Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (6): 1601-1615.doi: 10.3724/SP.J.1006.2023.24115

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Formation mechanism of yield stability in high-yielding rapeseed varieties

YU Xin-Ying(), WANG Chun-Yun, LI Da-Shuang, WANG Zong-Kai, KUAI Jie, WANG Bo, WANG Jing, XU Zheng-Hua, ZHOU Guang-Sheng*()   

  1. College of Plant Science and Technology, Huazhong Agricultural University/Key Laboratory of Crop Ecophysiology and Farming System for the Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, Hubei, China
  • Received:2022-05-10 Accepted:2022-09-05 Online:2023-06-12 Published:2022-09-16
  • Contact: *E-mail: zhougs@mail.hzau.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2020YFD1000900);Hubei Province Modern Agricultural Industry Technology System Project, and the Fundamental Research Funds for the Central Universities(2662019PY076)

Abstract:

In crop production, yield stability is as important as high yield. To explore the relationship between main agronomic traits and yield stability and to provide a theoretical basis for large-scale high yield and improved variety breeding of rapeseed, a single factor field experiments of sowing date, nitrogen rate, and planting density were carried out in Wuhan and Lanzhou. The high yielding varieties [Xiangzayou 518 (XZY 518) and Dadi 199 (DD 199)] with different yield stability were used as the materials, the agronomic, physiological indices and the yield of each treatment were measured, and the variation coefficient of each index was calculated. The results showed that: (1) Sowing date, nitrogen rate, and plant density significantly affected the rapeseed yield. There was no significant difference in the maximum yield between two varieties, however there was a significant difference in the yield stability among these treatments. The yield variation coefficients of DD 199 were lower than that of XZY 518 with the strong stability. (2) Compared with XZY518, the indices of leaf area index (LAI), light energy utilization efficiency (LUE), aboveground dry matter accumulation, and root morphology at flowering stage of DD 199 were better, while the variation coefficient of were smaller, which was the basis of high and stable yield. (3) Grey correlation analysis showed that under each treatment, the yield of rapeseed was significantly positive correlated with the population pod number, aboveground dry weight, and average root diameter at flowering stage. In addition, the variation coefficient of population pod number, aboveground dry weight, and average root diameter at flowering stage were significantly positively correlated with the variation coefficient of yield. In conclusion, optimizing the indices such as population pod number, aboveground dry weight, and average root diameter at flowering stage can provide a theoretical support for breeding of rapeseed variety and achieving high yield at large-scale.

Key words: rapeseed, cultivated measures, high yield, yield stability

Fig. 1

Main climatic factors in different ecology regions"

Table 1

Single factor treatment level and key parameter setting"

处理
Treatment
试验点
Experimental site
参数及代号
Parameters and codes
其他栽培参数
Other cultivation parameters
播期
Sowing date
武汉
Wuhan
9/20 (S1) 10/5 (S2) 10/20 (S3) 氮肥: 240
Nitrogen: 240
密度: 45
Density: 45
兰州
Lanzhou
4/6 (S1) 4/13 (S2) 4/20 (S3) 氮肥: 240
Nitrogen: 240
密度: 45
Density: 45
氮肥
Nitrogen
武汉, 兰州Wuhan, Lanzhou 120 (N1) 240 (N2) 360 (N3) 播期:10/5, 4/13
Sowing date: 10/5, 4/13
密度: 45
Density: 45
密度
Density
武汉, 兰州Wuhan, Lanzhou 15 (D1) 45 (D3) 75 (D5) 播期: 10/5, 4/13
Sowing date: 10/5, 4/13
氮肥: 240
Nitrogen: 240

Table 2

Indices determination days from sowing to each growth period of different treatments at the two experiment sites (d)"

处理
Treatment
2020-2021武汉 2020-2021 Wuhan 2021 兰州 2021 Lanzhou
苗期
Seedling stage
薹期
Bolting stage
花期
Flowering stage
角果期
Maturity stage
苗期
Seedling stage
薹期
Bolting stage
花期
Flowering stage
角果期Maturity stage
S1 76 135 166 212 53 65 87 116
S2 76 135 166 212 53 65 87 116
S3 99 138 170 215 58 69 91 118
N1 76 135 166 212 53 65 87 116
N2 76 135 166 212 53 65 87 116
N3 76 135 166 212 53 65 87 116
D1 76 135 166 212 53 65 87 116
D2 76 135 166 212 53 65 87 116
D3 76 135 166 212 53 65 87 116

Table 3

Effects of key cultivation measures on rapeseed yield and yield components"

栽培措施 Cultivation measures 品种Variety 处理Treatment 武汉 Wuhan (2020-2021) 兰州 Lanzhou (2021)
单株角果数Pods per plant 每角果粒数Seeds per pod 千粒重1000-seed
weight (g)
单株产量Yield per plant 成株率Survival
rate (%)
实际产量Actual yield
(kg hm-2)
理论产量Theoretical yield (kg hm-2) 单株角果数Pods per plant 每角果粒数Seeds per pod 千粒重1000-seed
weight (g)
单株产量Yield per plant 成株率Survival rate (%) 实际产量Actual yield
(kg hm-2)
理论产量Theoretical yield (kg hm-2)
播期Sowing date XZY518 S1 145.9 a 19.7 a 3.60 b 10.40 a 65.5 d 2843.6 a 3074.5 a 94.1 d 19.7 a 3.63 a 6.72 b 94.3 ab 2802.7 c 2850.2 c
S2 135.8 b 17.7 b 3.47 bc 8.32 c 80.3 b 2555.1 bc 2975.7 ab 127.4 b 20.4 a 3.49 bc 9.05 a 92.2 ab 3512.1 b 3665.5 b
S3 101.6 e 17.2 b 3.30 c 5.74 e 82.1 ab 2085.7 d 2122.5 c 92.8 d 18.1 b 3.30 d 5.56 c 86.7 c 2151.7 d 2246.7 d
CV1 (%) 14.84 5.91 4.00 23.41 9.75 12.52 15.69 15.29 4.86 3.83 20.47 3.51 19.69 19.90
DD199 S1 125.9 c 17.2 b 4.20 a 9.06 b 74.1 c 2674.7 b 3017.2 ab 129.6 b 19.5 a 3.60 ab 9.08 a 96.7 a 3451.8 b 3947.5 ab
S2 112.0 d 16.7 b 4.10 a 7.63 d 81.9 b 2503.6 c 2810.5 b 138.7 a 20.3 a 3.52 b 9.91 a 96.0 a 3814.3 a 4277.5 a
S3 92.0 f 16.4 b 3.97 a 5.92 e 87.1 a 2196.4 d 2320.5 c 113.0 c 19.1 ab 3.43 cd 7.41 b 91.2 bc 2975.7 c 3038.2 c
CV2 (%) 12.67 1.82 2.70 16.99 6.56 8.05 10.76 8.36 2.54 1.98 11.79 2.59 10.06 13.96
氮肥 Nitrogen XZY518 N1 96.3 c 17.6 b 3.63 b 6.15 e 88.0 b 2203.3 d 2433.8 c 93.5 e 18.3 d 3.60 a 6.15 d 94.7 a 2593.1 e 2667.3 e
N2 134.0 b 17.9 b 3.57 b 8.57 c 80.9 cd 2766.9 b 3122.8 b 130.9 c 19.9 bc 3.44 c 8.97 b 94.0 a 3789.9 c 3795.3 c
N3 158.5 a 20.3 a 3.50 b 11.20 a 73.7 d 3248.6 a 3708.3 a 159.1 b 21.8 a 3.35 d 11.60 a 86.0 b 4457.6 a 4492.9 b
CV1 (%) 19.72 6.63 1.93 23.93 7.19 15.59 16.87 21.04 7.24 3.01 25.05 4.65 21.35 20.60
DD199 N1 85.4 d 17.3 b 4.13 a 6.10 e 94.6 a 2384.5 c 2594.9 c 104.7 d 18.9 d 3.59 a 7.09 c 94.3 a 2852.9 d 2901.5 d
N2 105.9 c 17.5 b 4.07 a 7.55 d 89.0 b 2670.3 b 3023.4 b 135.9 c 19.1 cd 3.49 b 9.04 b 94.0 a 3633.4 c 3820.8 c
N3 136.3 b 18.3 b 4.03 a 10.10 b 81.7 c 3121.2 a 3694.9 a 172.6 a 20.2 b 3.42 c 11.90 a 86.8 b 4264.3 b 4814.1 a
CV2 (%) 19.16 2.59 1.04 20.73 5.94 11.13 14.58 20.16 3.01 1.94 21.31 3.68 16.11 20.31
密度 Density XZY518 D1 234.2 a 19.4 a 3.73 c 16.90 a 91.2 a 2004.0 c 2313.9 c 286.8 b 19.6 a 3.54 ab 19.90 b 98.0 a 2737.1 d 2823.3 d
D3 111.6 c 18.2 bc 3.60 d 7.34 c 79.8 b 2569.0 b 2627.8 b 153.2 c 18.7 b 3.45 b 9.87 c 90.9 b 4006.0 b 3951.0 b
D5 90.0 d 17.9 bc 3.53 d 5.65 d 59.2 c 2467.9 b 2506.1 bc 84.6 e 17.7 c 3.30 c 4.94 e 89.0 b 3203.2 c 3284.4 c
CV1 (%) 43.71 3.48 2.48 49.27 17.23 10.48 5.21 48.01 4.19 2.86 53.82 4.37 15.81 13.81
DD199 D1 173.9 b 19.0 ab 4.37 a 14.37 b 93.0 a 1932.3 c 2004.1 d 309.4 a 19.6 a 3.63 a 22.00 a 98.0 a 2818.5 d 3250.0 c
D3 93.3 d 18.4 b 4.27 ab 7.32 c 81.1 b 2526.8 b 2670.8 b 162.7 c 18.8 b 3.54 ab 10.80 c 97.0 a 4199.7 ab 4713.1 a
D5 74.9 e 17.8 c 4.23 b 5.66 d 77.4 b 3133.0 a 3283.1 a 113.2 d 18.1 bc 3.45 b 7.05 d 92.4 b 4468.9 a 4901.1 a
CV2 (%) 37.68 2.59 1.13 42.08 7.96 19.37 19.69 42.70 3.42 2.02 47.88 2.64 18.88 17.21
Total CV1(%) 31.11 5.54 3.20 37.84 12.38 14.79 16.92 43.72 6.30 3.33 46.93 4.08 21.74 20.56
Total CV2(%) 39.97 4.49 2.87 31.53 7.76 14.37 16.89 38.59 3.40 2.07 41.72 3.52 16.48 18.38

Fig. 2

Effects of key cultivation measures on leaf area index of rapeseed Treatments are the same as those given in Table 1. XZY 518: Xiangzayou 518; DD 199: Dadi 199. SS, BS, FS, and MS represent seedling stage, bolting stage, flowering stage, and maturity stage, respectively. * and ** indicate significant difference at the 0.05 and 0.01 probability levels, respectively. NS: non-significant."

Table 4

Analysis of coefficient of variation of leaf area index at each growth stage of rapeseed under key cultivation measures"

栽培措施
Cultural
measures
变异系数
Coefficient of
variations
武汉Wuhan (2020-2021) 兰州Lanzhou (2021)
苗期
SS
薹期
BS
花期
FS
苗期
SS
薹期
BS
花期
FS
播期Sowing date CV1 (%) 25.7 19.1 16.4 12.3 11.3 14.9
CV2 (%) 23.0 12.9 13.9 6.6 3.6 12.0
氮肥 Nitrogen CV1 (%) 38.2 38.7 37.6 19.7 20.4 24.1
CV2 (%) 25.3 24.6 30.2 13.1 12.9 12.8
密度 Density CV1 (%) 33.1 35.4 34.7 18.9 18.6 8.5
CV2 (%) 31.6 33.7 33.3 16.6 17.5 14.9
Total CV1 (%) 36.1 34.8 33.6 17.6 17.7 17.3
Total CV2 (%) 27.0 25.2 27.3 14.3 13.3 16.0

Table 5

Effects of key cultivation measures on light energy utilization efficiency of rapeseed at each growth stage (g MJ-1)"

栽培措施 Cultivation Measures 品种
Variety
处理
Treatment
武汉Wuhan (2020-2021) 兰州Lanzhou (2021)
播种-
苗期
Sowing-
seedling
苗期-
薹期
Seedling-
bolting
薹期-
花期
Bolting-
flowering
花期-
角果期
Flowering-
maturity
全生
育期
Whole
growth
播种-
苗期
Sowing-
seedling
苗期-
薹期
Seedling-
bolting
薹期-
花期
Bolting-
flowering
花期-
角果期
Flowering-
maturity
全生
育期
Whole growth
播期
Sowing date
XZY
518
S1 0.77 a 0.78 a 2.83 a 5.25 a 2.26 a 0.44 b 0.53 bc 0.83 c 1.25 a 0.76 c
S2 0.72 b 0.18 cd 2.14 bc 2.78 b 1.44 b 0.58 a 0.78 a 2.22 ab 1.17 a 1.19 a
S3 0.22 f 0.12 d 1.24 d 1.65 d 0.98 e 0.29 c 0.42 c 1.47 bc 0.56 b 0.69 c
CV1 (%) 43.57 82.78 31.45 46.59 33.94 27.12 26.12 37.70 31.02 25.12
DD
199
S1 0.65 c 0.67 a 2.36 b 2.28 c 1.41 b 0.38 bc 0.56 abc 2.16 ab 0.61 b 0.93 b
S2 0.53 d 0.35 b 2.17 bc 2.12 c 1.24 c 0.35 bc 0.72 ab 2.87 a 0.88 ab 1.20 a
S3 0.29 e 0.34 bc 1.98 c 1.17 e 1.07 d 0.28 c 0.52 bc 1.39 c 0.45 b 0.66 c
CV2 (%) 30.45 33.81 7.15 26.39 11.19 12.45 14.40 28.24 27.44 23.70
氮肥
Nitrogen
XZY
518
N1 0.29 d 0.33 c 1.30 c 1.37 c 0.82 d 0.23 d 0.47 d 1.22 e 0.15 e 0.52 d
N2 0.58 b 0.42 bc 1.92 b 2.36 b 1.32 b 0.44 b 0.58 cd 1.80 c 0.58 cd 0.85 c
N3 0.81 a 0.50 ab 2.97 a 4.83 a 2.28 a 0.52 a 0.88 bc 2.35 a 0.84 b 1.15 b
CV1 (%) 37.99 26.67 33.41 50.99 41.12 30.83 26.93 25.78 54.37 30.63
栽培措施 Cultivation Measures 品种
Variety
处理
Treatment
武汉Wuhan (2020-2021) 兰州Lanzhou (2021)
播种-
苗期
Sowing-
seedling
苗期-
薹期
Seedling-
bolting
薹期-
花期
Bolting-
flowering
花期-
角果期
Flowering-
maturity
全生
育期
Whole
growth
播种-
苗期
Sowing-
seedling
苗期-
薹期
Seedling-
bolting
薹期-
花期
Bolting-
flowering
花期-
角果期
Flowering-
maturity
全生
育期
Whole growth
氮肥
Nitrogen
DD
199
N1 0.30 d 0.39 c 1.21 c 0.85 d 0.69 e 0.22 d 0.94 b 1.47 d 0.41 d 0.76 c
N2 0.40 c 0.48 ab 1.76 b 1.18 c 0.96 c 0.32 c 1.25 a 2.15 b 0.66 bc 1.10 b
N3 0.61 b 0.55 a 2.79 a 1.47 c 1.36 b 0.44 b 1.37 a 2.51 a 1.20 a 1.38 a
CV2 (%) 29.58 13.84 34.11 21.71 27.43 27.53 15.27 21.10 43.57 23.47
密度
Density
XZY
518
D1 0.31 f 0.14 d 1.30 de 1.68 cd 0.86 e 0.12 c 0.18 d 1.45 d 0.27 b 0.61 c
D3 0.86 a 0.55 b 2.93 a 2.77 a 1.78 a 0.29 a 0.45 c 2.81 a 1.08 c 1.22 a
D5 0.66 c 0.46 b 2.28 b 2.04 bc 1.36 c 0.21 b 0.25 d 2.75 ab 0.60 d 0.95 b
CV1 (%) 37.26 45.90 30.87 20.96 28.20 33.60 39.00 26.85 51.16 26.93
DD
199
D1 0.37 e 0.25 c 1.02 e 1.52 d 0.79 e 0.12 c 0.41 c 1.63 d 0.49 a 0.65 c
D3 0.50 d 0.53 b 1.56 cd 2.27 b 1.21 d 0.17 b 0.58 b 2.26 c 1.08 b 0.93 b
D5 0.77 b 0.66 a 1.72 c 3.04 a 1.55 b 0.19 b 0.76 a 2.56 b 1.50 cd 1.15 a
CV2 (%) 30.48 35.64 20.89 27.26 26.27 18.40 24.50 18.03 40.48 22.48
Total CV1 (%) 39.82 53.04 31.98 47.75 35.81 42.13 42.03 34.86 50.86 27.85
Total CV2 (%) 31.74 29.51 28.45 37.51 23.83 36.68 39.82 23.02 44.39 24.60

Fig. 3

Effects of key cultivation measures on dry matter accumulation and root shoot ratio of rapeseed during each growth period Treatments are the same as those given in Table 1. XZY 518: Xiangzayou 518; DD 199: Dadi 199. Values within a column followed by different letters are significantly different at P < 0.05; significant differences were compared among 6 treatments on a single factor.; the circles in the figure represent the variation coefficient among the 3 gradients. * and ** indicate significant difference at the 0.05 and 0.01 probability levels, respectively. NS: non-significant."

Table 6

Effects of key cultivation measures on root morphology of rapeseed at flowering stage"

栽培措施 Cultivation measures 品种Variety 处理
Treatment
武汉 Wuhan (2020-2021) 兰州 Lanzhou (2021)
总根长
Total root length (cm)
根表面积
Root surface area (cm2)
根体积Root volume
(cm3)
平均根直径Average root diameter (mm) 总根长
Total root length (cm)
根表面积
Root surface area (cm2)
根体积 Root volume
(cm3)
平均根直径Average root diameter
(mm)
播期
Sowing date
XZY518 S1 2332.5 a 1148.1 ab 165.1 ab 2.21 a 280.5 ab 249.3 bc 58.3 bc 1.53 c
S2 2069.1 b 724.2 c 92.9 bc 1.67 c 309.0 a 321.2 a 119.4 a 2.06 a
S3 802.6 d 389.6 d 39.3 c 1.10 f 179.2 d 217.0 c 44.2 c 1.08 e
CV1 (%) 38.50 41.17 52.01 27.41 21.74 16.59 44.13 25.79
DD199 S1 2334.7 a 1296.1 a 229.7 a 1.95 b 234.1 c 224.3 c 52.9 c 1.65 c
S2 2114.9 b 1077.7 d 167.6 ab 1.48 d 275.0 b 311.3 ab 81.0 b 1.89 b
S3 1339.1 c 788.9 c 139.3 b 1.33 e 229.4 c 237.6 c 42.0 c 1.30 d
CV2 (%) 22.13 19.70 21.11 16.66 8.32 14.85 28.02 14.96
氮肥
Nitrogen
XZY518 N1 1233.1 d 371.3 e 35.9 d 1.20 c 181.9 d 205.4 c 35.4 d 2.41 a
N2 1952.3 b 676.0 c 89.8 c 1.32 c 289.0 b 234.6 c 51.2 c 1.71 b
N3 2383.6 a 905.0 b 142.9 b 2.17 a 359.8 a 371.2 ab 82.1 a 0.94 d
CV1 (%) 25.56 33.59 48.79 27.61 26.41 26.73 34.49 35.78
DD199 N1 1487.1 c 535.6 d 79.4 c 1.20 c 205.7 cd 227.2 c 36.3 d 2.22 a
N2 1707.1 bc 753.8 c 118.9 b 1.67 b 240.0 c 319.0 b 68.0 b 1.69 b
N3 2371.2 a 1048.2 a 191.9 a 2.21 a 312.8 b 410.7 a 86.5 a 1.20 c
CV2 (%) 20.26 26.96 35.83 24.17 17.71 23.49 32.59 24.23
密度
Density
XZY518 D1 3772.5 a 1399.9 a 270.5 a 2.60 a 530.9 a 639.6 a 190.2 a 1.06 e
D3 1896.7 c 724.2 bc 124.2 b 1.53 b 309.0 c 266.1 cd 54.6 cd 1.45 d
D5 1088.3 d 433.3 cd 46.1 c 1.22 b 235.4 d 211.7 d 36.4 d 2.48 a
CV1 (%) 49.91 47.50 49.57 33.05 35.04 51.06 73.20 25.89
DD199 D1 2983.3 b 1346.6 a 255.8 a 2.66 a 460.1 b 521.4 b 157.4 b 1.13 e
D3 2602.0 b 950.0 b 135.0 b 1.63 b 285.0 c 331.1 c 81.0 c 1.60 c
D5 1506.9 c 347.7 d 54.8 c 1.25 b 219.6 d 223.1 d 44.3 d 1.94 b
CV2 (%) 26.47 46.59 42.51 32.22 31.57 34.39 49.99 21.27
Total CV1 (%) 42.77 43.97 63.44 30.28 33.69 43.13 64.03 33.32
Total CV2 (%) 26.22 34.63 40.84 26.76 26.87 30.68 48.42 20.98

Table 7

Grey correlation analysis of yield and influencing factors"

评价项
Evaluation item
XZY518 DD199
关联度
Correlation
degree
排名
Ranking
关联度
Correlation
degree
排名
Ranking
千粒重1000-seed weight 0.844 7 0.777 10
群体角果数Population pod number 0.935 1 0.945 1
每角果粒数Seeds per pod 0.875 3 0.848 7
成株率Survival rate 0.810 13 0.808 9
总根长Total root length 0.571 19 0.496 19
根表面积Root surface area 0.699 17 0.592 18
根体积Root volume 0.768 15 0.656 16
平均根直径Average root diameter 0.853 6 0.888 3
苗期干重Dry weight at seedling stage 0.832 9 0.769 13
薹期干重Dry weight at bolting stage 0.816 11 0.740 14
花期干重Dry weight at flowering stage 0.907 2 0.891 2
成熟期干重Dry weight at maturity stage 0.832 8 0.832 8
苗期叶面积指数 LAI at seedling stage 0.815 12 0.769 12
薹期叶面积指数 LAI at bolting stage 0.861 4 0.862 4
花期叶面积指数LAI at flowering stage 0.859 5 0.856 5
播种-苗期光能利用效率 LUE at sowing-seedling stage 0.734 16 0.688 15
苗-薹期光能利用效率LUE at seedling-bolting stage 0.787 14 0.776 11
薹-花期光能利用效率LUE at bolting-flowering stage 0.824 10 0.855 6
花-角果期光能利用效率LUE at flowering-maturity stage 0.632 18 0.643 17

Table 8

Correlation analysis between yield and main influencing factors"

指标
Index
产量Yield
XZY518 DD199
群体角果数Population pod number 0.932** 0.968**
每角果粒数Seeds per pod 0.672** 0.688**
平均根直径Average root diameter 0.632** 0.775**
花期干重Dry weight at flowering stage 0.928** 0.906**
成熟期干重Dry weight at maturity stage 0.499* 0.518*
薹期叶面积指数 LAI at bolting stage 0.504* 0.689**
花期叶面积指数LAI at flowering stage 0.560* 0.696**
薹-花期光能利用效率LUE at bolting-flowering stage 0.639** 0.606**

Table 9

Correlation analysis between yield variation coefficient and variation coefficient of main influencing factors"

指标
Index
产量Yield
XZY518 DD199
群体角果数Population pod number 0.952** 0.987**
每角果粒数Seeds per pod 0.587 0.968**
平均根直径Average root diameter 0.924** 0.865*
花期干重Dry weight at flowering stage 0.993** 0.927**
成熟期干重Dry weight at maturity stage 0.884* 0.420
薹期叶面积指数 LAI at bolting stage -0.530 0.552
花期叶面积指数LAI at flowering stage -0.289 0.303
薹-花期光能利用效率LUE at bolting-flowering stage 0.181 0.583
[1] 袁圆, 汪波, 周广生, 刘芳, 黄俊生, 蒯婕. 播期和种植密度对油菜产量和茎秆抗倒性的影响. 中国农业科学, 2021, 54: 1613-1626.
doi: 10.3864/j.issn.0578-1752.2021.08.004
Yuan Y, Wang B, Zhou G S, Liu F, Huang J S, Kuai J. Effects of different sowing dates and planting densities on the yield and stem lodging resistance of rapeseed. Sci Agric Sin, 2021, 54: 1613-1626. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2021.08.004
[2] 刘成, 冯中朝, 肖唐华, 马晓敏, 周广生, 黄凤洪, 李加纳, 王汉中. 我国油菜产业发展现状、潜力及对策. 中国油料作物学报, 2019, 41: 485-489.
Liu C, Feng Z C, Xiao T H, Ma X M, Zhou G S, Huang F H, Li J N, Wang H Z. Development, potential and adaptation of Chinese rapeseed industry. Chin J Oil Crop Sci, 2019, 41: 485-489. (in Chinese with English abstract)
[3] 蒯婕, 李真, 汪波, 刘芳, 叶俊, 周广生. 密度和行距配置对油菜苗期性状及产量形成的影响. 中国农业科学, 2021, 54: 2319-2332.
doi: 10.3864/j.issn.0578-1752.2021.11.006
Kuai J, Li Z, Wang B, Liu F, Ye J, Zhou G S. Effects of density and row spacing on seedling traits of rapeseed and seed yield. Sci Agric Sin, 2021, 54: 2319-2332. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2021.11.006
[4] FAO. Statistical databases, food and agriculture organization (FAO) of the United Nations. 2020. http://www.fao.org.
[5] 李小勇, 周敏, 王涛, 张兰, 周广生, 蒯婕. 种植密度对油菜机械收获关键性状的影响. 作物学报, 2018, 44: 278-287.
doi: 10.3724/SP.J.1006.2018.00278
Li X Y, Zhou M, Wang T, Zhang L, Zhou G S, Kuai J. Effects of planting density on the mechanical harvesting characteristics of semi-winter rapeseed. Acta Agron Sin, 2018, 44: 278-287. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.00278
[6] 娄洪祥, 姬建利, 蒯婕, 汪波, 徐亮, 李真, 刘芳, 黄威, 刘暑艳, 尹羽丰, 王晶, 周广生. 种植密度对油菜正反交组合产量与倒伏相关性状的影响. 作物学报, 2021, 47: 1724-1740.
doi: 10.3724/SP.J.1006.2021.04253
Lou H X, Ji J L, Kuai J, Wang B, Xu L, Li Z, Liu F, Huang W, Liu S Y, Yin Y F, Wang J, Zhou G S. Effects of planting density on yield and lodging related characters of reciprocal hybrids in Brassica napus L. Acta Agron Sin, 2021, 47: 1724-1740. (in Chinese with English abstract)
[7] 蒯婕, 杜雪竹, 胡曼, 曾讲学, 左青松, 吴江生, 周广生. 共生期与种植密度对棉田套播油菜生长及产量的影响. 作物学报, 2016, 42: 591-599.
doi: 10.3724/SP.J.1006.2016.00591
Kuai J, Du X Z, Hu M, Zeng J X, Zuo Q S, Wu J S, Zhou G S. Effect of symbiotic periods and plant densities on growth and yield of rapeseed intercropping cotton. Acta Agron Sin, 2016, 42: 591-599. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2016.00591
[8] 赵明, 周宝元, 马玮, 李从锋, 丁在松, 孙雪芳. 粮食作物生产系统定量调控理论与技术模式. 作物学报, 2019, 45: 485-498.
doi: 10.3724/SP.J.1006.2019.83051
Zhao M, Zhou B Y, Ma W, Li C F, Ding Z S, Sun X F. Theoretical and technical models of quantitative regulation in food crop production system. Acta Agron Sin, 2019, 45: 485-498. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2019.83051
[9] 赵明, 李建国, 张宾, 董志强, 王美云. 论作物高产挖潜的补偿机制. 作物学报, 2006, 32: 1566-1573.
Zhao M, Li J G, Zhang B, Dong Z Q, Wang M Y. The compensatory mechanism in exploring crop production potential. Acta Agron Sin, 2006, 32: 1566-1573. (in Chinese with English abstract)
[10] 严威凯. 双标图分析在农作物品种多点试验中的应用. 作物学报, 2010, 36: 1805-1819.
doi: 10.3724/SP.J.1006.2010.01805
Yan W K. Optimal use of biplots in analysis of multi-location variety test date. Acta Agron Sin, 2010, 36: 1805-1819. (in Chinese with English abstract)
[11] 喻树迅, 黄祯茂, 姜瑞云, 原日红, 聂先舟, 徐竹生, 徐久玮. 短季棉中棉16高产稳产生化机理的研究. 中国农业科学, 1992, 25(5): 24-30.
Yu S X, Huang Z M, Jiang R Y, Yuan R H, Nie X Z, Xu Z S, Xu J W. Researches on the biochemical mechanism of high consistent yield of short cotton Zhongmiansuo 16. Sci Agric Sin, 1992, 25(5): 24-30. (in Chinese with English abstract)
[12] 周广生, 王晶, 蒯婕, 汪波. 专辑导读:加强大田经济作物栽培措施与环境/资源配置的互作研究、推动产业高效优质发展. 作物学报, 2021, 47: 1633-1638.
doi: 10.3724/SP.J.1006.2021.04633
Zhou G S, Wang J, Kuai J, Wang B. Editorial: strengthening the research on the interaction between cultivated measures and environment/resource allocation of field economic crops to promote the development of industry with high efficiency and high quality. Acta Agron Sin, 2021, 47: 1633-1638. (in Chinese with English abstract)
[13] 蒯婕, 王积军, 左青松, 陈红琳, 高建芹, 汪波, 周广生, 傅廷栋. 长江流域直播油菜密植效应及其机理研究进展. 中国农业科学, 2018, 51: 4625-4632.
doi: 10.3864/j.issn.0578-1752.2018.24.004
Kuai J, Wang J J, Zuo Q S, Chen H L, Gao J Q, Wang B, Zhou G S, Fu T D. Effects and mechanism of higher plant density on directly-sown rapeseed in the Yangtze River basin of China. Sci Agric Sin, 2018, 51: 4625-4632. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2018.24.004
[14] 黄桃翠, 李加纳, 唐世义. 2014-2015年度长江中游组区试油菜稳定性探析. 中国油料作物学报, 2016, 38: 423-430.
Huang T C, Li J N, Tang S Y. Stability of oilseed rape varieties in 2014-2015 national rapeseed variety test in regions along midway of Yangtze River. Chin J Oil Crop Sci, 2016, 38: 423-430. (in Chinese with English abstract)
[15] 许轲, 杨海生, 张洪程, 龚金龙, 沈新平, 陶小军, 戴其根, 霍中洋, 魏海燕, 高辉. 江淮下游地区水稻品种生产力纬向差异及其合理利用. 作物学报, 2014, 40: 871-890.
doi: 10.3724/SP.J.1006.2014.00871
Xu K, Yang H S, Zhang H C, Gong J L, Shen X P, Tao X J, Dai Q G, Huo Z Y, Wei H Y, Gao H. Latitudinal difference of rice varieties productivity in the lower Yangtze and Huai valleys and its rational utilization. Acta Agron Sin, 2014, 40: 871-890. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.00871
[16] 杨进成, 胡新洲, 沈祥宏, 李祥, 刘坚坚, 施立安, 黄彬彬, 杨占忠, 张云明, 张玉荣, 李红彦, 安正云. 不同氮肥用量对免耕山地油菜产量及其农艺性状的影响. 中国农学通报, 2019, 35(28): 11-16.
doi: 10.11924/j.issn.1000-6850.casb18050035
Yang J C, Hu X Z, Shen X H, Li X, Liu J J, Shi L A, Huang B B, Yang Z Z, Zhang Y M, Zhang Y R, Li H Y, An Z Y. Nitrogen amounts affect yield and agronomic traits of no-till oilseed rape in plateau areas. Chin Agric Sci Bull, 2019, 35(28): 11-16. (in Chinese with English abstract)
doi: 10.11924/j.issn.1000-6850.casb18050035
[17] 王磊, 高杰, 渠建洲, 冯娇娇, 张兴华, 郝引川, 张仁和, 郭东伟, 薛吉全. 两种密度下不同玉米品种的高产稳产及适应性分析. 玉米科学, 2016, 24(2): 136-141.
Wang L, Gao J, Qu J Z, Feng J J, Zhang X H, Hao Y C, Zhang R H, Guo D W, Xue J Q. Yield properties and adaptability of different maize varieties under two densities. J Maize Sci, 2016, 24(2): 136-141. (in Chinese with English abstract)
[18] 张毅. 我国冬油菜区域试验品种的高产稳产和适应性分析. 中国油料作物学报, 2018, 40: 359-366.
Zhang Y. Evaluation of yield stability and adaptability of varieties in national winter rapeseed regional trials in the lower reaches of Yangtze River valley. Chin J Oil Crop Sci, 2018, 40: 359-366. (in Chinese with English abstract)
[19] Zhang Y, Tang Q, Zou Y, Li D, Qin J, Yang S, Chen L, Bing X, Peng S. Yield potential and radiation use efficiency of "super" hybrid rice grown under subtropical conditions. Field Crops Res, 2009, 114: 91-98.
doi: 10.1016/j.fcr.2009.07.008
[20] 宋军, 余桂容, 杜文平, 徐利远. 几种分析方法在玉米丰产与稳产性分析中的应用. 作物杂志, 2010, (2): 69-71.
Song J, Yu G R, Du W P, Xu L Y. Application of several analytical methods in high yield and stability analysis in maize. Crops, 2010, (2): 69-71. (in Chinese with English abstract)
[21] 严明建, 黄文章, 胡景涛, 吕直文, 雷树凡, 黄成志. 2个类型水稻组合主要性状的灰色关联分析. 中国农学通报, 2011, 27(15): 44-47.
Yan M J, Huang W Z, Hu J T, Lyu Z W, Lei S F, Huang C Z. Analysis on grey correlation of mainly properties in two rice type. Chin Agric Sci Bull, 2011, 27(15): 44-47. (in Chinese with English abstract)
doi: 10.11924/j.issn.1000-6850.2010-3813
[22] 金文林, 白琼岩. 作物区试中品种产量性状评价的秩次分析法. 作物学报, 1999, 25: 632-638.
Jin W L, Bai Q Y. The analysis based on ranks of crop varieties in regional trials. Acta Agron Sin, 1999, 25: 632-638. (in Chinese with English abstract)
[23] Bahram M N, Elham T, Amir M, Elham F. Effect of planting date and amount of seed on light distribution and interception through canola cultivars canopy. Res Crops, 2015, 16: 485-492.
doi: 10.5958/2348-7542.2015.00067.4
[24] 陈丽明, 周燕芝, 谭义青, 吴自明, 谭雪明, 曾勇军, 石庆华, 潘晓华, 曾研华. 双季机械直播早籼稻品种的丰产性和稳产性. 中国农业科学, 2020, 53: 261-272.
doi: 10.3864/j.issn.0578-1752.2020.02.004
Chen L M, Zhou Y Z, Tan Y Q, Wu Z M, Tan X M, Zeng Y J, Shi Q H, Pan X H, Zeng Y H. High and stable yield of early indica rice varieties with double-season mechanical direct seeding. Sci Agric Sin, 2020, 53: 261-272. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2020.02.004
[25] Neusa M, Sandra G, Anabela R. Aluminum inhibits root growth and induces hydrogen peroxide accumulation in Plantago algarbiensis and P. almogravensis seedlings. Protoplasma, 2013, 250: 1295-1302.
doi: 10.1007/s00709-013-0511-1
[26] Zhang Z, Chu G, Liu L, Wang Z, Wang X, Zhang H, Yang J, Zhang J. Mid-season nitrogen application strategies for rice varieties differing in panicle size. Field Crops Res, 2013, 150: 9-18.
doi: 10.1016/j.fcr.2013.06.002
[27] 刘德明, 刘强, 荣湘民, 彭建伟, 谢桂先, 张玉平, 宋海星. 不同油菜品种光合作用及干物质积累对氮效率的影响. 湖南农业科学, 2010, (9): 29-31.
Liu D M, Liu Q, Rong X M, Peng J W, Xie G X, Zhang Y P, Song H X. Influences of photosynthesis and dry matter accumulation of different oilseed rape cultivars on nitrogen use efficiency. Hunan Agric Sci, 2010, (9): 29-31 (in Chinese with English abstract).
[28] Paul M J, Foyer C H. Sink regulation of photosynthesis. J Exp Bot, 2001, 52: 1383-1400.
doi: 10.1093/jexbot/52.360.1383 pmid: 11457898
[29] Boquet D J. Cotton in ultra-narrow row spacing: plant density and nitrogen fertilizer rates. Agron J, 2005. 97: 279-287.
doi: 10.2134/agronj2005.0279
[30] Fageria N K. Influence of dry matter and length of roots on growth of five field crops at varying soil zinc and copper levels. J Plant Nutr, 2005, 27: 1517-1523.
doi: 10.1081/PLN-200025995
[31] Forde B, Lorenzo H. The nutritional control of root development. Plant Soil, 2001, 232: 51-68.
doi: 10.1023/A:1010329902165
[32] Chen Y, Shuai J B, Zhang Z, Shi P J, Tao F L. Simulating the impact of watershed management for surface water quality protection: a case study on reducing inorganic nitrogen load at a watershed scale. Ecol Engin, 2014, 62: 61-70.
doi: 10.1016/j.ecoleng.2013.10.023
[33] 杨云马, 孙彦铭, 贾良良, 贾树龙, 孟春香. 磷肥施用深度对夏玉米产量及根系分布的影响. 中国农业科学, 2018, 51: 1518-1526.
doi: 10.3864/j.issn.0578-1752.2018.08.009
Yang Y M, Sun Y M, Jia L L, Jia S L, Meng C X. Effects of phosphorus fertilization depth on yield and root distribution of summer maize. Sci Agric Sin, 2018, 51: 1518-1526. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2018.08.009
[34] 李杰, 张洪程, 常勇, 龚金龙, 胡雅杰, 龙厚元, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉. 高产栽培条件下种植方式对超级稻根系形态生理特征的影响. 作物学报, 2011, 37: 2208-2220.
doi: 10.3724/SP.J.1006.2011.02208
Li J, Zhang H C, Chang Y, Gong J L, Hu Y J, Long H Y, Dai Q G, Huo Z Y, Xu K, Wei H Y, Gao H. Influence of planting methods on root system morphological and physiological characteristics of super rice under high-yielding cultivation condition. Acta Agron Sin, 2011, 37: 2208-2220. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2011.02208
[35] 钟丽. 油菜产量与主要性状的灰色关联度分析. 南方农业学报, 2012, 43: 421-424.
Zhong L. Gray relational grade analysis between the rapeseed yield and related traits. J South Agric, 2012, 43: 421-424. (in Chinese with English abstract)
[36] 巨霞. 不同类型春油菜光合生理指标与产量的灰色关联分析. 湖北农业科学, 2013, 52: 4041-4044.
Ju X. Grey Correlative degree analysis of the photosynthetic indexes and yield of different types of spring rape. Hubei Agric Sci, 2013, 52: 4041-4044. (in Chinese with English abstract)
[37] 刘代平, 宋海星, 刘强, 荣湘民, 彭建伟, 谢桂先, 刘浩荣. 油菜根系形态和生理特性与其氮效率的关系. 土壤, 2008, 40: 765-769.
Liu D P, Song H X, Liu Q, Rong X M, Peng J W, Xie G X, Liu H R. Relationship between root morphologic and physiological properties and nitrogen efficiency of oilseed rape cultivars. Soils, 2008, 40: 765-769. (in Chinese with English abstract)
[38] 戴敬, 郑伟, 喻义珠, 杨举善. 油菜花后光合面积变化及其与产量的关系. 中国油料作物学报, 2001, 23(2): 20-23.
Dai J, Zheng W, Yu Y Z, Yang S J. The relationship between yield and photosynthetic area after flowering in rapeseed. Chin J Oil Crop Sci, 2001, 23(2): 20-23. (in Chinese with English abstract)
[39] 甘雅文, 李隆, 李鲁华, 张伟, 王宝驹. 南疆核桃与小麦间作系统种间根直径及比根长空间分布特征. 西北农业学报, 2015, 24(5): 56-63.
Gan Y W, Li L, Li L H, Zhang W, Wang B J. Spatial distribution of root diameter and specific root length in walnut/wheat agroforestry system in southern Xinjiang. Acta Agric Boreali-Sin, 2015, 24(5): 56-63. (in Chinese with English abstract)
[1] YAN Jin-Yao, SONG Yi, LU Zhi-Feng, REN Tao, LU Jian-Wei. Effect of phosphorus fertilizer rate on rapeseed yield and quality (Brassica napus L.) [J]. Acta Agronomica Sinica, 2023, 49(6): 1668-1677.
[2] FANG Ya-Ting, REN Tao, ZHANG Shun-Tao, ZHOU Xiang-Qi, ZHAO Jian, LIAO Shi-Peng, CONG Ri-Huan, LU Jian-Wei. Different effects of nitrogen, phosphorus and potassium fertilizers on oilseed rape yield and nutrient utilization between continuous upland and paddy-upland rotations [J]. Acta Agronomica Sinica, 2023, 49(3): 772-783.
[3] LIU Kun, HUANG Jian, ZHOU Shen-Qi, ZHANG Wei-Yang, ZHANG Hao, GU Jun-Fei, LIU Li-Jun, YANG Jian-Chang. Effects of panicle nitrogen fertilizer rates on grain yield in super rice varieties with different panicle sizes and their mechanism [J]. Acta Agronomica Sinica, 2022, 48(8): 2028-2040.
[4] QIN Lu, HAN Pei-Pei, CHANG Hai-Bin, GU Chi-Ming, HUANG Wei, LI Yin-Shui, LIAO Xiang-Sheng, XIE Li-Hua, LIAO Xing. Screening of rapeseed germplasms with low nitrogen tolerance and the evaluation of its potential application as green manure [J]. Acta Agronomica Sinica, 2022, 48(6): 1488-1501.
[5] WANG Jian-Guo, GENG Yun, YANG Dian-Qing, GUO Feng, YANG Sha, LI Xin-Guo, TANG Zhao-Hui, ZHANG Jia-Lei, WAN Shu-Bo. Effects of single seed precision sowing on population quality, nutrient utilization of peanut in medium and high yield drylands [J]. Acta Agronomica Sinica, 2022, 48(11): 2866-2878.
[6] WEI Xiao-Dong, ZHANG Ya-Dong, SONG Xue-Mei, CHEN Tao, ZHU Zhen, ZHAO Qin-Yong, ZHAO Ling, LU Kai, LIANG Wen-Hua, HE Lei, HUANG Sheng-Dong, XIE Yin-Feng, WANG Cai-Lin. Photosynthetic physiological characteristics of high yield super rice variety Nanjing 5718 [J]. Acta Agronomica Sinica, 2022, 48(11): 2879-2890.
[7] LOU Hong-Xiang, JI Jian-Li, KUAI Jie, WANG Bo, XU Liang, LI Zhen, LIU Fang, HUANG Wei, LIU Shu-Yan, YIN Yu-Feng, WANG Jing, ZHOU Guang-Sheng. Effects of planting density on yield and lodging related characters of reciprocal hybrids in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(9): 1724-1740.
[8] ZHANG Jian, XIE Tian-Jin, WEI Xiao-Nan, WANG Zong-Kai, LIU Chong-Tao, ZHOU Guang-Sheng, WANG Bo. Estimation of feed rapeseed biomass based on multi-angle oblique imaging technique of unmanned aerial vehicle [J]. Acta Agronomica Sinica, 2021, 47(9): 1816-1823.
[9] GUO Qing-Yun, KUAI Jie, WANG Bo, LIU Fang, ZHANG Chun-Yu, LI Gen-Ze, ZHANG Yun-Yun, FU Ting-Dong, ZHOU Guang-Sheng. Effect of mixed-sowing of near-isogenic lines on the clubroot disease controlling efficiency in rapeseed [J]. Acta Agronomica Sinica, 2020, 46(9): 1408-1415.
[10] Qing-Yun GUO, Bo WANG, Jie KUAI, Chun-Yu ZHANG, Gen-Ze LI, Hui-Xian KANG, Ting-Dong FU, Guang-Sheng ZHOU. Controlling efficiency against clubroot disease of rapeseed by mixed-cropping of susceptible and resistant cultivars [J]. Acta Agronomica Sinica, 2020, 46(5): 725-733.
[11] Lei ZHOU,Qiu-Yuan LIU,Jin-Yu TIAN,Meng-Hua ZHU,Shuang CHENG,Yang CHE,Zhi-Jie WANG,Zhi-Peng XING,Ya-Jie HU,Guo-Dong LIU,Hai-Yan WEI,Hong-Cheng ZHANG. Differences in yield and nitrogen absorption and utilization of indica-japonica hybrid rice varieties of Yongyou series [J]. Acta Agronomica Sinica, 2020, 46(5): 772-786.
[12] LYU Wei-Sheng, XIAO Fu-Liang, ZHANG Shao-Wen, ZHENG Wei, HUANG Tian-Bao, XIAO Xiao-Jun, LI Ya-Zhen, WU Yan, HAN De-Peng, XIAO Guo-Bin, ZHANG Xue-Kun. Effects of sowing and fertilizing methods on yield and fertilizer use efficiency in red-soil dryland rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2020, 46(11): 1790-1800.
[13] HU Mao-Long, CHENG Li, GUO Yue, LONG Wei-Hua, GAO Jian-Qin, PU Hui-Ming, ZHANG Jie-Fu, CHEN Song. Development and application of the marker for imidazolinone-resistant gene in Brassica napus [J]. Acta Agronomica Sinica, 2020, 46(10): 1639-1646.
[14] ZHU Ying,XU Dong,HU Lei,HUA Chen,CHEN Zhi-Feng,ZHANG Zhen-Zhen,ZHOU Nian-Bing,LIU Guo-Dong,ZHANG Hong-Cheng,WEI Hai-Yan. Characteristics of medium-maturity conventional japonica rice with good taste and high yield in Jianghuai area [J]. Acta Agronomica Sinica, 2019, 45(4): 578-588.
[15] ZHANG Han-Xiao,LIN Shen,ZUO Qing-Song,YANG Guang,FENG Qian-Nan,FENG Yun-Yan,LENG Suo-Hu. Effects of plant density and N fertilizer spraying concentration on growth of rapeseed blanket seedlings [J]. Acta Agronomica Sinica, 2019, 45(11): 1691-1698.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .