui1, WU Wen-Ge2,*(), HUO Zhong-Yang1,*()   

  1. 1Jiangsu Key Laboratory of Crop Genetics and Physiology / Jiangsu Key Laboratory of Crop Cultivation and Physiology / Jiangsu Co-innovation Center for Modern Production Technology of Grain Crops / Yangzhou University, Yangzhou 225009, Jiangsu, China
    2Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230001, Anhui, China
  • Received:2021-12-04 Accepted:2022-06-07 Online:2023-01-12 Published:2022-07-05
  • Contact: WU Wen-Ge,HUO Zhong-Yang E-mail:mx120200671@yzu.edu.cn;wuwenge@vip.sina.com;huozy69@163.com
  • Supported by:
    National Natural Science Foundation of China(32001469);Key Research Program of Jiangsu Province(BE2020319);Key Research Program of Jiangsu Province(BE2019377);Key Research Program of Jiangsu Province(BE2021361);National Key Research and Development Program of China(2018YFD0300802);China Agriculture Research System(Rice, CARS-01-28);Postgraduate Research & Practice Innovation Program of Yangzhou University(KYCX21_3242);Priority Academic Program Development of Jiangsu Higher Education Institutions

Abstract:

To clarify the variations of physicochemical properties and the fine structure of japonica rice starch under different nitrogen panicle fertilizer treatment and to explore the relationship between eating quality and starch properties and structure, three panicle fertilizer nitrogen application levels (0, 45, and 135 kg N hm-2) were set under same basal and tiller fertilizer with Nanjing 9108 and Nanjing 0212 as the materials. Starch properties and structure of japonica rice under different treatments were determined, and the relationship between starch characteristics and eating quality was examined. The result indicated that application of nitrogen panicle fertilizer reduced the eating value of japonica rice, and there was significant difference in the high nitrogen treatment. Hardness, resilience, the absolute value of stickiness and balance, and the total protein content increased as nitrogen application rate were increased, while the apparent amylose content had the opposite trend. In terms of starch properties and structure, application of nitrogen panicle fertilizer increased starch solubility and swelling power, gelatinization enthalpy, small starch granules, relative crystallinity, and infrared ratio of 1045/1022 cm-1, while decreased retrogradation enthalpy and percentage, large starch granules, starch average diameter and infrared ratio of 1022/995 cm-1, and the trend appeared obvious especially under high nitrogen treatment. In conclusion, applying nitrogen panicle fertilizer can reduce the apparent amylose content, improve the surface order of starch and the stability of crystal region, decrease the starch granules size, thereby hindering the starch swelling and gelatinization, leading to the increase of rice hardness, eventually deteriorating the eating quality. Appropriate application of nitrogen panicle fertilizer can realize the coordination of excellent quality and high yield of japonica rice.

Key words: nitrogen panicle fertilizer, japonica rice, eating quality, physicochemical properties of starch, fine structure of starches

Fig. 1

Average temperature and precipitation during growing period in rice in 2020"

Table 1

Effects of nitrogen panicle fertilizer on japonica rice yield and yield components"

品种
Variety
处理
Treatment
有效穗数
Panicles
(×104 hm-2)
每穗粒数
Grains per
panicle
千粒重
1000-grain
weight (g)
结实率
Seed-setting rate (%)
实际产量
Harvest yield
(t hm-2)
南粳9018
NJ 9108
CK 293.43±3.83 b 113.32±3.02 b 27.37±0.06 a 95.01±0.59 a 8.55±0.28 b
LN 296.22±2.64 ab 130.82±1.45 a 26.83±0.04 b 94.31±0.67 a 9.49±0.11 a
HN 300.61±2.13 a 133.39±1.23 a 26.76±0.10 b 92.93±0.57 b 9.83±0.03 a
南粳0212
NJ 0212
CK 297.34±1.78 b 109.24±2.78 c 27.92±0.07 a 94.17±0.61 a 8.59±0.09 b
LN 302.86±2.17 a 126.11±1.95 b 27.55±0.07 b 93.45±0.49 ab 9.34±0.12 a
HN 304.50±1.96 a 130.86±2.09 a 26.85±0.08 c 92.72±0.51 b 9.88±0.21 a

Table 2

Effects of nitrogen panicle fertilizer on japonica rice taste value and typical texture profile analysis"

品种
Variety
处理
Treatment
食味值
Taste value
硬度
Hardness (g)
弹性
Resilience (%)
黏性
Stickiness (g)
平衡性
Balance
南粳9018
NJ 9108
CK 73.97±0.59 a 106.58±11.54 b 0.469±0.003 c -1116.70±17.45 a -0.221±0.008 a
LN 72.93±0.68 a 122.85±10.23 b 0.486±0.002 b -1200.44±6.67 b -0.241±0.011 a
HN 70.67±0.39 b 163.32±6.61 a 0.502±0.004 a -1301.77±33.19 c -0.267±0.003 b
南粳0212
NJ 0212
CK 59.67±0.50 a 110.94±9.90 b 0.464±0.018 b -990.39±62.08 a -0.138±0.018 a
LN 58.33±0.78 a 130.51±6.33 b 0.489±0.010 b -1078.24±26.53 a -0.164±0.003 b
HN 55.00±0.42 b 161.99±10.84 a 0.535±0.013 a -1231.28±15.41 b -0.186±0.008 b

Table 3

Effects of nitrogen panicle fertilizer on apparent amylose content, total protein content, swelling power, and solubility"

品种
Variety
处理
Treatment
表观直链淀粉含量
Apparent amylose
content (%)
总蛋白含量
Total protein
content (%)
膨胀势
Swelling power
(g g-1)
溶解度
Solubility
(%)
南粳9018
NJ 9108
CK 10.10±0.11 a 7.53±0.06 c 20.63±0.12 c 19.78±0.27 b
LN 9.37±0.05 b 7.76±0.06 b 22.27±0.08 b 22.34±0.33 a
HN 9.07±0.04 c 8.13±0.05 a 23.58±0.34 a 23.10±0.46 a
南粳0212
NJ 0212
CK 17.64±0.13 a 7.18±0.02 c 17.40±0.51 c 17.58±0.15 b
LN 16.91±0.08 b 7.46±0.01 b 18.84±0.22 b 18.31±0.48 ab
HN 16.71±0.03 b 7.93±0.02 a 20.72±0.17 a 19.22±0.37 a

Table 4

Effects of nitrogen panicle fertilizer on thermal properties of starch"

品种
Variety
处理
Treatment
糊化焓
ΔHgel (J g-1)
起始温度
T0 (℃)
峰值温度
TP (℃)
终止温度
TC (℃)
回生焓
ΔHret (J g-1)
回生度
R (%)
南粳9018
NJ 9108
CK 10.01±0.10 b 60.25±0.35 a 67.90±0.40 a 75.85±0.95 a 2.39±0.08 a 23.86±0.55 a
LN 10.70±0.13 a 59.25±0.15 a 67.70±0.30 a 75.00±0.80 a 1.92±0.03 b 17.93±0.50 b
HN 11.03±0.03 a 60.25±0.25 a 67.95±0.05 a 75.70±0.30 a 1.52±0.09 b 13.82±0.88 c
南粳0212
NJ 0212
CK 10.40±0.17 c 59.80±0.00 ab 67.65±0.05 a 74.40±0.00 b 2.41±0.07 a 23.14±0.28 a
LN 11.04±0.05 b 58.60±0.20 b 66.80±0.00 b 75.50±0.20 a 2.06±0.03 b 18.66±0.15 b
HN 12.02±0.10 a 60.15±0.25 a 67.65±0.05 a 75.15±0.05 a 1.77±0.03 b 14.76±0.34 c

Fig. 2

Starch granule distribution under different nitrogen panicle fertilizer Treatments and abbreviations are the same as those given in Table 1."

Table 5

Effects of nitrogen panicle fertilizer on the granule distribution of starch"

品种
Variety
处理
Treatment
小淀粉颗粒占比
Small starch
granules
≤ 2 μm (%)
中淀粉颗粒占比
Middle starch
granules
2-5 μm (%)
大淀粉颗粒占比Large starch
granules
≥ 5 μm (%)
体积平均直径
D[4,3]
(μm)
表面积平均直径
D[3,2]
(μm)
南粳9018
NJ 9108
CK 20.15±0.14 c 16.25±0.03 b 63.61±0.16 a 5.26±0.02 a 2.83±0.01 a
LN 20.59±0.12 b 18.08±0.03 a 61.33±0.09 c 5.14±0.01 b 2.78±0.01 b
HN 21.60±0.08 a 15.89±0.04 c 62.51±0.05 b 5.16±0.00 b 2.68±0.01 c
南粳0212
NJ 0212
CK 20.86±0.26 c 19.84±0.81 b 59.31±1.06 a 4.98±0.01 a 2.63±0.00 a
LN 21.48±0.12 b 21.15±0.09 a 57.37±0.04 b 4.93±0.00 b 2.61±0.01 a
HN 22.16±0.16 a 21.31±0.69 a 56.53±0.84 b 4.84±0.00 c 2.53±0.01 b

Fig. 3

X-ray diffraction patterns under different nitrogen panicle fertilizer Treatments and abbreviations are the same as those given in Table 1."

Table 6

Effects of nitrogen panicle fertilizer on the relative crystallinity and infrared ratio of starches"

品种
Variety
处理
Treatment
相对结晶度
Relative crystallinity (%)
红外比例 Infrared ratio
1045/1022 cm-1 1022/995 cm-1
南粳9018
NJ 9108
CK 21.19±0.12 c 0.550±0.001 b 1.042±0.002 a
LN 22.24±0.15 b 0.567±0.001 b 1.031±0.001 ab
HN 23.33±0.11 a 0.586±0.006 a 1.024±0.002 b
南粳0212
NJ 0212
CK 20.88±0.06 c 0.569±0.001 b 1.042±0.002 a
LN 21.48±0.04 b 0.574±0.002 b 1.037±0.003 ab
HN 21.81±0.08 a 0.592±0.001 a 1.027±0.001 b

Fig. 4

Attenuated total reflectance-Fourier transforms infrared spectra under different nitrogen panicle fertilizer Treatments and abbreviations are the same as those given in Table 1."

Fig. 5

Heat map of correlation between eating quality, starch properties, and structure under different nitrogen panicle fertilizer AAC: apparent amylose content; TPC: total protein content; SP: swelling power; ΔHgel: gelatinization enthalpy; ΔHret: retrogradation enthalpies; R: retrogradation percentage; SSG: small starch granules; MSG: middle starch granules; LSG: large starch granules; D[4,3], volume mean diameter; D[3,2], surface area weighted mean diameter; RC: relative crystallinity; 1045/1022: infrared ratio of 1045/1022 cm-1; 1022/995: infrared ratio of 1022/995 cm-1. *: P < 0.05."

[1] Cao L, Zhan X, Chen S, Feng Y, Wu W, Shen X, Cheng S. Breeding methodology and practice of super rice in China. Rice Sci, 2010, 17: 87-93.
doi: 10.1016/S1672-6308(08)60109-2
[2] Fitzgerald M A, McCouch S R, Hall R D. Not just a grain of rice: the quest for quality. Trends Plant Sci, 2009, 14: 133-139.
doi: 10.1016/j.tplants.2008.12.004 pmid: 19230745
[3] Zeeman S C, Kossmann J, Smith A M. Starch: its metabolism, evolution, and biotechnological modification in plants. Annu Rev Plant Biol, 2010, 61: 209-234.
doi: 10.1146/annurev-arplant-042809-112301 pmid: 20192737
[4] Li C, Hu Y M, Gu F T, Gong B. Causal relations among starch fine molecular structure, lamellar/crystalline structure and in vitro digestion kinetics of native rice starch. Food Funct, 2021, 12: 682-695.
doi: 10.1039/D0FO02934C
[5] Seung D. Amylose in starch: towards an understanding of biosynthesis, structure and function. New Phytol, 2020, 228: 1490-1504.
doi: 10.1111/nph.16858
[6] 龚波. 水稻淀粉精细结构决定其热力学性质和消化特性. 扬州大学硕士学位论文, 江苏扬州, 2020.
Gong B. Rice Starch Molecular Fine Structure Determines its Thermal and Digestive Properties. MS Thesis of Yangzhou University, Yangzhou, Jiangsu, China, 2020. (in Chinese with English abstract)
[7] Li H Y, Prakash S, Nicholson T M, Fitzgerald M A, Gilbert R G. Instrumental measurement of cooked rice texture by dynamic rheological testing and its relation to the fine structure of rice starch. Carbohyd Polym, 2016, 146: 253-263.
doi: 10.1016/j.carbpol.2016.03.045 pmid: 27112873
[8] Zhou T Y, Zhou Q, Li E P, Yuan L M, Wang W I, Zhang H, Liu L J, Wang Z Q, Yang J C, Gu J F. Effects of nitrogen fertilizer on structure and physicochemical properties of ‘super’ rice starch. Carbohyd Polym, 2020, 239: 116237.
doi: 10.1016/j.carbpol.2020.116237
[9] Hu Y J, Cong S M, Zhang H C. Comparison of the grain quality and starch physicochemical properties between japonica rice cultivars with different contents of amylose, as affected by nitrogen fertilization. Agriculture, 2021, 11: 616.
doi: 10.3390/agriculture11070616
[10] Li H Y, Gilbert R G. Starch molecular structure: the basis for an improved understanding of cooked rice texture. Carbohyd Polym, 2018, 195: 9-17.
doi: S0144-8617(18)30451-X pmid: 29805029
[11] Cheng B, Jiang Y, Cao C G. Balance rice yield and eating quality by changing the traditional nitrogen management for sustainable production in China. J Clean Prod, 2021, 312: 127793.
doi: 10.1016/j.jclepro.2021.127793
[12] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响. 作物学报, 2022, 48: 656-666.
doi: 10.3724/SP.J.1006.2022.12012
Chen Y, Li S Y, Zhu A, Liu K, Zhang Y J, Zhang H, Gu J F, Zhang W Y, Liu L J, Yang J C. Effects of seeding rates and panicle nitrogen fertilizer rates on grain yield and quality in good taste rice cultivars under direct sowing. Acta Agron Sin, 2022, 48: 656-666. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.12012
[13] Hu Q, Liu Q Y, Jiang W Q, Qiu S, Wei H Y, Zhang H C, Liu G D, Xing Z P, Hu Y J, Guo B W, Gao H. Effects of mid-stage nitrogen application timing on the morphological structure and physicochemical properties of japonica rice starch. J Sci Food Agric, 2021, 101: 2463-2471.
doi: 10.1002/jsfa.10872
[14] Yang X Y, Bi J G, Gilbert R G, Li G H, Liu Z H, Wang S H, Ding Y F. Amylopectin chain length distribution in grains of japonica rice as affected by nitrogen fertilizer and genotype. J Cereal Sci, 2016, 71: 230-238.
doi: 10.1016/j.jcs.2016.09.003
[15] Tao K Y, Yu W W, Prakash S, Gilbert R G. High-amylose rice: Starch molecular structural features controlling cooked rice texture and preference. Carbohyd Polym, 2019, 219: 251-260.
doi: S0144-8617(19)30536-3 pmid: 31151523
[16] Lu D L, Lu W P. Effects of protein removal on the physicochemical properties of waxy maize flours. Die Stärke, 2012, 64: 874-881.
doi: 10.1002/star.201200038
[17] Man J M, Yang Y, Zhang C Q, Zhou X H, Dong Y, Zhang F M, Liu Q Q, Wei C X. Structural changes of high-amylose rice starch residues following in vitro and in vivo digestion. J Agric Food Chem, 2012, 60: 9332-9341.
doi: 10.1021/jf302966f
[18] Sevenou O, Hill S E, Farhat I A, Mitchell J R. Organization of the external region of the starch granule as determined by infrared spectroscopy. Int J Biol Macromol, 2002, 31: 79-85.
pmid: 12559430
[19] 唐健, 唐闯, 郭保卫, 张诚信, 张振振, 王科, 张洪程, 陈恒, 孙明珠. 氮肥施用量对机插优质晚稻产量和稻米品质的影响. 作物学报, 2020, 46: 117-130.
doi: 10.3724/SP.J.1006.2020.92010
Tang J, Tang C, Guo B W, Zhang C X, Zhang Z Z, Wang K, Zhang H C, Chen H, Sun M Z. Effect of nitrogen application on yield and rice quality of mechanical transplanting high quality late rice. Acta Agron Sin, 2020, 46: 117-130. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.92010
[20] Kaur L, Singh J, McCarthy O J, Singh H. Physico-chemical, rheological and structural properties of fractionated potato starches. J Food Eng, 2007, 82: 383-394.
doi: 10.1016/j.jfoodeng.2007.02.059
[21] 董明辉, 陈培峰, 顾俊荣, 乔中英, 黄萌, 朱赟德, 赵步洪. 麦秸还田和氮肥运筹对超级杂交稻茎鞘物质运转与籽粒灌浆特性的影响. 作物学报, 2013, 39: 673-681.
Dong M H, Chen P F, Gu J R, Qiao Z Y, Huang M, Zhu B D, Zhao B H. Effects of wheat straw-residue applied to field and nitrogen management on photosynthate transportation of stem and sheath and grain-filling characteristics in super hybrid rice. Acta Agron Sin, 2013, 39: 673-681. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.00673
[22] Yang Y, Lin G Q, Yu X R, Wu Y F, Xiong F. Rice starch accumulation at different endosperm regions and physical properties under nitrogen treatment at panicle initiation stage. Int J Biol Macromol, 2020, 160: 328-339.
doi: S0141-8130(20)33371-7 pmid: 32473221
[23] Zhu D W, Zhang H C, Guo B W, Xu K, Dai Q G, Wei C X, Zhou G S, Huo Z Y. Effects of nitrogen level on structure and physicochemical properties of rice starch. Food Hydrocoll, 2017, 63: 525-532.
doi: 10.1016/j.foodhyd.2016.09.042
[24] Gong B, Cheng L, Gilbert R G, Li C. Distribution of short to medium amylose chains are major controllers of in vitro digestion of retrograded rice starch. Food Hydrocoll, 2019, 96: 634-643.
doi: 10.1016/j.foodhyd.2019.06.003
[25] Teng B, Xi M, Du S Y, Zhou Y J, Zhang Y, Zhang Y X, Luo Z X, Wu W. Structural and functional properties of indica rice starch as influenced by late-stage nitrogen fertilization. Int J Food Prop, 2021, 24: 249-263.
doi: 10.1080/10942912.2021.1872620
[26] Hanashiro I, Abe J, Hizukuri S. A periodic distribution of the chain length of amylopectin as revealed by high-performance anion-exchange chromatography. Carbohyd Res, 1996, 283: 151-159.
doi: 10.1016/0008-6215(95)00408-4
[27] Lopez-Rubio A, Flanagan B M, Gilbert E P, Gidley M J. A novel approach for calculating starch crystallinity and its correlation with double helix content: a combined XRD and NMR study. Biopolymers, 2008, 89: 761-768.
doi: 10.1002/bip.21005 pmid: 18428208
[28] Zhu D W, Fang C Y, Qian Z H, Guo B W, Huo Z Y. Differences in starch structure, physicochemical properties and texture characteristics in superior and inferior grains of rice varieties with different amylose contents. Food Hydrocoll, 2021, 110: 106170.
doi: 10.1016/j.foodhyd.2020.106170
[29] Tappiban P, Ying Y N, Xu F F, Bao J S. Proteomics and post- translational modifications of starch biosynthesis-related proteins in developing seeds of rice. Int J Mol Sci, 2021, 22: 5901.
doi: 10.3390/ijms22115901
[30] Hannah L C, James M. The complexities of starch biosynthesis in cereal endosperms. Curr Opin Biotechnol, 2008, 19: 160-165.
doi: 10.1016/j.copbio.2008.02.013
[31] Nakamura Y, Francisco P B, Hosaka Y, Sato A, Sawada T, Kubo A, Fujita N. Essential amino acids of starch synthase IIa differentiate amylopectin structure and starch quality between japonica and indica rice varieties. Plant Mol Biol, 2005, 58: 213-227.
doi: 10.1007/s11103-005-6507-2
[32] Iqbal A, Xie H M, He L, Ahmad S, Hussain I, Raza H, Khan A, Wei S Q, Quan Z, Wu K, Ali I, Jiang L G. Partial substitution of organic nitrogen with synthetic nitrogen enhances rice yield, grain starch metabolism and related genes expression under the dual cropping system. Saud J Biol Sci, 2021, 28: 1283-1296.
[33] 陈云, 刘昆, 张宏路, 李思宇, 张亚军, 韦佳利, 张耗, 顾骏飞, 刘立军, 杨建昌. 机插密度和穗肥减量对优质食味水稻品种籽粒淀粉合成的影响. 作物学报, 2021, 47: 1540-1550.
doi: 10.3724/SP.J.1006.2021.02069
Chen Y, Liu K, Zhang H L, Li S Y, Zhang Y J, Wei J L, Zhang H, Gu J F, Liu L J, Yang J C. Effects of machine transplanting density and panicle nitrogen fertilizer reduction on grains starch synthesis in good taste rice cultivars. Acta Agron Sin, 2021, 47: 1540-1550. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.02069
[34] 张洪程, 张军, 龚金龙, 常勇, 李敏, 高辉, 戴其根, 霍中洋, 许轲, 魏海燕. “籼改粳”的生产优势及其形成机理. 中国农业科学, 2013, 46: 686-704.
Zhang H C, Zhang J, Gong J L, Chang Y, Li M, Gao H, Dai Q G, Huo Z Y, Xu K, Wei H Y. The productive advantages and formation mechanisms of “indica rice to japonica rice”. Sci Agric Sin, 2013, 46: 686-704. (in Chinese with English abstract)
[35] 佴军, 张洪程, 陆建飞. 江苏省水稻生产30年地域格局变化及影响因素分析. 中国农业科学, 2012, 45: 3446-3452.
Nai J, Zhang H C, Lu J F. Regional pattern changes of rice production in thirty years and its influencing factors in Jiangsu province. Sci Agric Sin, 2012, 45: 3446-3452. (in Chinese with English abstract)
[36] Zhou C C, Huang Y C, Jia B Y, Wang Y, Wang Y, Xu Q, Li R F, Wang S, Dou F G. Effects of cultivar, nitrogen rate, and planting density on rice-grain quality. Agronomy, 2018, 8: 246.
doi: 10.3390/agronomy8110246
[37] Lindeboom N, Chang P R, Tyler R T. Analytical, biochemical and physicochemical aspects of starch granule size, with emphasis on small granule starches: a review. Die Stärke, 2004, 56: 89-99.
doi: 10.1002/star.200300218
[38] Saleh M I, Meullenet J. Effect of protein disruption using proteolytic treatment on cooked rice texture properties. J Texture Stud, 2007, 38: 423-437.
doi: 10.1111/j.1745-4603.2007.00105.x
[39] Furukawa S, Tanaka K, Masumura T, Ogihara Y, Kiyokawa Y, Wakai Y. Influence of rice proteins on eating quality of cooked rice and on aroma and flavor of sake. Cereal Chem, 2006, 83: 439-446.
doi: 10.1094/CC-83-0439
[40] Kamara J S, Konishi S, Sasanuma T, Abe T. Variation in free amino acid profile among some rice (Oryza sativa L.) cultivars. Breed Sci, 2010, 60: 46-54.
doi: 10.1270/jsbbs.60.46
[41] 金丽晨, 耿志明, 李金州, 王澎, 陈菲, 刘蔼民. 稻米淀粉组成及分子结构与食味品质的关系. 江苏农业学报, 2011, 27: 13-18.
Jin L C, Geng Z M, Li J Z, Wang P, Chen F, Liu H M. Correlation between components and molecule structure of rice starch and eating quality. Jiangsu J Agric Sci, 2011, 27: 13-18. (in Chinese with English abstract)
[42] Ayabe S, Kasai M, Ohishi K, Hatae K. Textural properties and structures of starches from indica and japonica rice with similar amylose content. Food Sci Technol Res, 2009, 15: 299-306.
doi: 10.3136/fstr.15.299
[43] Vamadevan V, Bertoft E. Observations on the impact of amylopectin and amylose structure on the swelling of starch granules. Food Hydrocoll, 2020, 103: 105663.
doi: 10.1016/j.foodhyd.2020.105663
[44] Li H Y, Wen Y Y, Wang J, Sun B G. The molecular structures of leached starch during rice cooking are controlled by thermodynamic effects, rather than kinetic effects. Food Hydrocoll, 2017, 73: 295-299.
doi: 10.1016/j.foodhyd.2017.07.015
[1] YUAN Yu-Jie, ZHANG Si-Qi, WANG Ming-Yue, LUO Xiao, ZENG Yu-Han, SONG Lu-Xin, LU Hui, CHEN Hong, TAO You-Feng, DENG Fei, REN Wan-Jun. Effects of cooking rice-to-water ratio on grain microstructure and eating characteristics of indica hybrid rice with different amylose contents [J]. Acta Agronomica Sinica, 2022, 48(12): 3225-3233.
[2] LI Bo, ZHANG Chi, ZENG Yu-Ling, LI Qiu-Ping, REN Hong-Chao, LU Hui, YANG Fan, CEHN Hong, WANG Li, CHEN Yong, REN Wan-Jun, DENG Fei. Effects of sowing date on eating quality of indica hybrid rice in Sichuan Basin [J]. Acta Agronomica Sinica, 2021, 47(7): 1360-1371.
[3] ZHAO Chun-Fang,YUE Hong-Liang,TIAN Zheng,GU Ming-Chao,ZHAO Ling,ZHAO Qing-Yong,ZHU Zhen,CHEN Tao,ZHOU Li-Hui,YAO Shu,LIANG Wen-Hua,LU Kai,ZHANG Ya-Dong,WANG Cai-Lin. Physicochemical properties and sequence analysis of Wx and OsSSIIa genes in japonica rice cultivars from Jiangsu province and northeast of China [J]. Acta Agronomica Sinica, 2020, 46(6): 878-888.
[4] WANG Xu-Hong,LI Ming-Xiao,ZHANG Qun,JIN Feng,MA Xiu-Fang,JIANG Shu-Kun,XU Zheng-Jin,CHEN Wen-Fu. Effect of indica pedigree on yield and milling and appearance qualities in the offspring of indica/japonica cross [J]. Acta Agronomica Sinica, 2019, 45(4): 538-545.
[5] YANG Yong,LU Yan,GUO Shu-Qing,SHI Zhong-Hui,ZHAO Jie,FAN Xiao-Lei,LI Qian-Feng,LIU Qiao-Quan,ZHANG Chang-Quan. Improvement of rice eating quality and physicochemical properties by introgression of Wx in allele in indica varieties [J]. Acta Agronomica Sinica, 2019, 45(11): 1628-1637.
[6] MAO Ting,LI Xu,LI Zhen-Yu,XU Zheng-Jin. Development of PCR Functional Markers for Multiple Alleles of Wx and Their Application in Rice [J]. Acta Agron Sin, 2017, 43(11): 1715-1723.
[7] ZHANG Qiu-Ying,LI Yan-Sheng,LIU Chang-Kai,TIAN Bo-Wen,TU Bing-Jie,MAO Jian-Wei. Key Components of Eating Quality and their Dynamic Accumulation in Vegetable Soybean Varieties [Glycine max (L.) Merr.] [J]. Acta Agron Sin, 2015, 41(11): 1692-1700.
[8] LIU Li-Hua,HU Yuan-Fu,CHEN Qiao,LI Hong-Yu,QIAN Yong-De,Lü Yan-Dong,ZHENG Gui-Ping,ZUO Yu-Hu. Interaction of Genotypes with Environments for Three Quality Traits of Rice in Cold Region by AMMI Model [J]. Acta Agron Sin, 2013, 39(10): 1849-1855.
[9] XU Quan,TANG Liang,XU Fan,FUKUSHIMA Akira,HUANG Rui-Dong,CHEN Wen-Fu,XU Zheng-Jin. Research Advances and Prospects of Eating Quality Improvement in Japonica Rice (Oryza sativa L.) [J]. Acta Agron Sin, 2013, 39(06): 961-968.
[10] LE Su-Ju, XIAO De-Xin, LIU Feng-Fei, CENG Mu-Heng, WANG Wei-Quan, WANG Xiao-Meng. Relationship between Pericarp Structure and Kernel Tenderness in Super Sweet Corn [J]. Acta Agron Sin, 2011, 37(11): 2111-2116.
[11] LIU Qiao-Quan;CAI Xiu-Ling;LI Qian-Feng;TANG Shu-Zhu;GONG Zhi-Yun;YU Heng-Xiu;YAN Chang-Jie;WANG Zong-Yang and GU Ming-Hong. Molecular Marker-assisted Selection for Improving Cooking and Eating Quality in Teqing and Its Hybrid Rice [J]. Acta Agron Sin, 2006, 32(01): 64-69.
[12] Wu Dianxing;Shu Qingrao;Xia Yingwu. Assisted-selection for Early Indica Rice with Good Eating Quality by RVA Profile [J]. Acta Agron Sin, 2001, 27(02): 165-172.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[4] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[5] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[6] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[7] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[8] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .
[9] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .
[10] Qi Zhixiang;Yang Youming;Zhang Cunhua;Xu Chunian;Zhai Zhixi. Cloning and Analysis of cDNA Related to the Genes of Secondary Wall Thickening of Cotton (Gossypium hirsutum L.) Fiber[J]. Acta Agron Sin, 2003, 29(06): 860 -866 .