Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (1): 225-238.doi: 10.3724/SP.J.1006.2023.24020

• TILLAGE & CULTIVATION ·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Physiological and transcriptional regulation mechanisms of nitrogen alleviating drought stress in peanut

DING Hong(), ZHANG Zhi-Meng, XU Yang, ZHANG Guan-Chu, GUO Qing, QIN Fei-Fei, DAI Liang-Xiang()   

  1. Shandong Peanut Research Institute, Qingdao 266100, Shandong, China
  • Received:2022-01-15 Accepted:2022-05-05 Online:2023-01-12 Published:2022-05-13
  • Contact: DAI Liang-Xiang E-mail:dingpeanut@163.com;liangxiangd@163.com
  • Supported by:
    National Natural Science Foundation of China(31971854);National Natural Science Foundation of China(31971856);Shandong Peanut Industry Technology System(SDAIT-04-06);Major Scientific and Technological Innovation Projects in Shandong Province(2019JZZY010702)

Abstract:

Nitrogen application has an important effect on plant growth and development under drought stress. The aim of this study is to clarify the physiological and transcriptional regulation mechanism of nitrogen for improving drought resistance in peanut. The physiological indexes and root transcriptome of peanut under nitrogen application, drought stress and drought and nitrogen application simultaneously exist treatments were determined. The results showed that the drought and nitrogen application simultaneously exist treatment increased peanut biomass and the relative water content of leaves under drought stress. The content of total phenols and flavonoids in peanut roots were increased by nitrogen application under drought stress. Meanwhile, the activities of POD and CAT were increased, the content of MDA was decreased, which improved the drought resistance of peanut. Transcriptome analysis showed that the relative expression of 5396 genes changed due to nitrogen application. These genes were mainly involved in glutathione metabolism, nitrogen metabolism, and carbon metabolism, as well as stress and defense responses. Under drought stress, the drought and nitrogen application simultaneously exist treatments, the differentially expressed genes of secondary metabolite biosynthesis, transportation and catabolism and carbohydrate transport and metabolism were enriched. Among the three pathways related to phenolic metabolites, 51 differential genes were up-regulated and 207 genes were down-regulated under the drought and nitrogen application simultaneously exist treatment. In conclusion, the application of nitrogen fertilizer could enhance the antioxidant capacity of peanut plants under drought stress through regulating secondary metabolites and carbohydrate metabolism, and thus improve the drought resistance of peanut.

Key words: peanut, drought stress, nitrogen, antioxidant system, transcriptome analysis

Table 1

Information of qRT-PCR primers"

基因名称
Gene ID
GO注释
GO annotation
引物序列
Primer sequence (5°-3°)
Actin F: TTGGAATGGGTCAGAAGGATGC
R: GCTTCTTACTGAGGCACCACT
Arahy.HGTY5Y UDP葡萄糖6-脱氢酶活性, NAD结合
UDP-glucose 6-dehydrogenase activity (GO:0003979), NAD binding (GO:0051287)
F: TATCACCCAACCGTGTCAGC
R: CATCCCTACAGCAACCGGAG
Arahy.ZL9QUM O-甲基转移酶活性, 甲基化
O-methyltransferase activity (GO:0008171), Methylation (GO:0032259)
F: TTGATCTTCCCCAGGTTGTGG
R: GTGATGTCATGCTTGTCCTGC
Arahy.5I1IFA 催化活性, 氧化应激反应的调节
Catalytic activity (GO:0003824), regulation of response to oxidative stress (GO:1902882)
F: GTGGACTTGGTGGTGCTCAA
R: TGTTTTCGGCTTCACTCGGA
Arahy.JA1EPG 水解酶活性, 水解邻糖基化合物, 碳水化合物代谢
Hydrolase activity, hydrolyzing O-glycosyl compounds (GO:0004553), carbohydrate metabolic process (GO:0005975)
F: ACGCGCAGTCGTATAACAGT
R: TGGAAGAGTCCCCAGTTCCT
Arahy.WS4P7I 谷氨酸5-激酶活性, 谷氨酸-5-半醛脱氢酶活性
Glutamate 5-kinase activity (GO:0004349), Glutamate-5-semialdehyde dehydrogenase activity (GO:0004350)
F: AATGACAGTTTGGCGGGTCT
R: CCCCTGCCCAATCTTGACTT
Arahy.QWX0SS 蛋白激酶活性, 膜的整体组成
Protein kinase activity (GO:0004672), integral component of membrane (GO:0016021)
F: GTTAAGGGCGTCGCGAATG
R: TTCTGGAGCAGCATAGCCAA

Table 2

Effects of different treatments on agronomic characters of peanut"

处理
Treatment
生物量 Biomass (g plant-1) 根冠比Root/shoot ratio 叶片相对含水量Leaf relative water content (%)
2020 2021 2020 2021 2020 2021
WWNN 5.86 ab 5.07 b 0.14 a 0.12 a 92.54 a 96.71 a
WWNA 6.78 a 5.43 a 0.12 a 0.11 a 93.24 a 96.00 a
DSNN 5.04 b 3.71 d 0.15 a 0.12 a 72.93 c 64.71 b
DSNA 6.33 ab 4.64 c 0.13 a 0.10 a 84.39 b 84.93 a
W 0.120 0 ** 0.397 0.536 0** 0.001**
N 0.016* 0.001** 0.028* 0.046* 0.002** 0.037*
W×N 0.630 0.052 0.667 0.826 0.005** 0.028*

Table 3

Effects of different treatments on the content of secondary metabolites in peanut"

处理
Treatment
总酚含量Total phenol content (mg g-1) 类黄酮含量Flavonoid content (mg g-1)
地上部
Shoot
根系
Root
整株
Whole plant
地上部
Shoot
根系
Root
整株
Whole plant
2020 2021 2020 2021 2020 2021 2020 2021 2020 2021 2020 2021
WWNN 7.49 ab 7.41 a 5.02 a 4.62 a 7.22 ab 7.10 a 8.79 a 8.93 a 3.96 a 4.56 a 8.26 a 8.48 a
WWNA 6.97 c 6.73 b 4.96 a 4.19 b 6.72 c 6.49 b 7.19 b 7.67 b 4.09 a 4.94 a 6.80 b 7.67 b
DSNN 7.27 bc 6.81 b 4.46 a 3.41 c 6.99 bc 6.49 b 6.90 b 7.52 b 3.58 a 4.34 a 5.95 b 7.22 b
DSNA 7.83 a 7.25 a 4.87 a 4.14 b 7.40 a 6.92 a 8.87 a 7.99 ab 3.86 a 5.80 a 8.22 a 7.76 ab
W 0.212 0.668 0.183 0** 0.338 0.325 0.863 0.106 0.380 0.529 0.235 0.142
N 0.930 0.001** 0.319 0** 0.837 0** 0.764 0.020* 0.548 0.097 0.274 0.015*
W×N 0.052 0.301 0.464 0.133 0.076 0.334 0.016* 0.224 0.829 0.306 0.001** 0.315

Fig. 1

Effects of different treatments on antioxidant enzyme activities and MDA contents of peanut roots Bars superscripted by different letters are significantly different at the 0.05 probability level. Treatments are the same as those given in Table 2."

Fig. 2

Correlation analysis of samples between different treatments and Venn diagram of differential gene expression of peanut roots Treatments are the same as those given in Table 2."

Fig. 3

Function annotations of differentially expressed genes in nitrogen application treatment"

Fig. 4

Function annotations of differentially expressed genes in drought treatment AP2/ERF: apetala 2/ethylene-responsive element binding factor; GRAS: GRAS transcription factor; WRKY: WRKY transcription factor; G2-like: G2-like transcription factor; LOB: lateral organ boundaries domain transcription factor; bHLH: basic Helix-Loop-Helix transcription facto; C2H2: zinc finger domain transcription factor; NAC: NAC transcription factor; B3-ARF: B3-ARF transcription factor; MYB: MYB (v-myb avian myeloblastosis viral oncogene homolog) transcription factor; MYB-related: MYB (v-myb avian myeloblastosis viral oncogene homolog) related transcription factor; B3: B3 domain transcription factor; C2C2-CO-like: C2C2-CO-like transcription factor; bZIP: basic region/leucine zipper motif ; SRS: SRS transcription factor."

Fig. 5

KEGG analysis of differentially expressed genes in drought and nitrogen application simultaneously exist treatment"

Fig. 6

Relative expression profiles of DEGs phenolic related pathways under different treatments Treatments are the same as those given in Table 2."

Fig. 7

qRT-PCR validation of transcriptome sequencing A-F are the relative expression profiles of six validated genes, respectively; G is the correlation diagram of validated gene. Treatments are the same as those given in Table 2. **, P < 0.01."

[1] Ding L, Lu Z, Gao L, Guo S, Shen Q. Is nitrogen a key determinant of water transport and photosynthesis in higher plants upon drought stress? Front Plant Sci, 2018, 9: 1143.
doi: 10.3389/fpls.2018.01143 pmid: 30186291
[2] Mackay A. Climate change 2007:impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. J Environ Qual, 2008, 37: 2407.
[3] 张智猛, 戴良香, 宋文武, 丁红, 慈敦伟, 康涛, 宁堂原, 万书波. 干旱处理迫对花生品种叶片保护酶活性和渗透物质含量的影响. 作物学报, 2013, 39: 133-141.
doi: 10.3724/SP.J.1006.2013.00133
Zhang Z M, Dai L X, Song W W, Ding H, Ci D W, Kang T, Ning T Y, Wan S B. Effect of drought stresses at different growth stages on peanut leaf protective enzyme activities and osmoregulation substances content. Acta Agron Sin, 2013, 39: 133-141. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.00133
[4] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析. 作物学报, 2022, 48: 1103-1118.
doi: 10.3724/SP.J.1006.2022.14055
Li A L, Feng Y N, Li P, Zhang D S, Zong Y Z, Lin W, Hao X Y. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.]. Acta Agron Sin, 2022, 48: 1103-1118. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.14055
[5] 邓婉月, 冷秋彦, 杨在君, 余燕, 吴一超. 干旱胁迫对盆栽“川丹参1号”生理指标及主要活性成分含量的影响. 作物杂志, 2021, (1): 74-81.
Deng W Y, Leng Q Y, Yang Z J, Yu Y, Wu Y C. Effects of simulated drought stress on the physiological indexes and contents of active components of potted “Chuandanshen 1”. Crops, 2021, (1): 74-81. (in Chinese with English abstract)
[6] 马惠, 王琦, 赵鸣, 王红艳, 纪祥龙, 董合忠. 非生物胁迫对棉花次生代谢及棉蚜种群消长的影响. 棉花学报, 2016, 28: 324-330.
Ma H, Wang Q, Zhao M, Wang H Y, Ji X L, Dong H Z. Effects of abiotic stress on cotton secondary metabolism and cotton aphid population dynamics. Cotton Sci, 2016, 28: 324-330. (in Chinese with English abstract)
[7] Gharibi S, Tabatabaei B E S T, Saeidi G, Goli S A H. Effect of drought stress on total phenolic, lipid peroxidation, and antioxidant activity of achillea species. Appl Biochem Biotechnol, 2015, 178: 796-809.
doi: 10.1007/s12010-015-1909-3
[8] Aninbon C, Jogloy S, Vorasoot N, Nuchadomrong S, Patanothai A. Effect of mid-season drought on phenolic compounds in peanut genotypes with different levels of resistance to drought. Field Crops Res, 2016, 187: 127-134.
doi: 10.1016/j.fcr.2015.12.016
[9] 李丹丹, 梁宗锁, 普布卓玛, 杨宗岐, 韩蕊莲, 徐学选. 干旱胁迫对紫花苜蓿黄酮类化合物含量及其合成途径关键酶活性的影响. 西北植物学报, 2020, 40: 1380-1388.
Li D D, Liang Z S, Pubuzhuoma, Yang Z Q, Han R L, Xu X X. Flavonoids contents and flavonoids synthetic key enzyme activities in alfalfa under drought stress. Acta Bot Boreal-Occident Sin, 2020, 40: 1380-1388. (in Chinese with English abstract)
[10] 秦天元, 刘玉汇, 孙超, 毕真真, 李安一, 许德蓉, 王一好, 张俊莲, 白江平. 马铃薯StIgt基因家族的鉴定及其对干旱胁迫的响应分析. 作物学报, 2021, 47: 780-786.
doi: 10.3724/SP.J.1006.2021.04122
Qin T Y, Liu Y H, Sun C, Bi Z Z, Li A Y, Xu D R, Wang Y H, Zhang J L, Bai J P. Identification of StIgt gene family and expression profile analysis of response to drought stress in potato. Acta Agron Sin, 2021, 47: 780-786. (in Chinese with English abstract)
[11] Wang K, Bu T, Cheng Q, Dong L, Su T, Chen Z, Kong F, Gong Z, Liu B, Li M. Two homologous LHY pairs negatively control soybean drought tolerance by repressing the abscisic acid responses. New Phytol, 2020, 229: 2660-2675.
doi: 10.1111/nph.17019
[12] Bhogireddy S, Xavier A, Garg V, Layland N, Varshney R K. Genome-wide transcriptome and physiological analyses provide new insights into peanut drought response mechanisms. Sci Rep, 2020, 10: 4071.
doi: 10.1038/s41598-020-60187-z pmid: 32139708
[13] 万丽云, 苏威, 李蓓, 雷永, 晏立英, 康彦平, 淮东欣, 陈玉宁, 姜慧芳, 廖伯寿. 花生苗期干旱处理后转录和代谢通路分析. 中国油料作物学报, 2018, 40: 335-343.
Wan L Y, Su W, Li B, Lei Y, Yan L Y, Kang Y P, Huan D X, Chen Y N, Jiang H F, Liao B S. Molecular analysis of formation of drought tolerance traits in peanut. Chin J Oil Crop Sci, 2018, 40: 335-343. (in Chinese with English abstract)
[14] Du Q G, Yang J, Muhammad S, Shah S, Li W X. Comparative transcriptome analysis of different nitrogen responses in low-nitrogen sensitive and tolerant maize genotypes. J Integr Agric, 2021, 20: 2043-2055.
doi: 10.1016/S2095-3119(20)63220-8
[15] Abid M, Tian Z, Tahir A, Cui Y, Yang L, Rizwan Z, Jiang D, Dai T. Nitrogen nutrition improves the potential of wheat (Triticum aestivum L.) to alleviate the effects of drought stress during vegetative growth periods. Front Plant Sci, 2016, 7: 981.
[16] Gou W, Zheng P F, Tian L, Gao W, Zhang L X, Akram N A, Ashraf M. Exogenous application of urea and a urease inhibitor improves drought stress tolerance in maize (Zea mays L.). J Plant Res, 2017, 130: 599-609.
doi: 10.1007/s10265-017-0933-5
[17] Agamia R A, Alamri S A M, Abd El-Mageedc T A, Abousekkend M S M, Hashemb M. Role of exogenous nitrogen supply in alleviating the deficit irrigation stress in wheat plants. Agric Water Manage, 2018, 210: 261-270.
doi: 10.1016/j.agwat.2018.08.034
[18] 刘瑞显, 郭文琦, 陈兵林, 周治国. 氮素对花铃期干旱及复水后棉花叶片保护酶活性和内源激素含量的影响. 作物学报, 2008, 34: 1598-1607.
doi: 10.3724/SP.J.1006.2008.01598
Liu R X, Guo W Q, Chen B L, Zhou Z G. Effects of nitrogen on the antioxidant enzyme activities and endogenous hormone contents of cotton leaf under drought stress and after soil re-watering during the flowering and boll-forming stage. Acta Agron Sin, 2008, 34: 1598-1607. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2008.01598
[19] 熊君, 王海斌, 方长旬, 邱龙, 吴文祥, 何海斌, 林文雄. 不同氮素供应下水稻酚类物质代谢关键酶基因差异表达. 植物生理与分子生物学学报, 2007, 33: 387-394.
pmid: 17960041
Xiong J, Wang H B, Fang C X, Qiu L, Wu W X, He H B, Lin W X. The differential expression of the genes of the key enzymes involved in phenolic compound metabolism in rice (Oryza sativa L.) under different nitrogen supply. J Plant Physiol Mol Biol, 2007, 33: 387-394, (in Chinese with English abstract)
pmid: 17960041
[20] 卢国理, 汤利, 楚轶欧, 周文利, 苏海鹏, 刘自红, 郑毅. 单/间作条件下氮肥水平对水稻总酚和类黄酮的影响. 植物营养与肥料学报, 2008, 14: 1064-1069.
Lu G L, Tang L, Chu Y O, Zhou W L, Su H P, Liu Z H, Zheng Y. Effect of nitrogen levels on the changes of phenol and flavonoid contents under rice monocropping and intercropping system. Plant Nutr Fert Sci, 2008, 14: 1064-1069. (in Chinese with English abstract)
[21] 刘志鹏, 陈曦, 杨梦雅, 赵颖佳, 肖凯. 氮量及减灌对冬小麦旗叶生理参数和细胞保护酶活性的影响. 麦类作物学报, 2018, 38: 175-182.
Liu Z P, Chen X, Yang M Y, Zhao Y J, Xiao K. Effect of nitrogen amount and limited irrigation on physiological features of flag leaf and cellular protective enzyme activities in wheat. J Triticeae Crop, 2018, 38: 175-182. (in Chinese with English abstract)
[22] Zhang L X, Li S X, Zhang H, Liang Z S. Nitrogen rates and water stress effects on production, lipid peroxidation and antioxidative enzyme activities in two maize (Zea mays L.) genotypes. J Agron Crop Sci, 2007, 193: 387-397.
doi: 10.1111/j.1439-037X.2007.00276.x
[23] Shi H, Ma W, Song J, Lu M, Rahman S U, Bui T T X, Vu D D, Zhang H, Wang J, Zhang Y. Physiological and transcriptional responses of Catalpa bungei to drought stress under sufficient- and deficient-nitrogen conditions. Tree Physiol, 2017, 37: 1457-1468.
doi: 10.1093/treephys/tpx090
[24] Wang Y, Gao S, He X, Li Y, Zhang Y, Chen W. Response of total phenols, flavonoids, minerals, and amino acids of four edible fern species to four shading treatments. PeerJ, 2020, 8: e8354.
doi: 10.7717/peerj.8354
[25] 张新业, 王雨欣, 孙艳香, 朱姝, 王聪艳, 李文静. 胡萝卜类黄酮含量的测定及DcCHS基因家族的鉴定分析. 西北农业学报, 2021, 30: 572-581.
Zhang X Y, Wang Y X, Sun Y X, Zhu S, Wang C Y, Li W J. Determination of flavonoid content in carrot (Daucus carota subsp. sativus) and identification of DcCHS gene family. Acta Agric Boreali-Occident Sin, 2021, 30: 572-581. (in Chinese with English abstract)
[26] 张蜀秋. 植物生理学实验技术教程. 北京: 科学出版社, 2011. pp 191-202.
Zhang S Q. Experimental Technology Course of Plant Physiology. Beijing: Science Press, 2011. pp 191-202 (in Chinese)
[27] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[28] Farooq M, Wahid A, Kobayashi N, Fujita D, Basra S. Plant drought stress: effects, mechanisms and management. Agron Sustain Dev, 2009, 29: 185-212.
doi: 10.1051/agro:2008021
[29] Teixeira E I, George M, Herreman T, Brown H, Fletcher A, Chakwizira E, de Ruiter J, Maley S, Noble A. The impact of water and nitrogen limitation on maize biomass and resource-use efficiencies for radiation, water and nitrogen. Field Crops Res, 2014, 168: 109-118.
doi: 10.1016/j.fcr.2014.08.002
[30] Prasertsak A, Fukai S. Nitrogen availability and water stress interaction on rice growth and yield. Field Crops Res, 1997, 52: 249-260.
doi: 10.1016/S0378-4290(97)00016-6
[31] 郑瑞生, 封辉, 戴聪杰, 洪小斌, 宁秋蓉. 植物中抗氧化活性成分研究进展. 中国农学通报, 2010, 26(9): 85-90.
Zheng R S, Feng H, Dai C J, Hong X B, Ning Q R. Research progress on active antioxidant components from plants. Chin Agric Sci Bull, 2010, 26(9): 85-90 (in Chinese with English abstract).
[32] Nouraei S, Rahimmalek M, Saeidi G. Variation in polyphenolic composition, antioxidants and physiological characteristics of globe artichoke (Cynara cardunculus var. scolymus hayek L.) as affected by drought stress. Sci Hortic (Amsterdam), 2018, 233: 378-385.
doi: 10.1016/j.scienta.2017.12.060
[33] Upadhyaya H, Panda S K, Dutta B K. Variation of physiological and antioxidative responses in tea cultivars subjected to elevated water stress followed by rehydration recovery. Acta Physiol Plant, 2008, 30: 457-468.
doi: 10.1007/s11738-008-0143-9
[34] Zhang L, Wang K, Zhang X, Zhang L. Role of nitrate nutrition in alleviation of the adverse effects of drought stress on maize cultivars: biomass production and antioxidative capacity. Pak J Bot, 2011, 43: 2869-2874.
[35] 张文云, 张建诚, 姚景珍. 氮胁迫下小麦叶片转录组分析. 中国农业科技导报, 2020, 22(11): 26-34.
doi: 10.13304/j.nykjdb.2019.0266
Zhang W Y, Zhang J C, Yao J Z. Comparative transcriptome analysis of wheat leaf in response to low nitrogen stress. J Agric Sci Technol, 2020, 22(11): 26-34 (in Chinese with English abstract).
[36] Xin W, Zhang L, Zhang W, Gao J, Yi J, Zhen X, Du M, Zhao Y, Chen L. An integrated analysis of the rice transcriptome and metabolome reveals root growth regulation mechanisms in response to nitrogen availability. Int J Mol Sci, 2019, 20: 5893.
doi: 10.3390/ijms20235893
[37] 刘婷, 尚忠林. 植物对铵态氮的吸收转运调控机制研究进展. 植物生理学报, 2016, 52: 799-809.
Liu T, Shang Z L. Research progress on molecular regulation of ammonium uptake and transport in plant. Plant Physiol J, 2016, 52: 799-809. (in Chinese with English abstract)
[38] Wang J, Jiao J, Zhou M, Jin Z, Yu Y, Liang M. Physiological and transcriptional responses of industrial rapeseed (Brassica napus) seedlings to drought and salinity stress. Int J Mol Sci, 2019, 20: 5604.
doi: 10.3390/ijms20225604
[39] Li S, Fan C, Li Y, Zhang J, Sun J, Chen Y, Tian C, Su X, Lu M, Liang C, Hu Z. Effects of drought and salt-stresses on gene expression in Caragana korshinskii seedlings revealed by RNA-seq. BMC Genomics, 2016, 17: 200.
doi: 10.1186/s12864-016-2562-0
[40] Baillo E H, Kimotho R N, Zhang Z, Xu P. Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement. Genes-Basel, 2019, 10: 771.
[41] Seo J S, Joo J, Kim M J, Kim Y K, Nahm B H, Sang I S, Cheong J J, Lee J S, Kim J K, Yang D C. OsbHLH148, a basic helix-loop-helix protein, interacts with OsJAZ proteins in a jasmonate signaling pathway leading to drought tolerance in rice. Plant J, 2011, 65: 907-921.
doi: 10.1111/j.1365-313X.2010.04477.x
[42] Zhang X, Zhang B, Li M J, Yin X M, Huang L F, Cui Y C, Wang M L, Xia X. OsMSR15 encoding a rice C2H2-type zinc finger protein confers enhanced drought tolerance in transgenic Arabidopsis. J Plant Biol, 2016, 59: 271-281.
doi: 10.1007/s12374-016-0539-9
[43] Gai Z, Wang Y, Ding Y, Qian W, Qiu C, Xie H, Sun L, Jiang Z, Ma Q, Wang L, Ding Z. Exogenous abscisic acid induces the lipid and flavonoid metabolism of tea plants under drought stress. Sci Rep (UK), 2020, 10: 12275.
doi: 10.1038/s41598-020-69080-1 pmid: 32704005
[44] Lu M, Chen M, Song J, Wang Y, Pan Y, Wang C, Pang J, Fan J, Zhang Y. Anatomy and transcriptome analysis in leaves revealed how nitrogen (N) availability influence drought acclimation of Populus. Trees, 2019, 33: 1003-1014.
doi: 10.1007/s00468-019-01834-5
[1] LI Zhao-Wei, MO Zu-Yi, SUN Cong-Ying, SHI Yu, SHANG Ping, LIN Wei-Wei, FAN Kai, LIN Wen-Xiong. Construction of rice mutants by gene editing of OsNAC2d and their response to drought stress [J]. Acta Agronomica Sinica, 2023, 49(2): 365-376.
[2] LIU Meng, ZHANG Yao, GE Jun-Zhu, ZHOU Bao-Yuan, WU Xi-Dong, YANG Yong-An, HOU Hai-Peng. Effects of nitrogen application and harvest time on grain yield and nitrogen use efficiency of summer maize under different rainfall years [J]. Acta Agronomica Sinica, 2023, 49(2): 497-510.
[3] LIU Jun-Hua, WU Zheng-Feng, DANG Yan-Xue, YU Tian-Yi, ZHENG Yong-Mei, WAN Shu-Bo, WANG Cai-Bin, LI Lin. Effects of density on population quality and yield of peanut with different plant types under the mode of single-seed precision sowing [J]. Acta Agronomica Sinica, 2023, 49(2): 459-471.
[4] ZHANG Xiang-Yu, HU Xin-Hui, GU Shu-Bo, Lin Xiang, YIN Fu-Wei, WANG Dong. Effects of staged potassium application on grain yield and nitrogen use efficiency of winter wheat under reduced nitrogen conditions [J]. Acta Agronomica Sinica, 2023, 49(2): 447-458.
[5] CHEN Jia-Jun, LIN Xiang, GU Shu-Bo, WANG Wei-Yan, ZHANG Bao-Jun, ZHU Jun-Ke, WANG Dong. Effects of foliar spraying of urea post anthesis on nitrogen uptake and utilization and yield in winter wheat [J]. Acta Agronomica Sinica, 2023, 49(1): 277-285.
[6] ZOU Xiao-Xia, LIN Yi-Min, ZHAO Ya-Fei, LIU Yan, LIU Juan, WANG Yue-Fu, WANG Wei- Hua. Effects of calcium application on the distribution of photosynthetic carbon in plant-soil system at different peanut pod development stages [J]. Acta Agronomica Sinica, 2023, 49(1): 239-248.
[7] CHEN Bing-Jie, ZHANG Fu-Liang, YANG Shuo, LI Xiao-Li, HE Tang-Qing, ZHANG Chen-Xi, TIAN Ming-Hui, WU Mei, HAO Xiao-Feng, ZHANG Xue-Lin. Effects of arbuscular mycorrhizae fungi on maize physiological characteristics during grain filling stage, yield, and grain quality under different nitrogen fertilizer forms [J]. Acta Agronomica Sinica, 2023, 49(1): 249-261.
[8] JIANG Yan, ZHAO Can, CHEN Yue, LIU Guang-Ming, ZHAO Ling-Tian, LIAO Ping-Qiang, WANG Wei-Ling, XU Ke, LI Guo-Hui, WU Wen-Ge, HUO Zhong-Yang. Effects of nitrogen panicle fertilizer application on physicochemical properties and fine structure of japonica rice starch and its relationship with eating quality [J]. Acta Agronomica Sinica, 2023, 49(1): 200-210.
[9] ZHOU Qun, YUAN Rui, ZHU Kuan-Yu, WANG Zhi-Qin, YANG Jian-Chang. Characteristics of grain yield and nitrogen absorption and utilization of indica/japonica hybrid rice Yongyou 2640 under different nitrogen application rates [J]. Acta Agronomica Sinica, 2022, 48(9): 2285-2299.
[10] CHEN Zhi-Qing, FENG Yuan, WANG Rui, CUI Pei-Yuan, LU Hao, WEI Hai-Yan, ZHANG Hai-Peng, ZHANG Hong-Cheng. Effects of exogenous molybdenum on yield formation and nitrogen utilization in rice [J]. Acta Agronomica Sinica, 2022, 48(9): 2325-2338.
[11] ZHANG Zhen-Bo, QU Xin-Yue, YU Ning-Ning, REN Bai-Zhao, LIU Peng, ZHAO Bin, ZHANG Ji-Wang. Effects of nitrogen application rate on grain filling characteristics and endogenous hormones in summer maize [J]. Acta Agronomica Sinica, 2022, 48(9): 2366-2376.
[12] ZHANG Sheng-Zhong, HU Xiao-Hui, CI Dun-Wei, YANG Wei-Qiang, WANG Fei-Fei, QIU Jun-Lan, ZHANG Tian-Yu, ZHONG Wen, YU Hao-Liang, SUN Dong-Ping, SHAO Zhan-Gong, MIAO Hua-Rong, CHEN Jing. QTLs analysis for reticulation thickness based on reconstruction of three dimensional models in peanut pods [J]. Acta Agronomica Sinica, 2022, 48(8): 1894-1904.
[13] LIU Kun, HUANG Jian, ZHOU Shen-Qi, ZHANG Wei-Yang, ZHANG Hao, GU Jun-Fei, LIU Li-Jun, YANG Jian-Chang. Effects of panicle nitrogen fertilizer rates on grain yield in super rice varieties with different panicle sizes and their mechanism [J]. Acta Agronomica Sinica, 2022, 48(8): 2028-2040.
[14] BAI Dong-Mei, XUE Yun-Yun, HUANG Li, HUAI Dong-Xin, TIAN Yue-Xia, WANG Peng-Dong, ZHANG Xin, ZHANG Hui-Qi, LI Na, JIANG Hui-Fang, LIAO Bo-Shou. Assessment of cold tolerance of different peanut varieties and screening of evaluation indexes at germination stage [J]. Acta Agronomica Sinica, 2022, 48(8): 2066-2079.
[15] XU Yang, ZHANG Zhi-Meng, DING Hong, QIN Fei-Fei, ZHANG Guan-Chu, DAI Liang-Xiang. Regulation of peanut seed germination and spermosphere microbial community structure by calcium fertilizer in acidic red soil [J]. Acta Agronomica Sinica, 2022, 48(8): 2088-2099.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[5] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[6] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .
[7] Qi Zhixiang;Yang Youming;Zhang Cunhua;Xu Chunian;Zhai Zhixi. Cloning and Analysis of cDNA Related to the Genes of Secondary Wall Thickening of Cotton (Gossypium hirsutum L.) Fiber[J]. Acta Agron Sin, 2003, 29(06): 860 -866 .
[8] KE Li-Ping;ZHENG Tao;WU Xue-Long;HE Hai-Yan;CHEN Jin-Qing. Analysis of Self-Incompatibility Locus Gene in Brassica napus[J]. Acta Agron Sin, 2008, 34(05): 764 -769 .
[9] LÜ Li-Hua;TAO Hong-Bin;XIA Lai-Kun; HANG Ya-Jie;ZHAO Ming;ZHAO Jiu-Ran;WANG Pu;. Canopy Structure and Photosynthesis Traits of Summer Maize under Different Planting Densities[J]. Acta Agron Sin, 2008, 34(03): 447 -455 .
[10] LIANG Tai-Bo;YIN Yan-Ping;CAI Rui-Guo;YAN Su-Hui;LI Wen-Yang;GENG Qing-Hui;WANG Ping;WANG Zhen-Lin. Starch Accumulation and Related Enzyme Activities in Superior and Inferior Grains of Large Spike Wheat[J]. Acta Agron Sin, 2008, 34(01): 150 -156 .