Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (5): 1386-1396.doi: 10.3724/SP.J.1006.2023.24054

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of adding biochar and straw with equal carbon content on soil respiration and net carbon budget in tobacco field

FU Yun-Peng(), LIU Tian, LI Yao-Xin, LIU Yuan-Bo, WANG Jing, JIN Jia-Wei, JIANG Wei-Feng, LIU Yong-Yan, YANG Yang, YUN Fei()   

  1. College of Tobacco Science, Henan Agricultural University/Key Laboratory of Tobacco Cultivation of China Tobacco Industry, Zhengzhou 450002, Henan, China
  • Received:2022-03-10 Accepted:2022-10-10 Online:2023-05-12 Published:2022-10-24
  • Contact: *E-mail: yunfeifei55@126.com
  • Supported by:
    Science and Technology Project of China National Tobacco Corporation Henan Province(2020410000270020);Jiyuan Company Project of Henan Tobacco Company(2020410881240045);Youth Science Fund Project of Henan Natural Science Foundation(212300410160)

Abstract:

To clarify the carbon sequestration effect of biochar, straw and their combined application in tobacco field, the effects of biochar and straw addition on soil respiration and carbon budget of tobacco ecosystem were explored. From 2020 to 2021, four treatments including conventional fertilization (CK), conventional fertilization +2.25 t hm-2 biochar-C (T1), conventional fertilization +2.25 t hm-2 straw-C (T2), and conventional fertilization +1.125 t hm-2 biochar-C + 1.125 t hm-2 straw-C (T3) were conducted to measure soil respiration and main environmental factors of soil, soil carbon increment, carbon sequestration of net primary productivity of crops and carbon emissions caused by agricultural production. The results showed that the cumulative carbon emissions from soil respiration during the growth period of flue-cured tobacco treated with straw, straw and biochar were significantly higher than that of the control (P < 0.05), and the increase ranges were 21.40%-35.45% and 5.90%-9.89%, respectively. Compared with the control, the proportion of soil autotrophic respiration increased by 6.35%-7.34% and 3.21%-5.97% in the treatment of adding biochar and straw, respectively. The combined application of biochar and straw increased by 3.91% in 2021 compared with the control. The addition of biochar and straw increased the soil temperature and moisture during the growth period, and soil water content increased significantly by 1.93% to 7.07% under biochar treatment alone. Among the main environmental factors in soil, soil temperature had the greatest impact on soil respiration rate. Soil respiration rate was significantly positively correlated with soil temperature. There was a significant positive correlation between soil respiration rate and soil moisture in the treatment of adding straw, biochar, and straw. The carbon sequestration of ecosystem treated by all exogenous additives was positive, which was expressed as “carbon sink”. The addition of biochar could not only increase the carbon sequestration of net primary productivity (NPP) and soil carbon sequestration, but also reduce the cumulative carbon emissions of soil respiration in tobacco growing season, and the “carbon sink” ability was the strongest. Therefore, the application of biochar was the best way to reduce the carbon emission of soil respiration, which could enhance the “carbon sink” capacity of tobacco ecosystem.

Key words: biochar, straw, soil respiration, carbon budget

Table 1

Carbon emission coefficients of various agricultural materials"

项目
Project
碳排放系数(以CE计)
Carbon emission coefficient (CE)
参考文献
Reference
氮肥 Nitrogen fertilizer (N) 1.74 kg kg-1 [17]
磷肥 Phosphate fertilizer (P2O5) 0.2 kg kg-1 [18]
钾肥 Potash fertilizer (K2O) 0.15 kg kg-1 [18]
农药 Pesticide 4.932 kg kg-1 [19]
柴油 Diesel 0.94 kg kg-1 [20]
人工 Artificial 0.245 kg d-1 [21]
烟苗 Tobacco seedling 1.724 g plant-1

Fig. 2

Dynamic changes of soil respiration rate in tobacco field under the addition of biochar and straw"

Table 2

Cumulative CO2 emission from soil respiration under adding biochar and straw (kg hm-2)"

年份Year CK T1 T2 T3
2020 3983.52±42.64 c 3833.65±35.02 c 5395.87±96.12 a 4218.47±142.40 b
2021 5696.96±128.73 c 5356.42±89.28 c 6916.35±142.83 a 6260.49±119.24 b

Fig. 3

Effects of adding biochar and straw on carbon sequestration in various parts of tobacco plant Different lowercase letters in the same color horizontal column indicate significant differences at the 0.05 probability level between treatments. Treatments are the same as those given in Fig. 1."

Fig. 4

Effects of adding biochar and straw on net primary productivity of the tobacco field ecosystem Different lowercase letters indicate significant differences between treatments in same year at the 0.05 probability level. Treatments are the same as those given in Fig. 1."

Table 3

Fitting equation between soil respiration rate and environmental factors"

影响因素
Influence factor
处理
Treatment
2020 2021
拟合方程
Fitting equation
R2 P Q10 拟合方程
Fitting equation
R2 P Q10
土壤温度
Soil
temperature
CK Rt=0.63e0.0508T 0.6315 <0.01 1.66 Rt=0.167e0.107T 0.326 <0.05 2.92
T1 Rt=0.8088e0.052T 0.627 <0.01 1.47 Rt=0.216e0.0098T 0.372 <0.01 1.10
T2 Rt=0.8628e0.0386T 0.5524 <0.01 1.68 Rt=0.309e0.092T 0.307 <0.05 2.51
T3 Rt=1.0291e0.0357T 0.5334 <0.01 1.43 Rt=0.214e0.101T 0.35 <0.01 2.75
土壤湿度
Soil
moisture
CK Rt = -0.007W2+0.291W
+0.209
0.032 >0.05 Rt=0.003W2+0.002W
+2.316
0.508 <0.01
T1 Rt = -0.005W2+0.223W
+0.602
0.07 >0.05 Rt=0.001W2+0.056W
+2.278
0.367 <0.05
T2 Rt = -0.012W2+0.510W
-0.875
0.082 <0.05 Rt=0.005W2-0.05W
+3.4
0.541 <0.01
T3 Rt = -0.008W2+0.331W
-0.117
0.168 <0.05 Rt=0.004W2-0.017W
+2.889
0.455 <0.01

Table 4

Effects of adding biochar and straw on carbon budget of tobacco ecosystem (kg hm-2)"

系统碳汇/源各项
System carbon sink/Source
2020 2021
CK T1 T2 T3 CK T1 T2 T3
物料碳还田量
Amount of material carbon returning to field (Ci)
0 2250.00 2250.00 2250.00 0 2250.00 2250.00 2250.00
净初级生产力
Net primary productivity (CNPP)
3750.29 4287.37 4372.60 4374.14 3631.43 4186.60 4238.80 4309.15
土壤固碳量
Soil carbon sequestration (ΔSOC)
75.63 920.81 741.13 874.35 77.53 921.31 765.23 882.50
土壤呼吸
Soil respiration (Cr)
3983.52 3833.65 5395.87 4218.47 5696.96 5356.42 6916.35 6260.49
农业投入排放碳
Agricultural inputs emit carbon (Ce)
286.38 287.91 287.91 287.91 287.20 288.73 288.73 288.73
净固碳量
Net carbon sequestration
-443.99 3336.61 1679.95 2992.10 -2275.20 1712.76 48.95 892.42
[1] 2000-2020年全球主要地区和国家CO2排放量. 世界石油工业, 2021, 28(4): 81-82.
CO2 emissions of major regions and countries in the world from 2000 to 2020. World Petrol Ind, 2021, 28(4): 81-82. (in Chinese)
[2] Raich J W, Potter C S, Bhagawati D. Interannual variability in global soil respiration, 1980-1994. Global Change Biol, 2002, 8: 800-812.
doi: 10.1046/j.1365-2486.2002.00511.x
[3] Kochy M, Hiederer R, Freibauer A. Global distribution of soil organic carbon—Part 1: Masses and frequency distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world. Soil, 2015, 1: 351-365.
doi: 10.5194/soil-1-351-2015
[4] Scharlemann J P W, Tanner E V J, Hiederer R, Kapos V. Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Manag, 2014, 5: 81-91.
doi: 10.4155/cmt.13.77
[5] Bond-Lamberty B, Thomson A. Temperature-associated increases in the global soil respiration record. Nature, 2010, 464: 579-582.
doi: 10.1038/nature08930
[6] Lei J S, Guo X, Zeng Y F, Zhou J Z, Gao Q, Yang Y F. Temporal changes in global soil respiration since 1987. Nat Commun, 2021, 12: 1801.
doi: 10.1038/s41467-021-22014-5
[7] Bond-Lamberty B, Bailey V L, Chen M, Gough C M, Vargas R. Globally rising soil heterotrophic respiration over recent decades. Nature, 2018, 560: 80-83.
doi: 10.1038/s41586-018-0358-x
[8] Amelung W, Bossio D, de Vries W, Kogel-knabner I, Lehmann J, Amundson R, Bol R, Collins C, Lal R, Leifeld J, Minasny B, Pan G, Paustian K, Rumpel C, Sanderman J, van Groenigen J W, Mooney S, van Wesemael B, Wander M, Chabb A. Towards a global-scale soil climate mitigation strategy. Nat Commun, 2020, 11: 5427.
doi: 10.1038/s41467-020-18887-7 pmid: 33110065
[9] Schmidt M W I, Torn M S, Abiven S, Dittmar T, Guggenberger G, Janssens I A, Kleber M, Kögel-Knabner I, Lehmann J, Manning D A C, Nannipieri P, Rasse D P, Weiner S, Trumbore S E. Persistence of soil organic matter as an ecosystem property. Nature, 2011, 478: 49-56.
doi: 10.1038/nature10386
[10] FAO. Recarbonization of Global Soils: a Dynamic Response to Offset Global Emissions. 2019.
[11] Lin Y X, Ye G P, Kuzyakov Y, Liu D Y, Fan J B, Ding W X. Long-term manure application increases soil organic matter and aggregation, and alters microbial community structure and keystone taxa. Soil Biol Biochem, 2019, 51: 187-196.
[12] Bhattacharyya P, Roy K S, Neogi S, Adhya T K, Rao K S, Manna M C. Effects of rice straw and nitrogen fertilization on greenhouse gas emissions and carbon storage in tropical flooded soil planted with rice. Soil Tillage Res, 2012, 32: 119-130.
[13] Singh B P, Cowie A L. Long-term influence of biochar on native organic carbon mineralisation in a low-carbon clayey soil. Sci Rep, 2014, 4: 3687.
doi: 10.1038/srep03687 pmid: 24446050
[14] Wang J Y, Xiong Z Q, Kuzyakov Y. Biochar stability in soil: meta-analysis of decomposition and priming effects. GCB Bioenergy, 2016, 8: 512-523.
doi: 10.1111/gcbb.2016.8.issue-3
[15] Lehmann J, Rillig M C, Thies J, Masiello C A, Hockaday W C, Crowley D. Biochar effects on soil biota: a review. Soil Biol Biochem, 2011, 43: 1812-1836.
doi: 10.1016/j.soilbio.2011.04.022
[16] 田冬. 农田生态系统碳收支对秸秆与生物炭还田的响应. 西南大学硕士学位论文, 重庆, 2017.
Tian D. Response of Carbon Budget of Farmland Ecosystem to Straw and Biochar Returning. MS Thesis of Southwest University, Chongqing, China, 2017. (in Chinese with English abstract)
[17] 逯非, 王效科, 韩冰, 欧阳志云, 段晓男, 郑华. 中国农田施用化学氮肥的固碳潜力及其有效性评价. 应用生态学报, 2008, 19: 2239-2250.
Lu F, Wang X K, Han B, Ouyang Z Y, Duan X N, Zheng H. Carbon sequestration potential and effectiveness evaluation of chemical nitrogen fertilizer in farmland of China. Chin J Appl Ecol, 2008, 19: 2239-2250. (in Chinese with English abstract)
[18] Lal R. Agricultural activities and the global carbon cycle. Nutr Cycl Agron, 2004, 70: 103-116.
[19] Lal R. Soil carbon sequestration impacts on global climate change and food security. Science, 2004, 304: 1623-1627.
doi: 10.1126/science.1097396 pmid: 15192216
[20] West T O, Marland G. A synthesis of carbon sequestration, carbon emissions, and net carbon fiux in agriculture: comparing tillage practices in the United States. Agric Ecol Environ, 2002, 91: 217-232.
doi: 10.1016/S0167-8809(01)00233-X
[21] 刘巽浩, 徐文修, 李增嘉, 褚庆全, 杨晓琳, 陈阜. 农田生态系统碳足迹法:误区、改进与应用: 兼析中国集约农作碳效率(续). 中国农业资源与区划, 2014, 35(1): 1-7.
Liu X H, Xu W X, Li Z J, Chu Q Q, Yang X L, Chen F. Farmland ecosystem carbon footprint method: misunderstanding, improvement and application: also an analysis of carbon efficiency of intensive farming in China (continued). Chin J Agric Resour Region Plant, 2014, 35(1): 1-7. (in Chinese)
[22] 何甜甜, 王静, 符云鹏, 符新妍, 刘天, 李亚坤, 李建华. 等碳量添加秸秆和生物炭对土壤呼吸及微生物生物量碳氮的影响. 环境科学, 2021, 42: 450-458.
He T T, Wang J, Fu Y P, Fu X Y, Liu T, Li Y K, Li J H. Effects of equal carbon addition of straw and biochar on soil respiration and microbial biomass carbon and nitrogen. Environ Sci, 2021, 42: 450-458. (in Chinese with English abstract)
doi: 10.1021/es071992c
[23] 李亚森, 丁松爽, 殷全玉, 李佳轶, 周迪, 刘国顺. 多年施用生物炭对河南烤烟种植区土壤呼吸的影响. 环境科学, 2019, 40: 915-923.
Li Y S, Ding S S, Yin Q Y, Li J Y, Zhou D, Liu G S. Effects of multi-year application of biochar on soil respiration in Henan flue-cured tobacco planting area. Environ Sci, 2019, 40: 915-923. (in Chinese with English abstract)
[24] 徐敏, 伍钧, 张小洪, 杨刚. 生物炭施用的固碳减排潜力及农田效应. 生态学报, 2018, 38: 393-404.
Xu M, Wu J, Zhang X H, Yang G. Carbon sequestration and emission reduction potential of biochar application and farmland effect. Acta Ecol Sin, 2018, 38: 393-404. (in Chinese with English abstract)
[25] Huang R, Lan M L, Liu J, Gao M. Soil aggregate and organic carbon distribution at dry land soil and paddy soil: the role of different straws returning. Environ Sci Poll Res, 2017, 24: 27942-27952.
doi: 10.1007/s11356-017-0372-9
[26] Tian X P, Wang L, Hou Y H, Wang H, Tsang V F, Wu J H. Responses of soil microbial community structure and activity to incorporation of straws and straw biochars and their effects on soil respiration and soil organic carbon turnover. Pedosphere, 2019, 29: 492-503.
doi: 10.1016/S1002-0160(19)60813-1
[27] Tang Y, Gao W C, Cai K, Chen Y, Li C B, Lee X Q, Cheng H G, Zhang Q H, Cheng J Z. Effects of biochar amendment on soil carbon dioxide emission and carbon budget in the karst region of southwest China. Geoderma, 2021, 55: 114895.
[28] 刘杏认, 张星, 张晴雯, 李贵春, 张庆忠. 施用生物炭和秸秆还田对华北农田CO2、N2O排放的影响. 生态学报, 2017, 37: 6700-6711.
Liu X R, Zhang X, Zhang Q W, Li G C, Zhang Q Z. Effects of biochar application and straw returning on CO2 and N2O emissions from farmland in North China. Acta Ecol Sin, 2017, 37: 6700-6711. (in Chinese with English abstract)
[29] Singh B P, Cowie A L. Long-term influence of biochar on native organic carbon mineralisation in a low-carbon clayey soil. Sci Rep, 2014, 4: 3687.
doi: 10.1038/srep03687 pmid: 24446050
[30] Pangle R E, Seiler J. Influence of seedling roots, environmental factors and soil characteristics on soil CO2 efflux rates in a 2-year-old loblolly pine (Pinus taeda L.) plantation in the Virginia Piedmont. Environ Poll, 2002, 116: S85-S96.
[31] 田冬, 高明, 黄容, 吕盛, 徐畅. 油菜/玉米轮作农田土壤呼吸和异养呼吸对秸秆与生物炭还田的响应. 环境科学, 2017, 38: 2988-2999.
Tian D, Gao M, Huang R, Lyu S, Xu C. Response of soil respiration and heterotrophic respiration to straw and biochar returning in rape/maize rotation farmland. Environ Sci, 2017, 38: 2988-2999. (in Chinese with English abstract)
[32] Kuzyakov Y, Ehrensberger H, Stahr K. Carbon partitioning and below-ground translocation by Lolium perenne. Soil Biol Biochem, 2001, 33: 61-74.
doi: 10.1016/S0038-0717(00)00115-2
[33] 鲁琪飞, 叶协锋, 韩金, 潘昊东, 张明杰, 王晶, 杨佳豪, 姚鹏伟, 李雪利. 添加有机物料对豫中烟田土壤呼吸的影响. 环境科学, 2022, 43: 3825-3834.
Lu Q F, Ye X F, Han J, Pan H D, Zhang M J, Wang J, Yang J H, Yao P W, Li X L. Effects of adding organic materials on soil respiration in tobacco fields in central Henan. Environ Sci, 2022, 43: 3825-3834. (in Chinese with English abstract)
[34] Jones D L, Murphy D V, Khalid M, Ahmad W, Edwards-Jones G, DeLuca T H. Short-term biochar-induced increase in soil CO2 release is both biotically and abiotically mediated. Soil Biol Biochem, 2011, 43: 1723-1731.
doi: 10.1016/j.soilbio.2011.04.018
[35] Davidson E A, Janssens I A, Luo Y Q. On the variability of respiration in terrestrial ecosystems: moving beyond Q10. Global Change Biol, 2006, 12: 154-164.
doi: 10.1111/gcb.2006.12.issue-2
[36] 赵亚丽, 薛志伟, 郭海斌, 穆心愿, 李潮海. 耕作方式与秸秆还田对土壤呼吸的影响及机理. 农业工程学报, 2014, 30(19): 155-165.
Zhao Y L, Xue Z W, Guo H B, Guo H B, Li C H. Effects of tillage methods and straw returning on soil respiration and its mechanism. Trans CSAE, 2014, 30(19): 155-165. (in Chinese with English abstract)
[37] Wang X J, Chen G H, Wang S Y, Zhang L Y, Zhang R D. Temperature sensitivity of different soil carbon pools under biochar addition. Environ Sci Poll Res, 2019, 26: 4130-4140.
doi: 10.1007/s11356-018-3822-0
[38] 李艾蒙. 外源玉米秸秆碳对土壤有机碳激发效应和温度敏感性的影响. 沈阳农业大学硕士学位论文, 辽宁沈阳, 2020.
Li A M. Effects of Exogenous Corn Straw Carbon on Soil Organic Carbon Excitation Effect and Temperature Sensitivity. MS Thesis of Shenyang Agricultural University, Shenyang, Liaoning, China, 2020. (in Chinese with English abstract)
[39] 王新源, 李玉霖, 赵学勇, 毛伟, 崔夺, 曲浩, 连杰, 罗永清. 干旱半干旱区不同环境因素对土壤呼吸影响研究进展. 生态学报, 2012, 32: 4890-4901.
Wang X Y, Li Y L, Zhao X Y, Mao W, Cui D, Qu H, Lian J, Luo Y Q. Research progress on the effects of different environmental factors on soil respiration in arid and semi-arid areas. Acta Ecol Sin, 2012, 32: 4890-4901. (in Chinese with English abstract)
[40] Lu N, Liu X R, Du Z L, Wang Y D, Zhang Q Z. Effect of biochar on soil respiration in the maize growing season after 5 years of consecutive application. Soil Res, 2014, 38: 505-512.
[41] 张丁辰, 蔡典雄, 代快, 冯宗会, 张晓明, 王小彬. 旱作农田不同耕作土壤呼吸及其对水热因子的响应. 生态学报, 2013, 33: 1916-1925.
Zhang D C, Cai D X, Dai K, Feng Z H, Zhang X M, Wang X B. Soil respiration under different tillage and its response to hydrothermal factors in dryland farmland. Acta Ecol Sin, 2013, 33: 1916-1925. (in Chinese with English abstract)
[42] Singh S, Jagadamma S, Liang J Y, Kivlin S N, Mayes M A. Differential organic carbon mineralization responses to soil moisture in three different soil orders under mixed forested system. Front Environ Sci, 2021, 9: 682450.
doi: 10.3389/fenvs.2021.682450
[43] Keiluweit M, Nico P S, Kleber M, Fendorf S. Are oxygen limitations under recognized regulators of organic carbon turnover in upland soils. Biogeochemistry, 2016, 127: 157-171.
doi: 10.1007/s10533-015-0180-6
[44] Liu X Y, Zheng J F, Zhang D X, Cheng K, Zhou H M, Zhang A F, Li L Q, Joseph S, Smith P, Crowley D, Kuzyakov Y, Pan G X. Biochar has no effect on soil respiration across Chinese agricultural soils. Sci Total Environ, 2016, 45: 259-265.
[45] 张鹏, 李涵, 贾志宽, 王维, 路文涛, 张惠, 杨宝平. 秸秆还田对宁南旱区土壤有机碳含量及土壤碳矿化的影响. 农业环境科学学报, 2011, 30: 2518-2525.
Zhang P, Li H, Jia Z K, Wang W, Lu W T, Zhang H, Yang B P. Effect of straw on soil organic carbon content in dryland. J Agric Environ Sci, 2011, 30: 2518-2525 (in Chinese with English abstract).
[46] 刘青丽, 蒋雨洲, 邹焱, 张云贵, 张恒, 石俊雄, 李志宏. 烟田生态系统碳收支研究. 作物学报, 2020, 46: 1258-1265.
doi: 10.3724/SP.J.1006.2020.94164
Liu Q L, Jiang Y Z, Zou Y, Zhang Y G, Zhang H, Shi J X, Li Z H. Study on carbon budget of tobacco field ecosystem. Acta Agron Sin, 2020, 46: 1258-1265. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.94164
[1] LI Pan, CHEN Gui-Ping, GOU Zhi-Wen, YIN Wen, FAN Zhi-Long, HU Fa-Long, FAN Hong, CHAI Qiang. Response on light energy utilization and water production benefit of spring wheat to straw retention in an oasis irrigated area [J]. Acta Agronomica Sinica, 2023, 49(5): 1316-1326.
[2] PENG Xi-Hong, CHEN Ping, DU Qing, YANG Xue-Li, REN Jun-Bo, ZHENG Ben-Chuan, LUO Kai, XIE Chen, LEI Lu, YONG Tai-Wen, YANG Wen-Yu. Effects of reduced nitrogen application on soil aeration and root nodule growth of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2022, 48(5): 1199-1209.
[3] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
[4] YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974.
[5] WANG Yu-Long, YU Ai-Zhong, LYU Han-Qiang, WANG Qi-Ming, SU Xiang-Xiang, CHAI Qiang. Effects of wheat straw returning and tillage practices on corn yield in oasis irrigation area [J]. Acta Agronomica Sinica, 2022, 48(10): 2671-2679.
[6] LIU Lei, LIAO Ping, SHAO Hua, LIU Jin-Song, YANG Xing-Lian, WANG Jing, WANG Hai-Yuan, ZHANG Jun, ZENG Yong-Jun, HUANG Shan. Interactive effects of liming and straw return on apparent soil potassium balance in a double rice cropping system [J]. Acta Agronomica Sinica, 2022, 48(1): 226-237.
[7] ZHANG Wei-Ming, XIU Li-Qun, WU Di, SUN Yuan-Yuan, GU Wen-Qi, ZHANG Hong-Gui, MENG Jun, CHEN Wen-Fu. Review of biochar structure and physicochemical properties [J]. Acta Agronomica Sinica, 2021, 47(1): 1-18.
[8] LIU Qing-Li,JIANG Yu-Zhou,ZOU Yan,ZHANG Yun-Gui,ZHANG Heng,SHI Jun-Xiong,LI Zhi-Hong. The study of carbon budget on field-tobacco ecosystem [J]. Acta Agronomica Sinica, 2020, 46(8): 1258-1265.
[9] WU Yu-Hong,HAO Xing-Shun,TIAN Xiao-Hong,CHEN Hao,ZHANG Chun-Hui,CUI Yue-Zhen,QIN Yu-Hang. Effect of straw returning combined with NPK fertilization on soil carbon sequestration and economic benefits under rice-wheat rotation in Hanzhong basin [J]. Acta Agronomica Sinica, 2020, 46(02): 259-268.
[10] LIAO Ping,LIU Lei,HE Yu-Xuan,TANG Gang,ZHANG Jun,ZENG Yong-Jun,WU Zi-Ming,HUANG Shan. Interactive effects of liming and straw incorporation on yield and nitrogen uptake in a double rice cropping system [J]. Acta Agronomica Sinica, 2020, 46(01): 84-92.
[11] Hao-Yu LI,Zhao-Liang MENG,Dang-Wei PANG,Jin CHEN,Yong-Kun HOU,Hai-Xing CUI,Min JIN,Zhen-Lin WANG,Yong LI. Effect of annual straw return model on soil carbon sequestration and crop yields in winter wheat-summer maize rotation farmland [J]. Acta Agronomica Sinica, 2019, 45(6): 893-903.
[12] Yu-Zhang CHEN,Hui-Hui TIAN,Ya-Wei LI,Yu-Wei CHAI,Rui LI,Hong-Bo CHENG,Lei CHANG,Shou-Xi CHAI. Effects of straw strip mulching on furrows and planting in ridges on water use efficiency and tuber yield in dryland potato [J]. Acta Agronomica Sinica, 2019, 45(5): 714-727.
[13] Cheng-Jiang LI,Da-Fei LI,Gui-Su ZHOU,Long XU,Tian-Yang XU,Zheng-Xiong ZHAO. Effects of different types of biochar on soil microorganism and rhizome diseases occurrence of flue-cured tobacco [J]. Acta Agronomica Sinica, 2019, 45(2): 289-296.
[14] Yu-Zhang CHEN,Shou-Xi CHAI,Hong-Bo CHENG,Yu-Wei CHAI,Chang-Gang YANG,Kai-Min TAN,Lei CHANG. Effects of straw-incorporation combined with autumn plastic mulching on soil water consumption characteristics and winter wheat yield in arid farming areas [J]. Acta Agronomica Sinica, 2019, 45(2): 256-266.
[15] Jun-Peng AN, Cong-Feng LI, Hua QI, Peng-Xiang SUI, Wen-Ke ZHANG, Ping TIAN, De-Bao YOU, Nan MEI, Jing XING. Effects of Straw Strip Returning on Spring Maize Yield, Soil Moisture, Nitrogen Contents and Root Distribution in Northeast China [J]. Acta Agronomica Sinica, 2018, 44(05): 774-782.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .