Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (6): 1447-1454.doi: 10.3724/SP.J.1006.2023.21065

• REVIEW •     Next Articles

Types and ratios of starch granules in grains and their roles in the formation and improvement of wheat quality properties

GAO Xin1(), GUO Lei2, SHAN Bao-Xue1, XIAO Yan-Jun1, LIU Xiu-Kun1, LI Hao-Sheng1, LIU Jian-Jun1, ZHAO Zhen-Dong1,*(), CAO Xin-You1,*()   

  1. 1Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Research Center of Wheat and Maize/Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow & Huai Rivers Valley, Ministry of Agriculture and Rural Affairs/Shandong Provincial Technology Innovation Center for Wheat, Jinan 250100, Shandong, China
    2College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
  • Received:2022-10-10 Accepted:2022-11-25 Online:2023-06-12 Published:2022-12-01
  • Contact: *E-mail: zhaozhendong925@163.com;E-mail: caoxinyou@126.com
  • Supported by:
    National Natural Science Foundation of China(31901543);China Agriculture Research System of MOF and MARA (Wheat, CARS-03-06);Taishan Industrial Experts Programme(LJNY202006);Taishan Scholars Program(tsqnz20221161);Key Research and Development Program of Shandong Province(2020CXGC010805);Key Research and Development Program of Shandong Province(2021LZGC013);Key Research and Development Program of Shandong Province(2021LZGC025);Agricultural Scientific and Technological Innovation Project of Shandong Academy of Agricultural Sciences(CXGC2022E01)

Abstract:

Wheat flour is mainly composed of protein and starch. Gluten, especially the high-molecular-weight glutenin subunit, is the key factor determining the dough quality which has been widely accepted by breeders. However, the contribution of starch composition and physicochemical properties to dough quality has not been paid enough attention. Wheat starch has a bimodal size distribution and it is composed of A-type starch granules (diameter more than 10 μm) and B-type starch granules (diameter no more than 10 μm) according to the particle size. There are differences in the physicochemical properties of different types of starch granules. Therefore, the particle size distribution of starch affects the physicochemical properties of the total wheat starch, the gluten network structure, and the gluten-starch interaction of gluten, and finally affects the dough rheological properties, and processing characteristics. In summary, from a view of starch particle distribution, this article reviewed the development and regulation mechanism, physicochemical properties of A- and B-type starch granules, and their contribution to quality and yield. Strategies for future wheat breeding were proposed, that is, the starch properties should be selected and improved. The germplasm with high B-type starch granules proportion and strong gluten-starch interaction should be screened for further utilization. The objective of this study is to provide a reference for breeding the new high-quality and strong-gluten wheat varieties.

Key words: particle distribution of wheat starch, A-type and B-type starch granules, starch physicochemical properties, gluten network structure, gluten-starch interaction

[1] Peng Y, Zhao Y, Yu Z, Zeng J, Xu D, Dong J, Ma W. Wheat quality formation and its regulatory mechanism. Front Plant Sci, 2022, 13: 834654.
doi: 10.3389/fpls.2022.834654
[2] Shevkani K, Singh N, Bajaj R, Kaur A. Wheat starch production, structure, functionality and applications: a review. Int J Food Sci Technol, 2017, 52: 38-58.
doi: 10.1111/ijfs.2017.52.issue-1
[3] 雷振生, 刘丽, 王美芳, 阎俊, 杨攀, 张艳, 何中虎. HMW-GS和LMW-GS组成对小麦加工品质的影响. 作物学报, 2009, 35: 203-210.
doi: 10.3724/SP.J.1006.2009.00203
Lei Z S, Liu L, Wang M F, Yan J, Yang P, Zhang Y, He Z H. Effect of HMW and LMW glutenin subunits on processing quality in common wheat. Acta Agron Sin, 2009, 35: 203-210. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2009.00203
[4] 张平平, 陈东升, 张勇, 夏先春, 何中虎. 春播小麦醇溶蛋白组成及其对品质性状的影响. 作物学报, 2006, 32: 1796-1801.
Zhang P P, Chen D S, Zhang Y, Xia X C, He Z H. Gliadin composition and their effects on quality properties in spring wheat. Acta Agron Sin, 2006, 32: 1796-1801. (in Chinese with English abstract)
[5] Zhang X, Zhang B, Wu H, Lu C, Lyu G, Liu D, Li M, Jiang W, Song G, Gao D. Effect of high-molecular-weight glutenin subunit deletion on soft wheat quality properties and sugar-snap cookie quality estimated through near-isogenic lines. J Integr Agric, 2018, 17: 1066-1073.
doi: 10.1016/S2095-3119(17)61729-5
[6] 曹新有, 程敦公, 刘爱峰, 宋健民, 赵振东, 王利彬, 王灿国, 刘成, 郭军, 翟胜男, 韩冉, 訾妍, 李法计, 李豪圣, 刘建军. 高产优质兼顾的强筋小麦品种选育方法与实践. 麦类作物学报, 2020, 40: 1064-1069.
Cao X Y, Cheng D G, Liu A F, Song J M, Zhao Z D, Wang L B, Wang C G, Liu C, Guo J, Zhai S N, Han R, Zi Y, Li F J, Li S T, Liu J J. Methods and practices in synergistic improvement of yield and quality in strong gluten wheat breeding. J Triticeae Crops, 2020, 40: 1064-1069. (in Chinese with English abstract)
[7] 张勇, 申小勇, 张文祥, 陈新民, 阎俊, 张艳, 王德森, 王忠伟, 刘悦芳, 田宇兵, 夏先春, 何中虎. 高分子量谷蛋白5+10亚基和1B/1R易位分子标记辅助选择在小麦品质育种中的应用. 作物学报, 2012, 38: 1743-1751.
doi: 10.3724/SP.J.1006.2012.01743
Zhang Y, Shen X Y, Zhang W X, Chen X M, Yan J, Zhang Y, Wang D S, Wang Z W, Liu Y F, Tian Y B, Xia X C, He Z H. Marker-assisted selection of HMW-glutenin 1Dx5+1Dy10 gene and 1B/1R translocation for improving industry quality in common wheat. Acta Agron Sin, 2012, 38: 1743-1751. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2012.01743
[8] 王璐, 汪艳坤, 赵檀, 王睿辉, 温树敏, 刘桂茹, 谷俊涛. 河北省小麦品种高分子量谷蛋白亚基组成分析. 河北农业大学学报, 2013, 36(2): 1-6.
Wang L, Wang Y K, Zhao T, Wang R H, Wen S M, Liu G R, Gu J T. Analysis of high molecular weight glutenin subunits composition of bread wheat cultivars released in Hebei province from 1949-2008. J Agric Univ Hebei, 2013, 36(2): 1-6. (in Chinese with English abstract)
[9] 陈泠, 许恒, 佟汉文, 朱展望, 刘易科, 张宇庆, 邹娟, 鲍文杰, 高春保. 审定小麦品种高分子量麦谷蛋白亚基(HMW-GS)组成分析. 湖北农业科学, 2015, 54: 6330-6333.
Chen L, Xu H, Tong H W, Zhu Z W, Liu Y K, Zhang Y Q, Zou J, Bao W J, Gao C B. Analysis on HMW glutenin subunit composition of Chinese wheat varieties. Hubei Agric Sci, 2015, 54: 6330-6333. (in Chinese with English abstract)
[10] 丁明亮, 赵佳佳, 周国雁, 李宏生, 崔永祯, 赵红, 伍少云, 杨木军, 郑军, 李绍祥. 云南省普通小麦育成品种(系)高分子量麦谷蛋白亚基组成分析. 麦类作物学报, 2018, 38: 1309-1319.
Ding M L, Zhao J J, Zhou G Y, Li H S, Cui Y Z, Zhao H, Wu S Y, Yang M J, Zheng J, Li S X. Compositions of high molecular weight glutenin subunits of inbred wheat varieties/lines in Yunnan province. J Triticeae Crops, 2018, 38: 1309-1319. (in Chinese with English abstract)
[11] Li M, Dhital S, Wei Y. Multilevel structure of wheat starch and its relationship to noodle eating qualities. Compr Rev Food Sci Food Saf, 2017, 16: 1042-1055.
doi: 10.1111/crf3.2017.16.issue-5
[12] Cao X, Tong J, Ding M, Wang K, Wang L, Cheng D, Li H, Liu A, Liu J, Zhao Z, Wang Z, Gao X. Physicochemical properties of starch in relation to rheological properties of wheat dough (Triticum aestivum L.). Food Chem, 2019, 297: 125000.
doi: 10.1016/j.foodchem.2019.125000
[13] Zi Y, Shen H, Dai S, Ma X, Ju W, Wang C, Guo J, Liu A, Cheng D, Li H, Liu J, Zhao Z, Zhao S, Song J. Comparison of starch physicochemical properties of wheat cultivars differing in bread- and noodle-making quality. Food Hydrocoll, 2019, 93: 78-86.
doi: 10.1016/j.foodhyd.2019.02.014
[14] Karlsson R, Olered R, Eliasson A C. Changes in starch granule size distribution and starch gelatinization properties during development and maturation of wheat, barley and rye. Starch/ Stärke, 1983, 35: 335-340.
doi: 10.1002/(ISSN)1521-379X
[15] Lindeboom N, Chang P R, Tyler R T. Analytical, biochemical and physicochemical aspects of starch granule size, with emphasis on small granule starches: a review. Starch/Stärke, 2014, 56: 89-99.
doi: 10.1002/(ISSN)1521-379X
[16] Gao X, Tong J, Guo L, Yu L, Li S, Yang B, Wang L, Liu Y, Li F, Guo J, Zhai S, Liu C, Rehman A, Farahnaky A, Wang P, Wang Z, Cao X. Influence of gluten and starch granules interactions on dough mixing properties in wheat (Triticum aestivum L.). Food Hydrocoll, 2020, 106: 105885.
doi: 10.1016/j.foodhyd.2020.105885
[17] Yu L, Guo L, Liu Y, Ma Y, Zhu J, Yang Y, Min D, Xie Y, Chen M, Tong J, Rehman A, Wang Z, Cao X, Gao X. Novel parameters characterizing size distribution of A and B starch granules in the gluten network: effects on dough stability in bread wheat. Carbohyd Polym, 2021, 257: 117623.
doi: 10.1016/j.carbpol.2021.117623
[18] 张敏, 蔡瑞国, 徐彩龙, 武宝悦, 顾锋. 种植密度对小麦胚乳淀粉粒度分布特征及产量的影响. 麦类作物学报, 2013, 33: 544-548.
Zhang M, Cai R G, Xu C L, Wu B Y, Gu F. Effects of plant density on size distribution of starch granule and yield in wheat. J Triticeae Crops, 2013, 33: 544-548. (in Chinese with English abstract)
[19] Ran L, Yu X, Li Y, Zou J, Deng J, Pan J, Xiong F. Analysis of development, accumulation and structural characteristics of starch granule in wheat grain under nitrogen application. Int J Biol Macromol, 2020, 164: 3739-3750.
doi: 10.1016/j.ijbiomac.2020.08.192 pmid: 32871126
[20] Wei C, Zhang J, Chen Y, Zhou W, Xu B, Wang Y, Chen J. Physicochemical properties and development of wheat large and small starch granules during endosperm development. Acta Physiol Plant, 2010, 32: 905-916.
doi: 10.1007/s11738-010-0478-x
[21] Langeveld S M J, van Wijk R, Stuurman N, Kijne J W, de Pater S. B-type granule containing protrusions and interconnections between amyloplasts in developing wheat endosperm revealed by transmission electron microscopy and GFP expression. J Exp Bot, 2000, 51: 1357-1361.
pmid: 10944148
[22] Stoddard F L, Sarker R. Characterization of starch in Aegilops species. Cereal Chem, 2000, 77: 445-447.
doi: 10.1094/CCHEM.2000.77.4.445
[23] Howard T, Rejab N A, Griffiths S, Leigh F, Leverington-Waite M, Simmonds J, Uauy C, Trafford K. Identification of a major QTL controlling the content of B-type starch granules in Aegilops. J Exp Bot, 2011, 62: 2217-2228.
doi: 10.1093/jxb/erq423
[24] Chia T, Adamski N M, Saccomanno B, Greenland A, Nash A, Uauy C, Trafford K. Transfer of a starch phenotype from wild wheat to bread wheat by deletion of a locus controlling B-type starch granule content. J Exp Bot, 2017, 68: 5497-5509.
doi: 10.1093/jxb/erx349 pmid: 29099990
[25] Chia T, Chirico M, King R, Ramirez-Gonzalez R, Saccomanno B, Seung D, Simmonds J, Trick M, Uauy C, Verhoeven T, Trafford K. A carbohydrate-binding protein, B-GRANULE CONTENT 1, influences starch granule size distribution in a dose-dependent manner in polyploid wheat. J Exp Bot, 2020, 71: 105-115.
doi: 10.1093/jxb/erz405 pmid: 31633795
[26] Hawkins E, Chen J, Watson-Lazowski A, Ahn-Jarvis J, Barclay J E, Fahy B, Hartley M, Warren F J, Seung D. STARCH SYNTHASE 4 is required for normal starch granule initiation in amyloplasts of wheat endosperm. New Phytol, 2021, 230: 2371-2386.
doi: 10.1111/nph.17342 pmid: 33714222
[27] Ao Z, Jane J L. Characterization and modeling of the A- and B-granule starches of wheat, triticale, and barley. Carbohyd Polym, 2007, 67: 46-55.
doi: 10.1016/j.carbpol.2006.04.013
[28] Li W, Shan Y, Xiao X, Luo Q, Zheng J, Ou-Yang S, Zhang G. Physicochemical properties of A- and B-starch granules isolated from hard red and soft red winter wheat. J Agric Food Chem, 2013, 61: 6477-6484.
doi: 10.1021/jf400943h
[29] Sun X, Sun Z, Saleh A S M, Zhao K, Ge X, Shen H, Zhang Q, Yuan L, Yu X, Li W. Understanding the granule, growth ring, blocklets, crystalline and molecular structure of normal and waxy wheat A- and B-starch granules. Food Hydrocoll, 2021, 121: 107034.
doi: 10.1016/j.foodhyd.2021.107034
[30] Guo L, Wang Q, Chen H, Wu D, Dai C, Chen Y, Ma Y, Wang Z, Li H, Cao X, Gao X. Moderate addition of B-type starch granules improves the rheological properties of wheat dough. Food Res Int, 2022, 160: 111748.
doi: 10.1016/j.foodres.2022.111748
[31] Shang J, Li L, Zhao B, Liu M, Zheng X. Comparative studies on physicochemical properties of total, A- and B-type starch from soft and hard wheat varieties. Int J Biol Macromol, 2020, 154: 714-723.
doi: S0141-8130(19)39727-2 pmid: 32198045
[32] 田益华, 张传辉, 蔡剑, 周琴, 姜东, 戴廷波, 荆奇, 曹卫星. 小麦籽粒A-型和B-型淀粉粒的理化特性. 作物学报, 2009, 35: 1755-1758.
Tian Y H, Zhang C H, Cai J, Zhou Q, Jiang D, Dai T B, Jing Q, Cao W X. Physico-chemical properties of A- and B-type starch granules in wheat. Acta Agron Sin, 2009, 35: 1755-1758. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2009.01755
[33] Zhang B, Li X, Liu J, Xie F, Chen L. Supramolecular structure of A- and B-type granules of wheat starch. Food Hydrocoll, 2013, 31: 68-73.
doi: 10.1016/j.foodhyd.2012.10.006
[34] Liu Q, Gu Z, Donner E, Tetlow I, Emes M. Investigation of digestibility in vitro and physicochemical properties of A- and B-type starch from soft and hard wheat flour. Cereal Chem, 2007, 84: 15-21.
doi: 10.1094/CCHEM-84-1-0015
[35] Zeng J, Li G, Gao H, Ru Z. Comparison of A and B starch granules from three wheat varieties. Molecules, 2011, 16: 10570-10591.
doi: 10.3390/molecules161210570 pmid: 22183883
[36] Li M, Liu C, Zheng X, Hong J, Bian K, Li L. Interaction between A-type/B-type starch granules and gluten in dough during mixing. Food Chem, 2021, 358: 129870.
doi: 10.1016/j.foodchem.2021.129870
[37] Yan H L, Lu Q Y. Effect of A- and B-granules of wheat starch on Chinese noodle quality. J Cereal Sci, 2020, 91: 102860.
doi: 10.1016/j.jcs.2019.102860
[38] Kaur A, Shevkani K, Katyal M, Singh N, Ahlawat A K, Singh A M. Physicochemical and rheological properties of starch and flour from different durum wheat varieties and their relationships with noodle quality. J Food Sci Technol, 2016, 53: 2127-2138.
doi: 10.1007/s13197-016-2202-3 pmid: 27413243
[39] McCann T H, Homer S H, Øiseth S K, Day L, Newberry M, Regina A, Lundin L. High amylose wheat starch increases the resistance to deformation of wheat flour dough. J Cereal Sci, 2018, 79: 440-448.
doi: 10.1016/j.jcs.2017.12.001
[40] Li H, Ma Y, Pan Y, Yu L, Tian R, Wu D, Xie Y, Wang Z, Chen X, Gao X. Starch other than gluten may make a dominant contribution to wheat dough mixing properties: a case study on two near-isogenic lines. Food Sci Technol, 2021, 152: 112413.
[41] Li Q, Li C, Li E, Gilbert R G, Xu B. A molecular explanation of wheat starch physicochemical properties related to noodle eating quality. Food Hydrocoll, 2020, 108: 106035.
doi: 10.1016/j.foodhyd.2020.106035
[42] Zhang Z, Fan X, Yang X, Li C, Gilbert R G, Li E. Effects of amylose and amylopectin fine structure on sugar-snap cookie dough rheology and cookie quality. Carbohyd Polym, 2020, 241: 116371.
doi: 10.1016/j.carbpol.2020.116371
[43] Li M, Liu C, Hong J, Zheng X, Lu Y, Bian K. Influence of wheat starch on rheological, structural and physico-chemical properties gluten-starch dough during mixing. Int J Food Sci Technol, 2022, 57, 2069-2079.
doi: 10.1111/ijfs.v57.4
[44] Roman L, de la Cal E, Gomez M, Martinez M M. Specific ratio of A- to B-type wheat starch granules improves the quality of gluten-free breads: optimizing dough viscosity and pickering stabilization. Food Hydrocoll, 2018, 82: 510-518.
doi: 10.1016/j.foodhyd.2018.04.034
[45] Yu L, Ma Y, Zhao Y, Rehman A, Guo L, Liu Y, Yang Y, Wang Z, Cao X, Gao X. Interaction of B-type starch with gluten skeleton improves wheat dough mixing properties by stabilizing gluten micro-structure. Food Chem, 2022, 371: 131390.
doi: 10.1016/j.foodchem.2021.131390
[46] Lu H, Wang C, Guo T, Xie Y, Feng W, Li S. Starch composition and its granules distribution in wheat grains in relation to post- anthesis high temperature and drought stress treatments. Starch/ Stärke, 2014, 66, 419-428.
[47] Li W, Yan S, Yin Y, Wang Z. Starch granule size distribution in wheat grain in relation to shading after anthesis. J Agric Sci, 2010, 148, 183-189.
[48] 杨雪峰, 宋维富, 赵丽娟, 刘东军, 宋庆杰, 张春利, 辛文利, 肖志敏, 张宝辉, 王晓楠. wx基因缺失遗传效应在强筋小麦育种中的利用. 麦类作物学报, 2021, 41: 699-703.
Yang X F, Song W F, Zhao L J, Liu D J, Song Q J, Zhang C L, Xin W L, Xiao Z M, Zhang B H, Wang X N. Utilization of wx gene deficiency genetic effect in strong gluten wheat breeding. J Triticeae Crops, 2021, 41: 699-703. (in Chinese with English abstract)
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .