Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (6): 893-903.doi: 10.3724/SP.J.1006.2019.81078


Effect of annual straw return model on soil carbon sequestration and crop yields in winter wheat-summer maize rotation farmland

Hao-Yu LI1,Zhao-Liang MENG1,Dang-Wei PANG2,Jin CHEN2,Yong-Kun HOU1,Hai-Xing CUI1,Min JIN1,Zhen-Lin WANG1,*(),Yong LI1,*()   

  1. 1 Agronomy College, Shandong Agricultural University / State Key Laboratory of Crop Biology, Tai’an 271018, Shandong, China;
    2 College of Life Sciences, Shandong Agricultural University, Tai’an 201018, Shandong, China;
  • Received:2018-10-21 Accepted:2019-01-19 Online:2019-06-12 Published:2019-06-12
  • Contact: Zhen-Lin WANG,Yong LI E-mail:zlwang@sdau.edu.cn;xmliyong@sdau.edu.cn
  • Supported by:
    This study was supported by the National Research and Development Program(2016YFD0300400);This study was supported by the National Research and Development Program(2017YFD0301001);the National Basic Research Program of China(2015CB150404);the Shandong Mount Tai Program for Industrial Leading Talents, and the Shandong Innovation Project for Applied Technologies in Agriculture (2014GJJS0201-5-2).


This study sought to determine the effects of different straw return patterns on the annual wheat-maize yield and soil organic carbon content (SOC) in the east area of Huang-Huai-Hai Plain. Four treatments were set up in the experiment: No straw return (NS), Summer maize-season straw return (SS), Winter wheat-season straw return (WS), and Double-season straw return (DS). SOC and aggregates classified by wet screening in 0-40 cm soil layers were measured. The straw return significantly decreased the soil bulk density and the mass proportion of micro-aggregate (< 0.25 mm), and increased the macro-aggregate of >5 mm, 5-2 mm, and 1-0.5 mm by 57.2%, 25.0%, and 13.7% on average suggesting straw return could accelerate soil aggregation and aggregate stability. MWD increased by 22.7%. Meanwhile, straw return not only increase SOC in 0-30 cm layers by 4.0% to 20.7%, and SCS by 0.2% to 14.7%, but also markedly increased the SOC of aggregates and carbon preservation capacity. The straw returning amount was correlated related with SOC, and SOC was positively correlated with MWD in 0-30 cm soil layers. In the 30-40 cm soil layer, both SOC of aggregates and carbon preservation capacity among treatments were not significantly different. The highest grain yield was observed in DS with the increased annual crop yield by 14.3%. Consequently, the double-season straw return model is a good option for improving soil quality in winter wheat-summer maize rotation systems; however, single-straw incorporation could maintain higher soil production, and provide abundant straw feed, energy and raw materials.

Key words: annual straw return model, aggregate, organic carbon, yield

Table 1

Experiment design"

Field operation
NS 秸秆双季不还田
No straw incorporation
All maize and wheat straws are removed.
SS 夏玉米季秸秆还田
Summer maize-season straw incorporation
玉米秸秆全量移除; 小麦秸秆经灭茬机粉碎后(约5~10 cm), 免耕覆盖还田。
Maize straws are removed fully. wheat straws are smashed (5-10 cm) and returned with no-tillage.
WS 冬小麦季秸秆还田
Winter wheat-season straw incorporation
玉米秸秆经灭茬机粉碎后(约5~10 cm), 旋耕还田; 小麦秸秆全量移除。
Maize straws are smashed (5-10 cm) and returned with rotary tillage. All wheat straws are removed.
DS 秸秆双季还田
Double-season straw incorporation
秸秆经灭茬机粉碎后(约5~10 cm), 玉米秸秆旋耕还田, 小麦秸秆免耕覆盖还田
All straws are smashed (5-10 cm); Maize straw was returned with rotary tillage and wheat straw with no-tillage.

Table 2

Rate and characteristics of returning-straw"

Straw type
The rate of straw returned to the field (kg hm-2)
Total N (g kg-1)
Organic carbon (g kg-1)
小麦秸秆 Wheat straw 22000 4.75 313.44 66.04
玉米秸秆 Maize straw 16000 7.57 363.77 48.05

Table 3

Effect of different straw incorporation model on soil bulk density, soil aggregate proportion, and mean weight diameter in 0-40 cm layers"

(g cm-3)
R0.25 (%)
各粒级团聚体质量比例 Soil aggregate proportion (%) 平均重量直径
MWD (mm)
>5 mm 5-2 mm 2-1 mm 1.0-0.5 mm 0.05-0.25 mm <0.25 mm
0-10 cm
NS 1.41 a 73.50 b 3.99 a 15.43 a 13.63 a 20.54 a 19.91 a 26.50 a 1.24 b
SS 1.32 b 81.95 a 8.71 a 16.39 a 15.32 a 25.43 a 16.10 a 18.05 b 1.54 a
WS 1.35 ab 82.21 a 6.37 a 17.41 a 13.10 a 25.95 a 19.37 a 17.79 b 1.44 ab
DS 1.30 b 84.55 a 8.97 a 17.19 a 13.92 a 25.88 a 18.59 a 15.45 b 1.56 a
10-20 cm
NS 1.49 a 74.82 b 3.13 a 17.22 a 15.13 a 23.69 a 15.66 a 25.18 a 1.29 b
SS 1.42 ab 80.29 b 3.32 a 16.52 a 17.07 a 28.32 a 15.06 a 19.71 a 1.32 b
WS 1.47 ab 89.45 a 5.82 a 18.13 a 21.13 a 28.82 a 15.56 a 10.55 b 1.54 ab
DS 1.39 b 88.49 a 8.44 a 24.63 a 20.30 a 25.19 a 9.92 a 11.51 b 1.84 a
20-30 cm
NS 1.51 a 70.83 c 3.25 a 9.96 c 11.73 b 23.11 a 22.80 a 29.18 a 1.02 b
SS 1.46 ab 75.14 bc 3.42 a 11.62 bc 17.62 ab 22.58 a 19.90 a 24.87 ab 1.15 ab
WS 1.50 ab 80.40 ab 1.56 a 17.59 ab 12.77 ab 29.82 a 18.66 a 19.60 bc 1.23 ab
DS 1.44 b 84.40 a 2.25 a 20.21 a 20.38 a 26.99 a 14.57 a 15.60 c 1.42 a
30-40 cm
NS 1.51 a 76.84 a 1.03 a 5.69 a 10.80 a 38.60 a 20.73 a 23.16 a 0.84 a
SS 1.46 a 72.64 a 0.32 a 3.29 a 8.49 a 38.49 a 22.05 a 27.36 a 0.70 a
WS 1.51 a 72.42 a 0.63 a 4.83 a 15.21 a 31.47 a 20.28 a 27.58 a 0.81 a
DS 1.46 a 71.31 a 0.24 a 2.70 a 10.05 a 26.12 a 32.21 a 28.69 a 0.65 a

Fig. 1

Effects of straw incorporation on SOC and SCS in 0-40 cm layers NS: no straw incorporation; SS: summer maize-season straw incorporation; WS: winter wheat-season straw incorporation; DS: double-season straw incorporation; SOC: soil organic carbon content; SCS: soil carbon stock."

Table 4

Effect of straw incorporation on aggregate-associated soil organic carbon content in 0-40 cm layers"

Soil depth
不同粒级团聚体有机碳含量 Aggregate-associated SOC (g kg-1)
>5 mm 5-2 mm 2-1 mm 1.0-0.5 mm 0.50-0.25 mm <0.25 mm
0-10 cm NS 6.30 a 5.92 b 5.88 b 5.55 a 5.53 a 5.24 a
SS 6.76 b 6.54 ab 6.24 ab 5.89 a 5.92 a 5.43 a
WS 6.56 ab 6.42 ab 5.92 ab 5.58 a 5.61 a 5.25 a
DS 6.87 a 6.71 a 6.41 a 6.03 a 5.93 a 5.43 a
10-20 cm NS 7.05 a 6.19 b 6.10 b 5.93 a 5.73 a 5.43 a
SS 7.11 a 6.59 ab 6.44 ab 6.13 a 5.96 a 5.67 a
WS 7.42 ab 6.63 ab 6.51 ab 6.29 a 5.96 a 5.64 a
DS 7.77 a 7.02 a 6.92 a 6.37 a 5.95 a 5.85 a
20-30 cm NS 4.92 c 3.75 a 3.72 c 3.57 c 3.34 b 3.18 a
SS 5.36 b 4.64 a 4.02 bc 3.79 bc 3.58 b 3.20 a
WS 5.40 b 4.71 a 4.48 ab 4.03 b 3.94 ab 4.09 a
DS 5.93 a 4.01 a 4.94 a 4.74 a 4.53 a 4.05 a
30-40 cm NS 2.50 a 2.30 b 2.18 b 2.07 a 1.96 a
SS 2.66 a 2.61 ab 2.27 b 2.12 a 1.87 a
WS 2.74 a 2.80 ab 2.71 a 2.57 a 2.51 a
DS 2.87 a 2.93 a 2.81 a 2.38 a 2.35 a

Table 5

Effect of straw incorporation on carbon preservation capacity of soil aggregates in 0-40 cm layers"

Soil depth
TCPC (g kg-1)
不同粒级团聚体固碳能力 Aggregate-associated CPC (g kg-1)
>5 mm 5-2 mm 2-1 mm 1-0.5 mm 0.5-0.25 mm <0.25 mm
0-10 cm NS 5.60 b 0.22 a 0.95 a 0.83 a 1.10 b 1.12 a 1.37 a
SS 6.07 a 0.54 a 1.10 a 0.98 a 1.53 a 0.94 a 0.98 ab
WS 5.79 ab 0.42 a 1.13 a 0.75 a 1.44 ab 1.10 a 0.96 b
DS 6.15 a 0.61 a 1.13 a 0.89 a 1.60 a 1.07 a 0.84 b
10-20 cm NS 5.87 c 0.22 a 0.95 b 0.94 a 1.50 a 0.98 a 1.28 a
SS 6.17 b 0.28 a 1.05 ab 1.03 a 1.70 a 0.98 a 1.13 ab
WS 6.37 ab 0.51 a 1.31 ab 0.47 a 1.70 a 0.82 a 0.57 c
DS 6.61 a 0.59 a 1.66 a 1.41 a 1.63 a 0.58 a 0.74 bc
20-30 cm NS 3.51 c 0.19 a 0.35 b 0.43 b 0.82 b 0.75 a 0.97 a
SS 3.82 c 0.19 a 0.55 ab 0.76 ab 0.84 b 0.67 a 0.82 a
WS 4.21 b 0.08 a 0.81 a 0.54 b 1.21 a 0.77 a 0.80 a
DS 4.73 a 0.14 a 0.99 a 1.01 a 1.30 a 0.65 a 0.64 a
30-40 cm NS 2.13 b 0.14 a 0.23 a 0.87 a 0.41 a 0.48 a
SS 2.17 b 0.09 b 0.22 a 0.94 a 0.46 a 0.47 a
WS 2.59 a 0.13 a 0.40 a 0.82 a 0.57 a 0.68 a
DS 2.57 a 0.08 b 0.33 a 0.74 a 0.73 a 0.69 a

Table 6

Correlation coefficients of SIR with SBD, SOC, SCS, MWD, and TCPC"

Soil depth
0-10 cm SBD -0.75*
MWD 0.81** -0.63*
SOC 0.79* -0.56** 0.59*
SCS 0.41 -0.05 0.26 0.80*
TCPC 0.75** -0.93** 0.66* 0.61* 0.05
10-20 cm SBD -0.70**
MWD 0.72** -0.49
SOC 0.81** -0.56* 0.72**
SCS 0.58* -0.12 0.89** 0.89*
TCPC 0.82** -0.26 0.69** 0.80** 0.80*
20-30 cm SBD -0.70*
MWD 0.83** -0.53
SOC 0.57* -0.45** 0.71*
SCS 0.41* -0.19 0.62* 0.96**
TCPC 0.85** -0.58* 0.87** 0.79** 0.69
30-40 cm SBD -0.56
MWD -0.77** 0.35
SOC -0.02 0.19 0.28
SCS 0.12 0.37 0.33 0.98**
TCPC 0.59* -0.13 -0.25 0.23 0.20

Table 7

Effects of straw incorporation on grain yield of winter wheat and summer maize"

Wheat yield
(kg hm-2)
夏玉米产量 Maize yield
(kg hm-2)
周年产量Annual yield
(kg hm-2)
Yield increases of annual crop
(kg hm-2)
Yield increases of wheat
(kg hm-2)
Ratio of yield increases
Yield increases of maize
(kg hm-2)
增产比例 Ratio of yield increases
NS 8320.20 b 9257.65 b 17577.85 d
SS 8610.80 b 9975.31 ab 18586.11 c 1008.26c 290.60 c 28.8 717.66 b 71.2
WS 9902.50 a 9763.41 ab 19665.91 b 2088.06 b 1582.30 b 75.8 505.76 b 24.2
DS 10340.80 a 10491.05 a 20831.85 a 3254.00 a 2020.60 a 62.1 1233.40 a 37.9
NS 7186.20 b 9505.57 c 16691.77 c
SS 7303.93 ab 9897.48 b 17201.41 bc 509.64 b 117.73 b 23.1 391.91 b 76.9
WS 7696.10 a 9729.75 bc 17425.85 b 734.08 b 509.90 ab 69.5 224.18 b 30.5
DS 7759.90 a 10622.24 a 18382.14 a 1690.37 a 573.70 a 33.9 1116.67 a 66.1
[1] 赵永存, 徐胜祥, 王美艳, 史学正 . 中国农田土壤固碳潜力与速率: 认识、挑战与研究建议. 中国科学院院刊, 2018,33:191-197.
Zhao Y C, Xu S X, Wang M Y, Shi X Z . Carbon sequestration potential in Chinese cropland soils: review, challenge, and research suggestions. Bull Chin Acad Sci, 2018,33:191-197 (in Chinese with English abstract).
[2] Wiesmeier M, Hübner R, Spörlein P, Geuß U. Hangen E, Reischl A, Schilling B, Lützow M, Kögel-Knabner I . Carbon sequestration potential of soils in southeast Germany derived from stable soil organic carbon saturation. Glob Change Biol, 2014,20:653-665.
doi: 10.1111/gcb.12384 pmid: 24038905
[3] 田慎重, 王瑜, 张玉凤, 边文范, 董亮, 罗加法, 郭洪海 . 旋耕转深松和秸秆还田增加农田土壤团聚体碳库. 农业工程学报, 2017,33(24):133-140.
Tian S Z, Wang Y, Zhang Y F, Bian W F, Dong L, Luo J F, Guo H H . Residue returning with subsoiling replacing rotary tillage improving aggregate and associated carbon. Trans CSAE, 2017,33(24):133-140 (in Chinese with English abstract).
[4] 宓文海, 吴良欢, 马庆旭, 张宣, 刘彦伶 . 有机物料与化肥配施提高黄泥田水稻产量和土壤肥力. 农业工程学报, 2016,32(13):103-108.
Mi W H, Wu L H, Ma Q X, Zhang X, Liu Y L . Combined application of organic materials and inorganic fertilizers improving rice yield and soil fertility of yellow clayey paddy soil. Trans CSAE, 2016,32(13):103-108 (in Chinese with English abstract).
[5] Prasad J V N S, Rao C S, Srinivas K, Jyothi C N, Venkateswarlu B, Ramachandrappa B K, Dhanapai G N, Ravichandra K, Mishra P K . Effect of ten years of reduced tillage and recycling of organic matter on crop yields, soil organic carbon and its fractions in alfisols of semi-arid tropics of southern India. Soil Till Res, 2016,156:131-139.
doi: 10.1016/j.still.2015.10.013
[6] Dikgwatlhe S B, Chen Z D, Lal R, Zhang H L, Chen F . Changes in soil organic carbon and nitrogen as affected by tillage and residue management under wheat-maize cropping system in the North China Plain. Soil Till Res, 2014,144:110-118.
doi: 10.1016/j.still.2014.07.014
[7] 李玮, 乔玉强, 陈欢, 曹承富, 杜世州, 赵竹 . 秸秆还田和施肥对砂姜黑土理化性质及小麦-玉米产量的影响. 生态学报, 2014,34:5052-5061.
Li W, Qiao Y Q, Chen H, Cao C F, Du S Z, Zhao Z . Effects of combined straw and N application on the physicochemical properties of lime concretion black soil and crop yields. Acta Ecol Sin, 2014,34:5052-5061 (in Chinese with English abstract).
[8] Zhao H L, Shar A G, Li S, Chen Y L, Shi J L, Zhang X Y, Tian X H . Effect of straw return mode on soil aggregation and aggregate carbon content in an annual maize-wheat double cropping system. Soil Till Res, 2018,175:178-186.
doi: 10.1016/j.still.2017.09.012
[9] 辛励, 刘锦涛, 刘树堂, 陈延玲, 南镇武, 袁铭章, 陈晶培 . 小麦-玉米轮作体系下长期定位秸秆还田对籽粒产量及品质的影响. 华北农学报, 2016,31(6):164-170.
Xin L, Liu J T, Liu S T, Chen Y L, Nan Z W, Yuan M Z, Chen J P . Effects of combined application of straw and organic fertilizer on grain yield and quality under wheat maize rotation system. Acta Agric Boreali-Sin, 2016,31(6):164-170 (in Chinese with English abstract).
[10] 许菁, 贺贞昆, 冯倩倩, 张亚运, 李晓莎, 许姣姣, 林祥, 韩惠芳, 宁堂原, 李增嘉 . 耕作方式对冬小麦-夏玉米光合特性及周年产量形成的影响. 植物营养与肥料学报, 2017,23:101-109.
Xu J, He Z K, Feng Q Q, Zhang Y Y, Li X S, Xu J J, Lin X, Han H F, Ning T Y, Li Z J . Effect of tillage method on photosynthetic characteristics and annual yield formation of winter wheat- summer maize cropping system. J Plant Nutr Fert, 2017,23:101-109 (in Chinese with English abstract)
[11] Soon Y K, Lupwayi N Z . Straw management in a cold semi-arid region: impact on soil quality and crop productivity. Field Crops Res, 2012,139:39-46.
doi: 10.1016/j.fcr.2012.10.010
[12] 张鹏, 贾志宽, 王维, 路文涛, 高飞, 聂俊峰 . 秸秆还田对宁南半干旱地区土壤团聚体特征的影响. 中国农业科学, 2012,45:1513-1520.
Zhang P, Jia Z K, Wang W, Lu W T, Gao F, Nie J F . Effects of straw returning on characteristics of soil aggregates in semi-arid areas in southern Ningxia of China. Sci Agric Sin, 2012,45:1513-1520 (in Chinese with English abstract).
[13] Song K, Yang J, Xue Y, Lu W, Zheng X, Pan J . Influence of tillage practices and straw return on soil aggregates, organic carbon, and crop yields in a rice-wheat rotation system. Sci Rep, 2016,6:36602.
doi: 10.1038/srep36602 pmid: 27812038
[14] 葛顺峰, 彭玲, 任饴华, 姜远茂 . 秸秆和生物质炭对苹果园土壤容重、阳离子交换量和氮素利用的影响. 中国农业科学, 2014,47:366-373.
Ge S F, Peng L, Ren Y H, Jiang Y M . Effect of straw and biochar on soil bulk density, cation exchange capacity and nitrogen absorption in apple orchard soil. Sci Agric Sin, 2014,47:366-373 (in Chinese with English abstract).
[15] 俞巧钢, 杨艳, 邹平, 叶静, 张康宁, 顾国平, 马军伟, 符建荣 . 有机物料对稻田土壤团聚体及有机碳分布的影响. 水土保持学报, 2017,31(6):170-175.
Yu Q G, Yang Y, Zou P, Ye J, Zhang K N, Gu G P, Ma J W, Fu J R . Effect of organic materials application on soil aggregate and soil organic carbon in rice fields. J Soil Water Conserv, 2017,31(6):170-175 (in Chinese with English abstract).
[16] Fonte S J, Quintero D C, Velásquez E, Lavelle P . Interactive effects of plants and earthworms on the physical stabilization of soil organic matter in aggregates. Plant Soil, 2012,359:205-214.
doi: 10.1007/s11104-012-1199-2
[17] 薛斌, 黄丽, 鲁剑巍, 李小坤, 殷志遥, 刘智杰, 陈涛 . 连续秸秆还田和免耕对土壤团聚体及有机碳的影响. 水土保持学报, 2018,32(1):182-189.
Xue B, Huang L, Lu J W, Li X K, Yin Z Y, Liu Z J, Chen T . Effects of continuous straw returning and no-tillage on soil aggregates and organic carbon. J Soil Water Conserv, 2018,32(1):182-189 (in Chinese with English abstract).
[18] Decaëns T . Degradation dynamics of surface earthworm casts in grasslands of the eastern plains of Colombia. Biol Fert Soils, 2000,32:149-156.
doi: 10.1007/s003740000229
[19] Lal R . Soil carbon sequestration impacts on global climate change and food security. Science, 2004,304:1623-1627.
[20] Wang X J, Jia Z K, Liang L Y, Zhao Y F, Yang B P, Ding R X, Wang J P, Nie J F . Changes in soil characteristics and maize yield under straw returning system in dryland farming. Field Crops Res, 2018,218:11-17.
doi: 10.1016/j.fcr.2017.12.003
[21] Stewart C E, Paustian K, Conant R T, Plante A F, Six J . Soil carbon saturation: concept, evidence and evaluation. Biogeochemistry, 2007,86:19-31.
doi: 10.1007/s10533-007-9140-0
[22] Xu M G, Lou Y L, Sun X L, Wang W, Baniyamuddin M, Zhao K . Soil organic carbon active fractions as early indicators for total carbon change under straw return. Biol Fert Soils, 2011,47:745-752.
doi: 10.1007/s00374-011-0579-8
[23] Liu C, Lu M, Cui J, Fang C M . Effects of straw carbon input on carbon dynamics in agricultural soils: a meta-analysis. Global Change Biol, 2014,20:1-16.
doi: 10.1111/gcb.12517 pmid: 24395454
[24] 李硕, 李有兵, 王淑娟, 师江澜, 田霄鸿 . 关中平原作物秸秆不同还田方式对土壤有机碳和碳库管理指数的影响. 应用生态学报, 2015,26:1215-1222.
Li S, Li Y B, Wang S J, Shi J L, Tian X H . Effects of different straw-returning regimes on soil organic carbon and carbon pool management index in Guanzhong plain, northwest China. Chin J Appl Ecol, 2015,26:1215-1222 (in Chinese with English abstract).
[25] 黄耀, 刘世梁, 沈其荣, 宗良纲 . 环境因子对农业土壤有机碳分解的影响. 应用生态学报, 2002,13:709-714.
Huang Y, Liu S L, Shen Q R, Zong L G . Influence of environmental factors on the decomposition of organic carbon in agricultural soils. Chin J Appl Ecol, 2002,13:709-714 (in Chinese with English abstract).
[26] 代文才, 高明, 兰木羚, 黄容, 王金柱, 王子芳, 韩晓飞 . 不同作物秸秆在旱地和水田中的腐解特性及养分释放规律. 中国生态农业学报, 2017,25:188-199.
Dai W C, Gao M, Lan M L, Huang R, Wang J Z, Wang Z F, Han X F . Nutrient release patterns and decomposition characteristics of different crop straws in drylands and paddy fields. Chin J Eco-Agric, 2017,25:188-199 (in Chinese with English abstract).
[27] 张艺, 尹力初, 戴齐 . 后续施肥措施改变对红壤性水稻土团聚体有机碳组分的影响. 水土保持学报, 2016,30(6):278-283.
Zhang Y, Yin L C, Dai Q . Effects of following-up fertilization reforming on the fractions of aggregate-associated organic carbon in red paddy soils. J Soil Water Conserv, 2016,30(6):278-283 (in Chinese with English abstract).
[28] Six J, Elliott E T, Paustian K . Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biol Biochem, 2000,32:2099-2103.
doi: 10.1016/S0038-0717(00)00179-6
[29] Haile S G ,Nair P K R,Nair V D. Carbon storage of different soil-size fractions in Florida silvopastoral systems. Environ Qual, 2008,37:1789-1797.
doi: 10.2134/jeq2007.0509 pmid: 18689740
[30] Zhu L Q, Hu N J, Zhang Z W, Xu J L, Tao B R, Meng Y L . Short-term responses of soil organic carbon and carbon pool management index to different annual straw return rates in a rice-wheat cropping system. Catena, 2015,135:283-289.
doi: 10.1016/j.catena.2015.08.008
[31] 杨晨璐, 刘兰清, 王维钰, 任广鑫, 冯永忠, 杨改河 . 麦玉复种体系下秸秆还田与施氮对作物水氮利用及产量的效应研究. 中国农业科学, 2018,51:1664-1680.
Yang C L, Liu L Q, Wang W Y, Ren G X, Feng Y Z, Yang G H . Effects of the application of straw returning and nitrogen fertilizer on crop yields, water and nitrogen utilization under wheat- maize multiple cropping system. Sci Agric Sin, 2018,51:1664-1680 (in Chinese with English abstract).
[32] 庞党伟, 陈金, 唐玉海, 尹燕枰, 杨东清, 崔正勇, 郑孟静, 李勇, 王振林 . 玉米秸秆还田方式和氮肥处理对土壤理化性质及冬小麦产量的影响. 作物学报, 2016,42:1689-1699.
Pang D W, Chen J, Tang Y H, Yin Y P, Yang D Q, Cui Z Y, Zheng M J, Li Y, Wang Z L . Effect of returning methods of maize straw and nitrogen treatments on soil physicochemical property and yield of winter wheat. Acta Agron Sin, 2016,42:1689-1699 (in Chinese with English abstract).
[33] 申丽霞, 王璞, 兰林旺, 孙西欢 . 施氮对夏玉米碳氮代谢及穗粒形成的影响. 植物营养与肥料学报, 2007,13:1074-1079.
Shen L X, Wang P, Lan L W, Sun X H . Effect of nitrogen supply on carbon-nitrogen metabolism and kernel set in summer maize. Plant Nutr Fert Sci, 2007,13:1074-1079 (in Chinese with English abstract).
[1] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[2] WANG Wang-Nian, GE Jun-Zhu, YANG Hai-Chang, YIN Fa-Ting, HUANG Tai-Li, KUAI Jie, WANG Jing, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(6): 1451-1462.
[3] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[4] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[5] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[6] LI Yi-Jun, LYU Hou-Quan. Effect of agricultural meteorological disasters on the production corn in the Northeast China [J]. Acta Agronomica Sinica, 2022, 48(6): 1537-1545.
[7] SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297.
[8] YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247.
[9] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[10] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[11] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
[12] DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571.
[13] CHEN Yun, LI Si-Yu, ZHU An, LIU Kun, ZHANG Ya-Jun, ZHANG Hao, GU Jun-Fei, ZHANG Wei-Yang, LIU Li-Jun, YANG Jian-Chang. Effects of seeding rates and panicle nitrogen fertilizer rates on grain yield and quality in good taste rice cultivars under direct sowing [J]. Acta Agronomica Sinica, 2022, 48(3): 656-666.
[14] YUAN Jia-Qi, LIU Yan-Yang, XU Ke, LI Guo-Hui, CHEN Tian-Ye, ZHOU Hu-Yi, GUO Bao-Wei, HUO Zhong-Yang, DAI Qi-Gen, ZHANG Hong-Cheng. Nitrogen and density treatment to improve resource utilization and yield in late sowing japonica rice [J]. Acta Agronomica Sinica, 2022, 48(3): 667-681.
[15] DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703.
Full text



No Suggested Reading articles found!