Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (4): 578-588.doi: 10.3724/SP.J.1006.2019.82040

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Characteristics of medium-maturity conventional japonica rice with good taste and high yield in Jianghuai area

ZHU Ying,XU Dong,HU Lei,HUA Chen,CHEN Zhi-Feng,ZHANG Zhen-Zhen,ZHOU Nian-Bing,LIU Guo-Dong,ZHANG Hong-Cheng(),WEI Hai-Yan()   

  1. Jiangsu Key Laboratory of Crop Genetics and Physiology / Jiangsu Key Laboratory of Crop Cultivation and Physiology / Jiangsu Co-innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2018-07-14 Accepted:2018-12-24 Online:2019-04-12 Published:2019-01-16
  • Contact: Hong-Cheng ZHANG,Hai-Yan WEI E-mail:hczhang@yzu.edu.cn;wei_haiyan@163.com
  • Supported by:
    This study was supported by the National Key Research and Development Programs(2016YFD0300503);Key Research and Development Programs of Jiangsu Province(BE2016344);Key Research and Development Programs of Jiangsu Province(BE2018355);Earmarked Fund for China Agriculture Research System(CARS-01-27);Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Abstract:

A field experiment was conducted with 103 medium-maturity conventional japonica rice varieties (lines) including main varieties grown in Jianghuai area and released varieties in recent years with potential productivity, from which three types [good taste and high yield (GH), good taste and medium yield (GM), and medium taste and high yield (MH)] were selected to explore the characteristics of varieties with good taste and high yield in Jianghuai area. There was no significant difference in processing quality between GH type and MH type. Compared with MH type, GH type was 82.06%, 56.34%, and 93.28% higher in chalkiness rate, chalky area ratio and chalkiness, 14.21% and 39.78% lower in protein content and amylose content, 8.73% higher in gel consistency, and 282.11% and 37.88% lower in setback and consistence, respectively. The yield of GH type was 26.73% higher than that of GM type, due to large number of spikelets per panicle and high seed-setting rate. The panicles per unit land area was 22.26% lower, the number of spikelets per panicle and seed-setting rate were 42.12% and 6.18% higher, the ratio of productive tillers to total tillers was 4.2% higher in GH type than those in GM type. The LAI of GH type during heading and maturity periods was 5.47% and 16.94% higher and the decay rate of LAI was 7.25% lower than those of GM type. From heading to maturity, the dry matter accumulation and its ratio, the photosynthetic potential, the crop growth rate, the net assimilation rate and seed setting density were 24.07%, 15.50%, 17.59%, 13.96%, 3.67%, and 40.33% respectively higher in GH type than those in GM type. From above, GH type of medium-maturity conventional japonica rice has the following characteristics: the brown rice rate and the head milled rice rate reach the 1 grade of Chinese standard; the transparency is from grade 3 to grade 5; the protein content is around 8% and the amylose content is around 10%; the gel consistency is over 75 mm; the setback is below -300 cP and the consistence is below 600 cP; the number of panicles per unit land area is around 310×10 4 ha -1, and the grains number per panicle is around 140. It can keep the dry matter accumulation and the leaf area index in optimum ranges before heading period, and remain the leaf area index, the dry matter accumulation and its ratios at high levels after heading period.

Key words: high quality, high yield, medium-maturity conventional japonica rice, breed characteristic

Table 1

Differences in the taste value and yield of the medium mature conventional japonica rice"

年份
Year
指标
Index
变幅大小
Variable amplitude
均值
Mean
标准差
Standard deviation
变异系数
CV(%)
2017 食味值 Taste value 30.50-71.50 52.30 7.28 13.91
产量 Yield (t hm-2) 6.08-10.25 7.85 0.94 12.01
2016 食味值 Taste value 30.0-73.00 51.67 7.43 14.38
产量 Yield (t hm-2) 5.98-10.14 7.79 1.01 12.97

Table 2

Differences of taste value among different types of conventional japonica rice"

类型
Type
品种
Cultivar
食味值
Taste value
外观
Appearance
硬度
Hardness
黏度
Viscosity
平衡值
Balance degree
味优高产 徐稻9号 Xudao 9 61.0 5.5 6.9 4.9 5.2
GTHY 扬粳239 Yangjing 239 67.5 6.3 6.9 6.6 6.2
南粳9108 Nanjing 9108 68.0 6.7 6.5 6.0 6.3
平均Mean 65.5 Aa 6.2 Aa 6.8 Bb 5.8 Aa 5.9 Aa
味优中产 苏香粳3号 Suxiangjing 3 68.5 6.5 7.0 7.0 6.3
GTMY 沪早香软1号 Huzaoxiangruan 1 70.5 6.9 6.5 6.8 6.7
松早香1号 Songzaoxiang 1 67.5 6.4 6.7 6.4 6.2
平均Mean 68.8 Aa 6.6 Aa 6.7 Bb 6.7 Aa 6.4 Aa
味中高产 华粳5号 Huajing 5 49.3 3.5 8.1 3.6 3.3
MTHY 圣稻22 Shengdao 22 48.8 3.3 8.3 3.9 3.2
泗稻15 Sidao 15 44.3 2.5 8.5 2.9 2.4
平均Mean 47.5 Bb 3.1 Bb 8.3 Aa 3.5 Bb 3.0 Bb

Table 3

Differences of processing quality among different types of conventional japonica rice (%)"

类型
Type
品种
Cultivar
糙米率
Brown rice rate
精米率
Milled rice rate
整精米率
Head milled rice rate
味优高产 徐稻9号 Xudao 9 85.68 73.85 68.67
GTHY 扬粳239 Yangjing 239 85.53 73.23 69.09
南粳9108 Nanjing 9108 84.79 74.02 70.18
平均Mean 85.33 Aa 73.70 Aa 69.31 Aa
味优中产 苏香粳3号 Suxiangjing 3 84.87 73.39 59.87
GTMY 沪早香软1号 Huzaoxiangruan 1 84.10 73.28 60.92
松早香1号 Songzaoxiang 1 83.96 72.76 52.27
平均Mean 84.31 Ab 73.14 Aa 57.69 Ab
味中高产 华粳5号 Huajing 5 85.37 71.83 66.38
MTHY 圣稻22 Shengdao 22 84.86 74.06 69.94
泗稻15 Sidao 15 85.10 72.47 67.91
平均Mean 85.11 Aa 72.79 Aa 68.08 Aa

Table 4

Differences of appearance quality among different types of conventional japonica rice"

品种
Cultivar
长宽比
Length-width ratio

Length
(mm)

Width
(mm)
透明度
Transparency
垩白粒率
Chalkiness
grain rate (%)
垩白面积比
Chalkiness
area ratio (%)
垩白度
Chalkiness degree (%)
味优高产GTHY
徐稻9号 Xudao 9 1.88 4.79 2.55 3 52.54 57.03 23.69
扬粳239 Yangjing 239 1.66 4.71 2.78 5 74.93 74.01 27.66
南粳9108 Nanjing 9108 1.64 4.55 2.71 3 82.59 79.93 36.66
平均 Mean 1.73 Aa 4.69 Aa 2.68 Aa 3.67 Aa 71.35 Aa 68.32 Aa 29.34 Aa
品种
Cultivar
长宽比
Length-width ratio

Length
(mm)

Width
(mm)
透明度
Transparency
垩白粒率
Chalkiness
grain rate (%)
垩白面积比
Chalkiness
area ratio (%)
垩白度
Chalkiness degree (%)
味优中产 GTMY
苏香粳3号 Suxiangjing 3 2.14 4.69 2.21 3 71.42 70.31 28.15
沪早香软1号 Huzaoxiangruan 1 1.78 4.61 2.61 4 75.56 75.64 33.92
松早香1号 Songzaoxiang 1 2.41 5.49 2.28 3 70.46 70.32 26.38
平均Mean 2.11 Aa 4.89 Aa 2.37 Ab 3.33 Aa 72.48 Aa 72.09 Aa 29.48 Aa
味中高产MTHY
华粳5号 Huajing 5 1.77 4.75 2.69 2 43.36 42.73 18.38
圣稻22 Shengdao 22 1.75 4.58 2.63 2 37.31 35.54 13.82
泗稻15 Sidao 15 1.82 4.82 2.66 2 38.91 37.85 13.35
平均 Mean 1.78 Aa 4.71 Aa 2.66 Aa 2.00 Ab 39.19 Bb 43.70 Bb 15.18 Ab

Table 5

Differences of nutritional quality and cooking and eating quality among different types of conventional japonica rice"

类型
Type
品种
Cultivar
蛋白质含量
Protein content (%)
直链淀粉含量
Amylose content (%)
胶稠度
Gel consistency (mm)
味优高产 徐稻9号 Xudao 9 7.58 9.84 75.25
GTHY 扬粳239 Yangjing 239 8.16 8.47 78.13
南粳9108 Nanjing 9108 7.81 11.03 76.72
平均Mean 7.85 Bb 9.78 Bb 76.70 Aa
味优中产 苏香粳3号 Suxiangjing 3 8.02 9.57 76.22
GTMY 沪早香软1号 Huzaoxiangruan 1 7.45 10.43 78.76
松早香1号 Songzaoxiang 1 7.64 8.35 76.51
平均Mean 7.70 Bb 9.45 Bb 77.16 Aa
味中高产 华粳5号 Huajing 5 8.85 16.84 71.59
MTHY 圣稻22 Shengdao 22 9.23 16.51 69.67
泗稻15 Sidao 15 9.37 15.37 70.36
平均Mean 9.15 Aa 16.24 Aa 70.54 Bb

Table 6

Differences of RVA profile characteristics among different types of conventional japonica rice"

品种
Cultivar
峰值黏度
Peak
viscosity
(cP)
热浆黏度
Trough
viscosity
(cP)
最终黏度
Final
viscosity
(cP)
崩解值
Breakdown
(cP)
消减值
Setback
(cP)
回复值
Consistence
(cP)
峰值时间
Peak
Time
(min)
糊化温度
Pasting
temperature (℃)
味优高产GTHY
徐稻9号 Xudao 9 2050 1027 1633 1023 -417 606 5.9 68.4
扬粳239 Yangjing 239 1990 1054 1619 936 -371 565 6.0 68.0
南粳9108 Nanjing 9108 1798 876 1413 922 -385 537 5.9 65.5
平均 Mean 1946 Aa 986 Aa 1555 Aa 960 Aa -391 Bb 569 Bb 5.9 Aa 67.3Aa
味优中产 GTMY
苏香粳3号 Suxiangjing 3 1748 830 1422 918 -326 592 5.6 67.7
沪早香软1号 Huzaoxiangruan 1 1922 1033 1498 889 -424 465 5.5 69.4
松早香1号 Songzaoxiang 1 2644 1283 1893 1362 -752 610 5.8 68.8
平均Mean 2104 Aa 1048 Aa 1604 Aa 1056 Aa -500 Bb 556 Bb 5.6 Aa 68.6Aa
味中高产MTHY
华粳5号 Huajing 5 2400 1632 2608 769 208 976 6.4 68.4
圣稻22 Shengdao 22 2021 1322 2232 699 212 910 6.3 69.1
泗稻15 Sidao 15 1611 973 1836 638 225 863 6.0 73.7
平均 Mean 2010 Aa 1309 Aa 2225 Aa 702 Aa 215 Aa 916 Aa 6.2 Aab 70.4Aa

Table 7

Differences of grain yield and its components among different types of conventional japonica rice"

类型
Type
品种
Cultivar
单位面积穗数
No. of panicles
(×104 hm-2)
每穗粒数
Grains per
panicle
结实率
Seed-setting
rate (%)
千粒重
1000-grain
weight (g)
实产
Actual yield
(t hm-2)
味优高产 徐稻9号 Xudao 9 310.37 142.73 87.98 25.25 9.43
GTHY 扬粳239 Yangjing 239 308.25 140.88 91.32 25.42 9.48
南粳9108 Nanjing 9108 313.20 137.98 90.12 25.90 9.68
平均Mean 310.61 Aab 140.53 Aa 89.81 Aa 25.52 Aa 9.53 Aa
味优中产 苏香粳3号 Suxiangjing 3 475.96 88.65 84.52 22.20 7.47
GTMY 沪早香软1号Huzaoxiangruan 1 359.32 105.73 83.58 24.75 7.54
松早香1号Songzaoxiang 1 354.44 102.27 85.64 26.91 7.56
平均Mean 399.57 Aa 98.88 Bb 84.58 Ab 24.62 Aa 7.52 Bb
味中高产 华粳5号Huajing 5 309.23 150.65 89.17 23.87 9.51
MTHY 圣稻22 Shengdao 22 305.68 159.01 86.96 24.15 9.66
泗稻15 Sidao 15 302.34 148.25 87.94 25.40 9.85
平均Mean 305.75 Ab 152.64 Aa 88.02 Aab 24.47 Aa 9.67 Aa

Table 8

Differences of number of stems and tillers, rate of productive tillers to total tillers, leaf area index and decay rate of leaf area index among different types of conventional japonica rice"

品种
Cultivar
拔节期茎蘖数
Number of stems and tillers at
jointing stage
成穗率
Rate of productive tillers to total
tillers (%)
叶面积指数 Leaf area index 叶面积衰减率
Decay rate of leaf area index
(LAI d-1)
拔节期
Jointing
抽穗期
Heading
成熟期Maturity
味优高产GTHY
徐稻9号 Xudao 9 422.53 72.69 3.45 6.89 2.11 0.0747
扬粳239 Yangjing 239 418.59 73.12 3.78 6.98 2.05 0.0745
南粳9108 Nanjing 9108 424.60 73.31 3.61 6.95 2.26 0.0733
平均 Mean 421.91 Aab 73.04 Aa 3.61 Aa 6.94 Aa 2.14 ABa 0.0742 Ab
味优中产 GTMY
苏香粳3号 Suxiangjing 3 611.41 70.74 3.72 6.59 1.58 0.0835
沪早香软1号 Huzaoxiangruan 1 475.01 69.81 3.67 6.53 1.91 0.0783
松早香1号 Songzaoxiang 1 468.63 69.73 3.62 6.63 2.01 0.0781
平均Mean 518.35 Aa 70.09 Bb 3.67 Aa 6.58 Bb 1.83 Bb 0.0800 Aa
味中高产MTHY
华粳5号 Huajing 5 411.25 72.20 3.58 6.99 2.29 0.0734
圣稻22 Shengdao 22 410.16 74.16 3.65 7.04 2.37 0.0741
泗稻15 Sidao 15 409.15 73.48 3.69 7.01 2.41 0.0742
平均 Mean 410.19 Ab 73.49 Aa 3.64 Aa 7.01 Aa 2.36 Aa 0.0739 Ab

Table 9

Differences of dry matter accumulation and its ratio among different types of conventional japonica rice"

品种
Cultivar
移栽期至拔节期
Transplanting-Jointing
拔节期至抽穗期
Jointing-Heading
抽穗期至成熟期
Heading-Maturity
积累量
Biomass
(t hm-2)
比例
Ratio to total (%)
积累量
Biomass
(t hm-2)
比例
Ratio to total (%)
积累量
Biomass
(t hm-2)
比例
Ratio to total (%)
味优高产GTHY
徐稻9号 Xudao 9 3.36 19.86 6.66 40.17 6.56 39.57
扬粳239 Yangjing 239 3.27 18.91 6.91 40.79 6.76 39.91
南粳9108 Nanjing 9108 3.24 18.67 6.98 41.03 6.79 39.92
平均 Mean 3.29 Aa 19.15 Ab 6.85 Aa 40.67 Ab 6.70 Ab 39.80 Aa
味优中产 GTMY
苏香粳3号 Suxiangjing 3 3.55 22.43 6.86 44.23 5.10 32.88
沪早香软1号 Huzaoxiangruan 1 3.47 21.54 6.85 43.38 5.47 34.64
松早香1号 Songzaoxiang 1 3.36 21.00 6.70 42.73 5.62 35.84
平均Mean 3.46 Aa 21.66 Aa 6.80 Aa 43.45 Aa 5.40 Bc 34.46 Bb
味中高产MTHY
华粳5号 Huajing 5 3.13 17.67 6.92 39.86 6.79 39.11
圣稻22 Shengdao 22 3.48 18.98 7.34 40.85 7.15 39.79
泗稻15 Sidao 15 3.27 19.03 7.09 42.10 7.00 41.57
平均 Mean 3.29 Aa 18.94 Ab 7.12 Aa 40.94 Ab 6.98 Aa 40.16 Aa

Table 10

Differences of panicle traits among different types of conventional japonica rice"

类型
Type
品种
Cultivar
穂长
Panicle length
(cm)
一次枝梗数
Number of primary branches
二次枝梗数
Number of secondary branches
着粒密度
Seed setting density
味优高产 徐稻9号 Xudao 9 16.43 12.13 25.86 8.69
GTHY 扬粳239 Yangjing 239 17.34 12.93 21.03 8.12
南粳9108 Nanjing 9108 15.55 12.62 19.80 8.87
平均Mean 16.44 Aa 12.56 Aa 22.23 Aa 8.56 Aa
味优中产 苏香粳3号 Suxiangjing 3 14.98 10.33 15.45 5.92
GTMY 沪早香软1号Huzaoxiangruan 1 15.33 12.69 15.68 6.90
松早香1号 Songzaoxiang 1 18.70 12.55 16.77 5.47
平均Mean 16.34 Aa 11.86 Aa 15.97 Aa 6.10 Bb
味中高产 华粳5号 Huajing 5 16.66 13.64 19.62 9.04
MTHY 圣稻22 Shengdao 22 17.01 11.80 24.55 9.35
泗稻15 Sidao 15 16.60 12.60 32.90 8.93
平均Mean 16.76 Aa 12.68 Aa 25.69 Aa 9.11 Aa
[1] 陈温福, 潘文博, 徐正进 . 我国粳稻生产现状及发展趋势. 沈阳农业大学学报, 2006,37:801-805.
Chen W F, Pan W B, Xu Z J . Current situation and trends in production of japonica rice in China. J Shenyang Agric Univ, 2006,37:801-805 (in Chinese with English abstract).
[2] Lee J W, Hong K . Economic growth in Asia: determinants and prospects. Jpn & World Econ, 2012,24:101-113.
doi: 10.2139/ssrn.1688733
[3] 崔晶, 楠谷彰人, 松江勇次, 森田茂纪 . 中日合作水稻品质·食味研究的现状和展望. 北方水稻, 2011,41(4):1-6.
Cui J, Akihito K, Yuji M, Shigenori M . Present situation and expectation of the rice quality and eating under Sino-Japanese cooperation. North Rice, 2011,41(4):1-6 (in Chinese with English abstract).
[4] 贾东, 周宇飞, 赵建明 . 水稻品质改良的研究发展现状. 北方水稻, 2009,39(6):75-77.
Jia D, Zhou Y F, Zhao J M . Current research status on quality improving in rice. North Rice, 2009,39(6):75-77 (in Chinese with English abstract).
[5] 中华人民共和国农业部. 《全国优势农产品区域布局规划(2008-2015年)》. . 《全国优势农产品区域布局规划(2008-2015年)》. [ 2019-01-11].
Ministry of Agriculture of the People’s Republic of China. Regional Planning of Dominant Crops Production in China (2008- 2015): [ 2019-01-11].
[6] 郭保卫, 朱聪聪, 朱大伟, 张洪程, 江峰, 葛梦婕 . 钵苗机插密度对不同类型水稻齐穗期株型及冠层微环境的影响. 生态学杂志, 2015,34(1):9-17.
Guo B W, Zhu C C, Zhu D W, Zhang H C, Jiang F, Ge M J . Effects of planting density on plant form and micrometeorology in different types of rice with potted seedlings mechanical- transplanting method. Chin J Ecol, 2015,34(1):9-17 (in Chinese with English abstract).
[7] 王才林, 朱镇, 张亚东, 赵凌 . 江苏省粳稻品质改良的成就、问题与对策. 江苏农业学报, 2008,24:199-203.
Wang C L, Zhu Z, Zhang Y D, Zhao L . Achievement and consideration on improving of grain quality for japonica rice in Jiangsu, China. Jiangsu J Agric Sci, 2008,24:199-203 (in Chinese with English abstract).
[8] 陈波, 李军, 花劲, 霍中洋, 张洪程, 程飞虎, 黄大山, 陈忠平, 陈恒, 郭保卫, 周年兵, 舒鹏 . 双季晚稻不同类型品种产量与主要品质性状的差异. 作物学报, 2017,43:1216-1225.
Chen B, Li J, Hua J, Huo Z Y, Zhang H C, Cheng F H, Huang D S, Chen Z P, Chen H, Guo B W, Zhou N B, Shu P . Differences of yield and major quality characters between four late double-harvest rice varieties. Acta Agron Sin, 2017,43:1216-1225 (in Chinese with English abstract).
[9] 万向元, 胡培松, 王海莲, 孔令娜, 毕京翠, 陈亮明, 张坚勇, 翟虎渠, 万建民 . 水稻品种直链淀粉含量、糊化温度和蛋白质含量的稳定性分析. 中国农业科学, 2005,38:1-6.
Wan X Y, Hu P S, Wang H L, Kong L N, Bi J C, Chen L M, Zhang J Y, Zhai H Q, Wan J M . Analysis on stability of AC, GT and PC in rice varieties ( Orzya sativa L.). Sci Agric Sin, 2005,38:1-6 (in Chinese with English abstract).
[10] 王有伟, 苗燕妮, 江鹏, 谢桂珍, 张欣, 施利利, 丁得亮, 崔晶, 王松文 . 水稻产量、蛋白质及食味特性的关联研究. 中国农学通报, 2017,33(5):1-5.
Wang Y W, Miao Y N, Jiang P, Xie G Z, Zhang X, Shi L L, Ding D L, Cui J, Wang S W . Correlation studies on yield, protein and palatability of rice. Chin Agric Sci Bull, 2017,33(5):1-5 (in Chinese with English abstract).
[11] 徐正进, 邵国军, 韩勇, 张学军, 全成哲, 潘国君, 陈温福 . 东北三省水稻产量和品质及其与穗部性状关系的初步研究. 作物学报, 2006,32:1878-1883.
Xu Z J, Shao G J, Han Y, Zhang X J, Quan C Z, Pan G J, Chen W F . A preliminary study on yield and quality of rice and their relationship with panicle characters in northeast region of China. Acta Agron Sin, 2006,32:1878-1883 (in Chinese with English abstract).
[12] 刘贺梅 . 水稻加工品质与外观品质QTL分析. 中国农业科学院硕士学位论文, 北京, 2010.
Liu H M . QTLs Analysis of Processing Quality and Appearance Quality of Rice. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2010.
[13] Fitzgerald M A , McCouch S R, Hall R D. Not just a grain of rice: the quest for quality. Trends Plant Sci, 2009,1:133-139.
[14] 张昌泉, 赵冬生, 李钱峰 , 顾铭洪刘巧泉. 稻米品质性状基因的克隆与功能研究进展. 中国农业科学, 2016,49:4267-4283.
Zhang C Q, Zhao D S, Li Q F, Gu M H, Liu Q Q . Progresses in research on cloning and functional analysis of key genes involving in rice grain quality. Sci Agric Sin, 2016,49:4267-4283 (in Chinese with English abstract).
[15] Sreenivasulu N, Butardo V M, Misra G, Cuevas R P, Anacleto R , Kishor P B K. Designing climate-resilient rice with ideal grain quality suited for high-temperature stress. J Exp Bot, 2015,66:1737.
doi: 10.1093/jxb/eru544 pmid: 25662847
[16] 孟庆虹, 程爱华, 姚鑫淼, 张瑞英, 陈凯新, 李霞辉 . 粳稻食味品质评价方法的研究. 北方水稻, 2008,38(6):24-28.
Meng Q H, Cheng A H, Yao X M, Zhang R Y, Chen K X, Li X H . Study on palatability evaluation method of japonica rice. North Rice, 2008,38(6):24-28 (in Chinese with English abstract).
[17] 徐铨, 唐亮, 徐凡, 福嶌阳, 黄瑞冬, 陈温福, 徐正进 . 粳稻食味品质改良研究现状与展望. 作物学报, 2013,39:961-968.
Xu Q, Tang L, Xu F, Fu D Y, Huang R D, Chen W F, Xu Z J . Research advances and prospects of eating quality improvement in japonica rice( Oryza sativa L.). Acta Agron Sin, 2013,39:961-968 (in Chinese with English abstract).
[18] 李坤 . 低直链淀粉含量、低蛋白质含量粳稻资源品质性状研究. 沈阳农业大学硕士学位论文, 辽宁沈阳, 2016.
Li K . Study of Japonica Rice Resources Quality Traits on Low Amylose Content and Low Protein Content. MS Thesis of Shenyang Agricultural University. Shenyang, Liaoning, China, 2016 (in Chinese with English abstract).
[19] Zhang C, Chen S, Ren X, Lu Y, Liu D, Cai X . Molecular structure and physicochemical properties of starches from rice with different amylose contents resulting from modification of OsGBSSI activity. J Agric & Food Chem, 2017,65:2222.
doi: 10.1021/acs.jafc.6b05448 pmid: 28241110
[20] 吴殿星, 夏英武, 李旭晨 . 水稻胚乳外观云雾性状形成基础及其快速识别条件分析. 中国水稻科学, 2001,15:192-196.
Wu D X, Xia Y W, Li X C . Formation basis of rice mist endosperm appearance and its rapid identifying factors. Chin J Rice Sci, 2001,15:192-196 (in Chinese with English abstract).
[21] Chen T, Zhang Y D, Zhao L, Zhu Z, Lin J, Zhang S B . A cleaved amplified polymorphic sequence marker to detect variation in Wx locus conditioning translucent endosperm in rice. Rice Sci, 2009,16:106-110.
[22] 陆彦, 张晓敏, 祁琰, 张昌泉, 凌裕平, 刘巧泉 . 不同透明度水稻籽粒横断面扫描电镜分析. 中国水稻科学, 2018,32:189-199.
Lu Y, Zhang X M, Qi Y, Zhang C Q, Ling Y P, Liu Q Q . Scanning electron microscopic analysis of grain cross-section from rice with different transparency. Chin J Rice Sci, 2018,32:189-199 (in Chinese with English abstract).
[23] 陈能, 罗玉坤, 谢黎虹, 朱智伟, 段彬伍, 章林平 . 我国水稻品种的蛋白质含量及与米质的相关性研究. 作物学报, 2006,32:1193-1196.
Chen N, Luo Y K, Xie L H, Zhu Z W, Duan B W, Zhang L P . Protein content and its correlation with other quality parameters of rice in China. Acta Agron Sin, 2006, 32:1193-1196 (in Chinese with English abstract).
[24] 蔡一霞, 刘春香, 王维, 张洪熙, 张祖建, 杨静, 唐汉忠 . 灌浆期表观直链淀粉含量相似品种稻米胶稠度和RVA谱的动态差异. 中国农业科学, 2011,44:2439-2445.
Cai Y X, Liu C X, Wang W, Zhang H X, Zhang Z J, Yang J, Tang H Z . Dynamic differences of the RVA profile and gel consistency in two rice varieties with similar apparent amylose content during grain filling. Sci Agric Sin, 2011,44:2439-2445 (in Chinese with English abstract).
[25] 胡培松, 翟虎渠, 唐绍清, 万建民 . 利用RVA快速鉴定稻米蒸煮及食味品质的研究. 作物学报, 2004,30:519-524.
Hu P S, Zhai H Q, Tang S Q, Wan J M . Rapid evaluation of rice cooking and palatability quality by RVA profile. Acta Agron Sin, 2004,30:519-524 (in Chinese with English abstract).
[26] Champagne E T , Bett-Garber K L, Fitzgerald M A, Grimm C C, Lea J, Ohtsubo K, Jongdee S, Xie L H, Bassinello P Z, Resurreccion A. Important sensory properties differentiating premium rice varieties. Rice, 2010,3:270-281.
[27] Calingacion M, Laborte A, Nelson A, Resurreccion A, Concepcion J C, Daygon V D, Mumm R, Reinke R, Dipti S, Bassinello P Z . Diversity of global rice markets and the science required for consumer-targeted rice breeding. PLoS One, 2014,9:e85106.
doi: 10.1371/journal.pone.0085106 pmid: 24454799
[28] 张洪程, 张军, 龚金龙, 常勇, 李敏, 高辉, 戴其根, 霍中洋, 许轲, 魏海燕 . “籼改粳”的生产优势及其形成机理. 中国农业科学, 2013,46:686-704.
Zhang H C, Zhang J, Gong J L, Chang Y, Li M, Gao H, Dai Q G, Huo Z Y, Xu K, Wei H Y . The productive advantages and formation mechanisms of “ indica rice to japonica rice”. Sci Agric Sin, 2013,46:686-704 (in Chinese with English abstract).
[29] 钟旭华, 彭少兵 , Sheehy J E, 刘鸿先. 水稻群体成穗率与干物质积累动态关系的模拟研究. 中国水稻科学, 2001,15:107-112.
Zhong X H, Peng S B, Sheehy J E, Liu H X . Relationship between productive tiller percentage and biomass accumulation in rice ( Oryza sativa L.): a simulation approach. Chin J Rice Sci, 2001,15:107-112 (in Chinese with English abstract).
[30] 彭显龙, 刘元英, 罗盛国, 范立春, 宋添星, 郭艳文 . 实地氮肥管理对寒地水稻干物质积累和产量的影响. 中国农业科学, 2006,39:2286-2293.
Peng X L, Liu Y Y, Luo S G, Fan L C, Song T X, Guo Y W . Effects of the site-specific nitrogen management on yield and dry matter accumulation of rice in cold areas of northeastern China. Sci Agric Sin, 2006,39:2286-2293 (in Chinese with English abstract).
[31] 杨建昌 . 水稻弱势粒灌浆机理与调控途径. 作物学报, 2010,36:2011-2019.
Yang J C . Mechanism and regulation in the filling of inferior spikelets of rice. Acta Agron Sin, 2010,36:2011-2019 (in Chinese with English abstract).
[32] 于洪兰, 王伯伦, 王术, 佟伟, 王一, 黄元财, 蒋文春 . 不同类型水稻品种的产量与食味品质的关系比较. 作物杂志, 2009, ( 1):46-49.
Yu H L, Wang B L, Wang S, Tong W, Wang Y, Huang Y C, Jiang W C . Comparison of relationships between yield and eating quality in different types of rice varieties. Crops, 2009, ( 1):46-49 (in Chinese with English abstract).
[33] 程方民, 钟连进, 孙宗修 . 灌浆结实期温度对早籼水稻籽粒淀粉合成代谢的影响. 中国农业科学, 2003,36:492-501.
Cheng F M, Zhong L J, Sun Z X . Effect of temperature at grain-filling stage on starch biosynthetic metabolism in developing rice grains of early- indica. Sci Agric Sin, 2003,36:492-501 (in Chinese with English abstract).
[34] Yang J C, Zhang J H . Grain-filling problem in ‘super’ rice. J Exp Bot, 2010,61:1-5.
[35] 沈鹏, 金正勋, 罗秋香, 金学泳, 孙艳丽 . 水稻灌浆过程中籽粒淀粉合成关键酶活性与蒸煮食味品质的关系. 中国水稻科学, 2006,20:58-64.
Shen P, Jin Z X, Luo Q X, Jin X Y, Sun Y L . Relationship between activity of key starch synthetic enzymes during grain filling and quality of eating and cooking in rice. Chin J Rice Sci, 2006,20:58-64 (in Chinese with English abstract).
[36] 赵步洪, 张文杰, 常二华, 王志琴, 杨建昌 . 水稻灌浆期籽粒中淀粉合成关键酶的活性变化及其与灌浆速率和蒸煮品质的关系. 中国农业科学, 2004,37:1123-1129.
Zhao B H, Zhang W J, Chang E H, Wang Z Q, Yang J C . Changes in activities of the key enzymes related to starch synthesis in rice grains during grain filling and their relationships with the filling rate and cooking quality. Sci Agric Sin, 2004,37:1123-1129 (in Chinese with English abstract).
[1] Lei ZHOU,Qiu-Yuan LIU,Jin-Yu TIAN,Meng-Hua ZHU,Shuang CHENG,Yang CHE,Zhi-Jie WANG,Zhi-Peng XING,Ya-Jie HU,Guo-Dong LIU,Hai-Yan WEI,Hong-Cheng ZHANG. Differences in yield and nitrogen absorption and utilization of indica-japonica hybrid rice varieties of Yongyou series [J]. Acta Agronomica Sinica, 2020, 46(5): 772-786.
[2] ZHANG Ping-Ping,YAO Jin-Bao,WANG Hua-Dun,SONG Gui-Cheng,JIANG Peng,ZHANG Peng,MA Hong-Xiang. Soft wheat quality traits in Jiangsu province and their relationship with cookie making quality [J]. Acta Agronomica Sinica, 2020, 46(4): 491-502.
[3] TANG Jian,TANG Chuang,GUO Bao-Wei,ZHANG Cheng-Xin,ZHANG Zhen-Zhen,WANG Ke,ZHANG Hong-Cheng,CHEN Heng,SUN Ming-Zhu. Effect of nitrogen application on yield and rice quality of mechanical transplanting high quality late rice [J]. Acta Agronomica Sinica, 2020, 46(01): 117-130.
[4] WEI Huan-He,MENG Tian-Yao,LI Chao,ZHANG Hong-Cheng,DAI Qi-Gen,MA Rong-Rong,WANG Xiao-Yan,YANG Yun-Wen. Accumulation, Translocation and Utilization Characteristics of Nitrogen in Yongyou 12 Yielding over 13.5 t ha-1 [J]. Acta Agron Sin, 2016, 42(09): 1363-1373.
[5] WEI Huan-He,MENG Tian-Yao,LI Chao,ZHANG Hong-Cheng,DAI Qi-Gen,MA Rong-Rong,WANG Xiao-Yan,YANG Jun-Wen. Accumulation, Distribution, and Utilization Characteristics of Phosphorus in Yongyou 12 Yielding over 13.5 t ha-1#br# [J]. Acta Agron Sin, 2016, 42(06): 886-897.
[6] WEI Huan-He,LI Chao,ZHANG Hong-Cheng,SUN Yu-Hai,MA Rong-Rong,WANG Xiao-Yan,YANG Jun-Wen,DAI Qi-Gen,HUO Zhong-Yang,XU Ke,WEI Hai-Yan,GUO Bao-Wei. Plant-type Characteristics in Populations with Different Yield of Yongyou 12 [J]. Acta Agron Sin, 2014, 40(12): 2160-2168.
[7] WANG Xiao-Yan,WEI Huan-He,ZHANG Hong-Cheng,SUN Jian,ZHANG Jian-Min,LI Chao,LU Hui-Bin,YANG Jun-Wen,MA Rong-Rong,XU Jiu-Fu,WANG Jue,XU Yue-Jin,SUN Yu-Hai. Population Characteristics for Super-High Yielding Hybrid Rice Yongyou 12 (>13.5 t ha-1) [J]. Acta Agron Sin, 2014, 40(12): 2149-2159.
[8] HU Ya-Jie,ZHU Da-Wei,QIAN Hai-Jun,CAO Wei-Wei,XING Zhi-Peng,ZANG Hong-Cheng,ZHOU You-Yan,CHEN Hou-Cun,WANG Hong-Yang,DAI Qi-Gen,HUO Zhong-Yang,XU Ke,WEI Hai-Yan,GUO Bao-Wei. Some Characteristics of Mechanically Transplanted Pot Seedlings in Super High Yielding Population of Indica-japonica Hybrid Rice Yongyou 2640 [J]. Acta Agron Sin, 2014, 40(11): 2016-2027.
[9] WEI Huan-He,LI Chao,ZHANG Hong-Cheng,SUN Yu-Hai,MENG Tian-Yao1,YANG Jun-Wen,MA Rong-Rong,WANG Xiao-Yan,DAI Qi-Gen,HUO Zhong-Yang,XU Ke,WEI Hai-Yan. Tillering Characteristics and Its Relationship with Population Productivity of Super-High Yield Rice Population of Yongyou 12 [J]. Acta Agron Sin, 2014, 40(10): 1819-1829.
[10] WANG Yong-Jun,YANG Jin-Sheng,YUAN Cui-Ping,LIU Jing-Guo,LI Deng-Hai,DONG Shu-Ting. Characteristics of Senescence and Antioxidant Enzyme Activities in Leaves at Different Plant Parts of Summer Maize with the Super-high Yielding Potential after Anthesis [J]. Acta Agron Sin, 2013, 39(12): 2183-2191.
[11] ZHANG Wei,ZHAO Jing,QIU Qiang,WANG Shu-Ming,ZHANG Chun-Bao,YAN Xiao-Yan,ZHAO Li Mei,ZHANG Ming-Hao, ZHANG Wei-Long, and FAN Hui-Mei. Canopy Physiology and Characteristics of Yield Components during Reproductive Stage in Soybean Hybrids [J]. Acta Agron Sin, 2013, 39(12): 2192-2200.
[12] WEI Huan-He,JIANG Yuan-Hua,ZHAO Ke,XU Jun-Wei,ZHANG Hong-Cheng,DAI Qi-Gen,HUO Zhong-Yang,XU Ke,WEI Hai-Yan,ZHENG Fei. Characteristics of Super-high Yield Population in Yongyou Series of Hybrid Rice [J]. Acta Agron Sin, 2013, 39(12): 2201-2210.
[13] JIN Li-Bin,CUI Hai-Yan,LI Bo,YANG Jin-Sheng,DONG Shu-Ting,ZHAO Bin,LIU Peng,ZHANG Ji-Wang. Effects of Integrated Agronomic Practices on Nitrogen Efficiency and Soil Nitrate Nitrogen of Summer Maize [J]. Acta Agron Sin, 2013, 39(11): 2009-2015.
[14] XU Ke,GUO Bao-Wei,ZHANG Hong-Cheng,ZHOU Xing-Tao,CHEN Hou-Cun,ZHANG Jun,CHEN Jing-Du,ZHU Cong-Cong,LI Gui-Yun,WU Zhong-Hua,DAI Qi-Gen,HUO Zhong-Yang,WEI Hai-Yan,GAO Hui,CAO Li-Qiang,et al.. Effect of Ordered Transplanting and Optimized Broadcasting on Super High Yield and Photosynthetic Productivity and Exploration of Rice Super High Yield Model [J]. Acta Agron Sin, 2013, 39(09): 1652-1667.
[15] JING Li-Quan,ZHAO Fu-Cheng,WANG De-Cheng,YUAN Jian-Hua,LU Da-Lei,LU Wei-Ping. Effects of Nitrogen Application on Accumulation and Distribution of Nitrogen, Phosphorus, and Potassium of Summer Maize under Super-High Yield Conditions [J]. Acta Agron Sin, 2013, 39(08): 1478-1490.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!