Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (5): 1410-1425.doi: 10.3724/SP.J.1006.2023.21036

• RESEARCH NOTES • Previous Articles     Next Articles

Genome-wide identification and expression analysis of G2-like transcription factors family genes in wheat

JIA Yu-Ku(), GAO Hong-Huan(), FENG Jian-Chao, HAO Zi-Rui, WANG Chen-Yang, XIE Ying-Xin, GUO Tian-Cai, MA Dong-Yun()   

  1. College of Agronomy, Henan Agricultural University/National Engineering Research Center for Wheat/Technology Innovation Center of Henan Wheat, Zhengzhou 450046, Henan, China
  • Received:2022-05-13 Accepted:2022-07-22 Online:2023-05-12 Published:2022-08-18
  • Contact: *E-mail: xmzxmdy@126.com
  • About author:First author contact:**Contributed equally to this work
  • Supported by:
    National Science and Technology Support Program of China(2015BAD26B00);Science and Technology Project of Henan Province(212102110281)

Abstract:

Golden2-like (G2-like) transcription factor, a member of the GARP superfamily of MYB transcription factors, plays an important role in regulating chloroplast development. In this study, genome-wide identification of G2-like genes in wheat was carried out by bioinformatics methods, and their physicochemical properties, subcellular localization, cis-acting elements of promoters, and response patterns to abiotic stresses and hormones were analyzed. A total of 87 G2-like genes were identified from wheat, which distributed in evenly on 21 chromosomes in wheat. Phylogenetic analysis showed that these genes were divided into 14 subfamilies, and fragment replication was the main reason for the expansion of this gene family. The prediction of protein secondary structure revealed that α helix and random curl were the main amino acid sequences of G2-like gene in wheat. Promoter cis-acting elements showed that there were seven cis-acting elements (P-box, SpI, LTR, ABRE, MBS, TGA-Element, and AE-box) in 2-kb region upstream of the promoter. Among them, Ta3AG2-Like19 contained the most cis-regulatory element binding sites with a total of 18 binding sites. The qRT-PCR revealed. that the relative expression levels of Ta3AG2-like19, Ta3AG2-Like20, Ta4AG2-Like29, and Ta6AG2-Like52 were significantly up-regulated under PEG and salt stresses, and induced by GA, IAA, and ABA hormones. These genes may mediate the response of wheat plant to various abiotic stresses.

Key words: wheat, G2-like transcription factors, bioinformatics, adversity stress, the relative expression level

Table 1

Some primers for qRT-PCR of G2-like genes"

基因ID Gene ID 上游引物Forward primer (5°−3°) 下游引物Reverse primer (5°−3°)
TraesCS1D02G305200.2 GACACCCGAGTTACATCAGCG CCTATGGTGTTCTTGTTTGTCCC
TraesCS2A02G441300.1 CGGGCTTGTCGGAGAATGGAAC TCCTGACTTCGTACACGGTAGAGC
TraesCS3A02G361800.1 GAAGTACCGCCTCTACCTCAAG CTGGTAGGAAACGTACGGATAC
TraesCS3A02G526600.1 GGCAACCGGGACAACAACTCT CCCTGCATCCGCTTGACGT
TraesCS4A02G130000.1 TTCCAGGAGAGTCAGGGCTTA CCTCATAATGGTTTTTGGGGT
TraesCS4B02G172900.1 AATCCAATACGGAGAAGGTGC CAAGGGGCTCAGAAGACTCG
TraesCS4B02G174600.1 AGCGACGGCTACATGAACAACTG GTGTCTCGTGTGCCTTCTCCAAC
TraesCS4D02G175000.1 CGGTCCTGCTGTGACATCTGATG TGTGACGCAGCCGAATTGGAAG
TraesCS4D02G176500.1 GCCAGTCAGCCACCACCTTAATAC TGCACCTCCAGTTGTTCATGTAGC
TraesCS5A02G178500.1 TAAGGACAATGGGTGTAAAGGG TGAGCATCAAGAAGATAGGACC
TraesCS5D02G183000.1 AGATGGGTCCTACCTTCTTGATGC AGGCGAACTGCTCTGAGACGAT
TraesCS6A02G109700.1 GAACACCAATAGCCGCCTCTACG ACGCCCAGTCTTGATTCCTGAAAC
TraesCS6A02G385500.1 GCAAGTACCTGGAGATGGTGATCG GACTGCGTGTTTGAATGCTGGAAC
TraesCS7B02G315800.1 TCCATTGTCTCATGTCTCGCA AGGCAGAGCACCCATTCGC
TraesCS7D02G334100.1 AACGGCAACACTGGCAGAAC TCTTCGTCTTCCTCGCCTCTGC

Table 2

Basic information of wheat G2-like transcription factors"

基因名
Gene name
登录号
Accession number
氨基酸长度
Length of amino acids
分子量
Molecular weight (kD)
等电点
Isoelectric point
不稳定
系数
Instability coefficient
疏水性指数
Hydrophobicity index
α螺旋
α-helix
(%)
延伸链
Extending chain
(%)
β折叠
β-folding
(%)
无规则
卷曲
Random crimp (%)
亚细胞
定位
Subcellular localization
Ta1AG2-like1 TraesCS1A02G202500.1 353 38.40 8.82 41.82 0.724 28.33 9.07 10.20 52.41 N
Ta1AG2-like2 TraesCS1A02G258400.1 312 31.91 6.59 53.71 0.459 27.56 5.77 6.41 60.26 N
Ta1AG2-like3 TraesCS1A02G305500.2 407 45.60 6.35 39.59 0.776 37.59 9.09 2.46 50.86 N
Ta1BG2-like4 TraesCS1B02G216600.1 352 38.35 8.73 45.09 0.693 23.86 10.23 7.95 57.95 N
Ta1BG2-like5 TraesCS1B02G268900.1 308 31.59 6.59 52.98 0.447 27.27 7.79 7.79 57.14 N
Ta1BG2-like6 TraesCS1B02G316200.2 407 45.83 6.58 39.24 0.755 34.89 8.11 5.16 51.84 N
Ta1DG2-like7 TraesCS1D02G205800.1 352 38.33 8.78 45.10 0.749 26.14 9.66 8.81 55.40 N
Ta1DG2-like8 TraesCS1D02G257700.1 309 31.51 6.57 53.38 0.441 27.18 7.12 7.44 58.25 N
Ta1DG2-like9 TraesCS1D02G305200.2 407 45.62 6.47 39.89 0.761 33.66 9.09 3.19 54.05 N
Ta2AG2-like10 TraesCS2A02G100600.1 355 38.90 7.70 58.76 0.686 42.82 12.11 5.63 39.44 N
Ta2AG2-like11 TraesCS2A02G441300.1 279 30.63 6.19 35.67 0.589 45.88 9.68 4.30 40.14 M
Ta2AG2-like12 TraesCS2A02G488200.1 452 49.66 6.11 67.78 0.637 29.20 11.28 3.10 56.42 N
Ta2BG2-like13 TraesCS2B02G117800.1 357 39.07 7.26 57.22 0.681 42.02 10.36 3.92 43.70 N
Ta2BG2-like14 TraesCS2B02G515800.1 455 49.59 6.25 67.20 0.559 29.67 11.43 3.96 54.95 N
Ta2DG2-like15 TraesCS2D02G100100.1 357 38.95 7.71 58.72 0.644 49.30 9.24 3.92 37.54 N
Ta2DG2-like16 TraesCS2D02G488500.1 452 49.56 6.10 69.81 0.610 30.31 12.39 3.98 53.32 N
Ta3AG2-like17 TraesCS3A02G105500.2 430 46.95 5.11 54.42 0.578 29.77 6.05 3.02 61.16 P
Ta3AG2-like18 TraesCS3A02G161000.1 509 54.84 5.69 58.88 0.501 25.34 5.70 2.75 66.21 N
Ta3AG2-like19 TraesCS3A02G361800.1 225 24.23 5.85 62.38 0.568 26.67 7.11 6.22 60.00 N
Ta3AG2-like20 TraesCS3A02G526600.1 285 29.70 7.37 46.77 0.540 29.82 10.18 8.77 51.23 N
Ta3BG2-like21 TraesCS3B02G124100.1 432 46.98 5.12 57.01 0.579 26.85 3.70 3.24 66.20 P
Ta3BG2-like22 TraesCS3B02G191600.1 503 54.28 5.79 56.66 0.490 27.83 5.17 2.19 64.81 N
Ta3BG2-like23 TraesCS3B02G394200.1 225 24.31 5.84 59.07 0.566 29.33 5.33 5.78 59.56 N
Ta3BG2-like24 TraesCS3B02G594300.1 287 29.91 6.81 50.21 0.506 25.09 11.50 8.01 55.40 N
Ta3DG2-like25 TraesCS3D02G107800.1 432 47.11 5.07 53.12 0.618 30.09 6.25 3.01 60.65 P
Ta3DG2-like26 TraesCS3D02G168200.1 377 40.53 4.84 55.49 0.415 33.16 10.34 4.77 51.72 N
Ta3DG2-like27 TraesCS3D02G355500.1 227 24.43 5.84 61.74 0.541 25.55 6.17 4.85 63.44 N
Ta3DG2-like28 TraesCS3D02G531900.1 281 29.27 6.83 43.21 0.514 32.03 9.25 7.47 51.25 N
Ta4AG2-like29 TraesCS4A02G130000.1 354 39.68 8.28 57.73 0.711 36.44 8.47 3.39 51.69 N
Ta4AG2-like30 TraesCS4A02G131700.1 486 53.39 6.26 60.73 0.773 30.25 4.94 2.88 61.93 P
Ta4AG2-like31 TraesCS4A02G180900.1 341 37.76 7.02 48.84 0.709 27.86 13.49 4.99 53.67 N
Ta4BG2-like32 TraesCS4B02G172900.1 437 48.08 5.99 62.97 0.806 27.69 5.26 2.06 64.99 P
Ta4BG2-like33 TraesCS4B02G174600.1 355 39.82 7.06 58.02 0.701 39.44 9.30 3.38 47.89 N
Ta4DG2-like34 TraesCS4D02G071300.2 224 24.03 9.33 45.49 0.559 35.71 10.71 3.12 50.45 N
Ta4DG2-like35 TraesCS4D02G131500.1 341 37.91 8.54 44.89 0.728 29.62 15.25 5.28 49.85 N
Ta4DG2-like36 TraesCS4D02G175000.1 451 49.30 5.89 60.76 0.792 28.82 4.43 1.55 65.19 P
Ta4DG2-like37 TraesCS4D02G176500.1 354 39.73 8.57 57.50 0.703 41.81 7.06 3.67 47.46 N
Ta5AG2-like38 TraesCS5A02G153000.1 326 35.77 7.32 53.69 0.678 33.13 13.50 6.75 46.63 N
Ta5AG2-like39 TraesCS5A02G178500.1 255 27.69 8.71 53.52 0.500 40.00 11.76 4.71 43.53 N
Ta5AG2-like40 TraesCS5A02G178600.1 286 30.98 5.76 53.63 0.836 33.22 6.29 4.90 55.59 P
Ta5BG2-like41 TraesCS5B02G151800.1 337 37.06 7.35 46.54 0.677 31.45 12.46 5.93 50.15 N
Ta5BG2-like42 TraesCS5B02G176200.1 255 27.72 8.71 53.85 0.510 40.39 10.59 5.10 43.92 N
Ta5BG2-like43 TraesCS5B02G176300.1 286 31.02 5.75 54.74 0.856 29.72 4.55 3.15 62.59 P
Ta5DG2-like44 TraesCS5D02G158300.1 324 35.73 8.68 55.56 0.710 33.95 12.96 5.86 47.22 N
Ta5DG2-like45 TraesCS5D02G183000.1 255 27.73 8.71 53.52 0.509 36.47 10.59 4.31 48.63 N
Ta5DG2-like46 TraesCS5D02G183100.1 286 31.02 5.75 53.39 0.853 31.82 5.59 2.45 60.14 P
Ta6AG2-like47 TraesCS6A02G108800.1 415 45.89 6.18 61.00 0.640 28.19 8.67 2.65 60.48 N
Ta6AG2-like48 TraesCS6A02G109700.1 477 52.25 8.92 51.15 0.699 28.51 11.11 5.24 55.14 N
Ta6AG2-like49 TraesCS6A02G155400.1 362 39.28 8.30 45.73 0.540 39.23 11.33 5.25 44.20 N
Ta6AG2-like50 TraesCS6A02G254700.1 303 33.19 9.44 63.28 0.558 39.93 6.60 6.93 46.53 N
Ta6AG2-like51 TraesCS6A02G269000.1 276 30.36 8.92 29.87 0.561 45.65 10.51 5.07 38.77 N
Ta6AG2-like52 TraesCS6A02G385500.1 406 45.10 5.98 46.92 0.645 30.54 9.36 2.96 57.14 N
Ta6BG2-like53 TraesCS6B02G137300.1 409 45.35 7.23 57.66 0.652 33.25 6.85 1.96 57.95 N
Ta6BG2-like54 TraesCS6B02G138200.1 528 58.32 7.88 54.92 0.705 31.25 8.71 4.36 55.68 N
Ta6BG2-like55 TraesCS6B02G183500.1 362 39.29 7.78 48.07 0.536 41.44 9.39 4.42 44.75 N
Ta6BG2-like56 TraesCS6B02G270800.1 318 34.61 9.27 53.80 0.524 38.68 6.92 4.09 50.31 M
Ta6BG2-like57 TraesCS6B02G296300.1 280 30.91 8.72 28.89 0.585 46.07 11.43 4.64 37.86 N
Ta6BG2-like58 TraesCS6B02G394700.1 534 58.47 5.51 41.81 0.376 33.71 9.55 6.18 50.56 C
Ta6BG2-like59 TraesCS6B02G424600.1 431 48.08 6.09 39.85 0.637 32.02 9.51 2.09 56.38 N
Ta6DG2-like60 TraesCS6D02G097000.1 386 42.63 6.28 52.91 0.682 31.35 8.81 1.30 58.55 N
Ta6DG2-like61 TraesCS6D02G098200.1 475 51.73 8.92 50.50 0.648 36.42 9.26 4.63 49.68 N
Ta6DG2-like62 TraesCS6D02G145300.1 363 39.35 8.30 48.93 0.528 36.09 10.74 3.86 49.31 N
Ta6DG2-like63 TraesCS6D02G236000.1 304 33.43 9.65 59.00 0.578 40.79 7.89 3.29 48.03 N
Ta6DG2-like64 TraesCS6D02G245900.1 277 30.36 8.72 28.00 0.542 47.65 10.11 3.97 38.27 N
Ta6DG2-like65 TraesCS6D02G370300.1 407 45.39 5.90 40.98 0.635 32.92 6.63 2.70 57.74 N
Ta7AG2-like66 TraesCS7A02G339800.1 461 49.17 5.30 65.82 0.319 31.45 8.46 3.25 56.83 N
Ta7AG2-like67 TraesCS7A02G345200.1 512 55.89 9.36 52.35 0.785 33.40 6.84 5.47 54.30 N
Ta7AG2-like68 TraesCS7A02G381900.1 339 36.57 5.69 46.54 0.594 28.91 7.96 5.01 58.11 N
Ta7AG2-like69 TraesCS7A02G415800.1 454 49.57 5.71 65.91 0.706 28.63 7.93 1.32 62.11 N
Ta7AG2-like70 TraesCS7A02G469900.1 249 27.44 6.76 61.15 0.816 31.73 11.65 6.02 50.60 N
Ta7AG2-like71 TraesCS7A02G470100.1 252 27.84 7.09 71.64 0.840 28.57 11.11 6.75 53.57 M
Ta7AG2-like72 TraesCS7A02G470200.1 246 27.56 8.39 71.73 0.725 30.89 10.57 5.28 53.25 N
Ta7AG2-like73 TraesCS7A02G483100.1 348 37.47 6.83 53.15 0.457 39.66 7.18 3.16 50.00 N
Ta7BG2-like74 TraesCS7B02G251400.1 459 49.29 5.24 64.16 0.381 33.99 7.19 2.61 56.21 N
Ta7BG2-like75 TraesCS7B02G315800.1 454 49.53 5.71 67.55 0.719 29.07 7.05 1.54 62.33 N
Ta7BG2-like76 TraesCS7B02G372000.1 250 27.76 7.77 64.83 0.853 28.80 10.40 6.00 54.80 N
Ta7BG2-like77 TraesCS7B02G372100.1 240 27.00 9.12 64.75 0.945 25.00 13.33 7.50 54.17 N
Ta7BG2-like78 TraesCS7B02G372200.1 245 27.17 7.75 72.37 0.736 33.06 6.53 5.71 54.69 N
Ta7BG2-like79 TraesCS7B02G385700.1 348 37.41 7.17 53.37 0.449 39.08 7.18 3.74 50.00 N
Ta7DG2-like80 TraesCS7D02G334100.1 517 55.27 8.40 46.25 0.750 33.27 7.54 4.84 54.35 N
Ta7DG2-like81 TraesCS7D02G347500.1 458 48.96 5.51 65.44 0.369 29.69 6.33 2.84 61.14 N
Ta7DG2-like82 TraesCS7D02G409100.1 454 49.40 5.78 64.55 0.667 28.63 7.27 1.32 62.78 N
Ta7DG2-like83 TraesCS7D02G457300.1 250 27.67 8.33 64.87 0.858 27.20 8.80 6.00 58.00 N
Ta7DG2-like84 TraesCS7D02G457400.1 251 27.67 7.16 73.87 0.881 28.29 7.17 6.77 57.77 N
Ta7DG2-like85 TraesCS7D02G457500.1 246 27.74 9.21 67.18 0.798 32.93 9.35 6.91 50.81 N
Ta7DG2-like86 TraesCS7D02G457600.1 247 27.27 6.50 72.08 0.678 35.22 8.50 4.86 51.42 N
Ta7DG2-like87 TraesCS7D02G470000.1 348 37.40 7.17 52.82 0.449 41.38 6.90 4.89 46.84 N

Fig. 1

Phylogenetic relationships, architectures of the conserved protein motifs and gene structures in wheat G2-like gene A: phylogenetic tree was constructed based on the full-length sequences of wheat G2-like proteins using MEGA 7. B: the motif composition of the wheat G2-like proteins. Different colors indicate motif 1-motif 10. The length of the protein can be estimated using the scale at the bottom. C: the exon-intron structures of wheat G2-like genes. Green boxes indicate untranslated 5-regions and 3-regions; yellow boxes indicate exons; and black lines indicate introns."

Fig. 2

Chromosome locations of wheat G2-like genes The scale represents Mb."

Fig. 3

Chromosomal positions and synteny relationships of G2-like genes in wheat All syntenic blocks and genes are linked by the grey lines, and segmental duplication pairs of G2-like genes are highlighted by red lines."

Fig. 4

Cis-acting elements related to stress resistance in the promoter region of wheat G2-like gene Different colored boxes indicate different cis-acting elements in the scale at the bottom."

Fig. 5

Relative expression profile of 87 G2-like genes in grain, leaf, root, and spike at different growth stages S: at seedling stage; V: at vegetative stage; R: at reproductive stage. The red or green colors stand for the higher or lower relative abundance of each transcript in each sample."

Fig. 6

Relative expression pattern of G2-like gene under heat, drought, and the combined stress of heat and drought D1, D6: drought treatment of 1 h and 6 h; H1, H6: heat treatment of 1 h and 6 h; D+H1, D+H6: heat and drought treatments of 1h and 6 h. The red and green colors represent the higher or lower relative abundance, respectively."

Fig. 7

Quantitative real-time PCR analysis of the response of 14 G2-like genes to NaCl and PEG treatments * indicates significant differences between the stress conditions and the control condition (P<0.05)."

Fig. 8

Response of 14 G2-like genes to ABA, GA, and IAA treatments by qRT-PCR * indicates significant differences between the stress conditions and the control condition at P < 0.05."

[1] Janmohannadi M, Zolla L, Rinalducci S M. Low temperature tolerance in plants: changes at the protein level. Phytochemistry, 2015, 117: 76-89.
doi: S0031-9422(15)30012-1 pmid: 26068669
[2] Rinalducci S, Egidi M G, Karimzadeh G, Jazii F R, Zolla L. Proteomic analysis of a spring wheat cultivar in response to prolonged cold stress. Electrophoresis, 2011, 32: 1807-1818.
doi: 10.1002/elps.201000663 pmid: 21710550
[3] Gibson L R, Paulsen G. Yield components of wheat grown under high temperature stress during reproductive growth. Crop Sci, 1999, 39: 1841-1846.
doi: 10.2135/cropsci1999.3961841x
[4] Farooq M, Hussain M, Siddique K H M. Drought stress in wheat during flowering and grain-filling periods. Crit Rev Plant Sci, 2014, 33: 331-349.
doi: 10.1080/07352689.2014.875291
[5] Mohammadi R. Efficiency of yield-based drought tolerance indices to identify tolerant genotypes in durum wheat. Euphytica, 2016, 211: 71-89.
doi: 10.1007/s10681-016-1727-x
[6] Ding H, Ma D, Huang X, Hou J, Wang C, Xie Y, Wang Y, Qin H, Guo T. Exogenous hydrogen sulfide alleviates salt stress by improving antioxidant defenses and the salt overly sensitive pathway in wheat seedlings. Acta Physiol Plant, 2019, 41: 123.
doi: 10.1007/s11738-019-2918-6
[7] Saqib M, Akhtar J, Qureshi R H. Pot study on wheat growth in saline and waterlogged compacted soil: I. Grain yield and yield components. Soil Tillage Res, 2004, 77: 169-177.
doi: 10.1016/j.still.2003.12.004
[8] Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. AP2/ERF family transcription factors in plant abiotic stress responses. BBA-Gene Regul Mech, 2012, 1819: 86-96.
[9] Chrispeels H E, Oettinger H, Janvier N, Tague B W. AtZFP1, encoding Arabidopsis thaliana C2H2 zinc-finger protein 1, is expressed downstream of photomorphogenic activation. Plant Mol Biol, 2000, 42: 279-290.
pmid: 10794528
[10] Jenkins M T. A second gene producing golden plant color in maize. Am Nat, 1926, 60: 484-488.
doi: 10.1086/280119
[11] Brand A, Borovsky Y, Hill T, Rahman K A A, Bellalou A, Van Deynze A, Paran I. CaGLK2 regulates natural variation of chlorophyll content and fruit color in pepper fruit. Theor Appl Genet, 2014, 127: 2139-2148.
doi: 10.1007/s00122-014-2367-y
[12] Fitter D W, Martin D J, Copley M J, Scotland R W, Langdale J A. GLK gene pairs regulate chloroplast development in diverse plant species. Plant J, 2002, 31: 713-727.
doi: 10.1046/j.1365-313x.2002.01390.x pmid: 12220263
[13] Powell A L T, Nguyen C V, Hill T, Cheng K L, Figueroa-Balderas R, Aktas H, Ashrafi H, Pons C, Fernández-Muñoz R, Vicente A, Lopez-Baltazar J, Barry C S, Liu Y S, Chetelat R, Granell A, Van Deynze A, Giovannoni J J, Bennett A B. Uniform ripening encodes a Golden 2-like transcription factor regulating tomato fruit chloroplast development. Science, 2012, 336: 1711-1715.
doi: 10.1126/science.1222218 pmid: 22745430
[14] Jarvis P, López-Juez E. Biogenesis and homeostasis of chloroplasts and other plastids. Nat Rev Mol Cell Biol, 2013, 14: 787-802.
doi: 10.1038/nrm3702
[15] Li P, Ponnala L, Gandotra N, Wang L, Si Y, Tausta S L, Kebrom T H, Provart N, Patel R, Myers C R, Reidel E J, Turgeon R, Liu P, Sun Q, Nelson T, Brutnell T P. The developmental dynamics of the maize leaf transcriptome. Nat Genet, 2010, 42: 1060-1067.
doi: 10.1038/ng.703 pmid: 21037569
[16] Chang Y M, Liu W Y, Shih A C-C, Shen M N, Lu C H, Lu M-Y J, Yang H W, Wang T Y, Chen S C-C, Chen S M, Li W H, Ku M S B. Characterizing regulatory and functional differentiation between maize mesophyll and bundle sheath cells by transcriptomic analysis. Plant Physiol, 2012, 160: 165-177.
doi: 10.1104/pp.112.203810
[17] 刘俊芳. 番茄G2-like转录因子家族生物信息学分析及抗逆相关基因鉴定. 东北农业大学硕士学位论文, 黑龙江哈尔滨, 2018.
Liu J F. Bioinformatics Analysis of Tomato G2-like Transcription Factor Family and Identification of Resistance-related Genes. MS Thesis of Northeast Agricultural University, Harbin, Heilongjiang, China, 2018. (in Chinese with English abstract)
[18] Petridis A, Döll S, Nichelmann L, Bilger W, Mock H P. Arabidopsis thaliana G2-LIKE FLAVONOID REGULATOR and BRASSINOSTEROID ENHANCED EXPRESSION1 are low-temperature regulators of flavonoid accumulation. New Phytol, 2016, 211: 912-925.
doi: 10.1111/nph.2016.211.issue-3
[19] Liu F, Xu Y, Han G, Zhou L, Ali A, Zhu S, Li X. Molecular evolution and genetic variation of G2-like transcription factor genes in maize. PLoS One, 2016, 11: e0161763.
[20] Nagatoshi Y, Mitsuda N, Hayashi M, Inoue S, Okuma E, Kubo A, Murata Y, Seo M, Saji H, Kinoshita T, Oheme-Takagi M. GOLDEN 2-LIKE transcription factors for chloroplast development affect ozone tolerance through the regulation of stomatal movement. Proc Natl Acad Sci USA, 2016, 113: 4218-4223.
doi: 10.1073/pnas.1513093113 pmid: 27035938
[21] Chen M, Ji M, Wen B, Liu L, Li S, Chen X, Gao D, Li L. GOLDEN 2-LIKE transcription factors of plants. Front Plant Sci, 2016, 7: 1509.
pmid: 27757121
[22] Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol, 2016, 33: 1870-1874.
doi: 10.1093/molbev/msw054 pmid: 27004904
[23] Chen C, Xia R, Chen H, He Y. TBtools, a toolkit for biologists integrating various HTS-data handling tools with a user-friendly interface. Mol Plant, 2018, 13: 1194-1202.
doi: 10.1016/j.molp.2020.06.009
[24] Wang Y, Tang H, DeBarry J D, Tan X, Li J, Wang X, Lee T, Jin H, Marler B, Guo H, Kissinger J C, Paterson 1 A H. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucl Acids Res, 2012, 40: e49.
[25] Krzywinski M, Schein J, Birol İ, Connors J, Gascoyne R, Horsman D, Jones S J, Marra M A. Circos: an information aesthetic for comparative genomics. Genom Res, 2009, 19: 1639-1645.
doi: 10.1101/gr.092759.109
[26] Zhang Z, Li J, Zhao X Q, Wang J, Wong G K S, Yu J. KaKs_Calculator: calculating Ka and Ks through model selection and model averaging. Genom Proteom Bioinf, 2006, 4: 259-263.
doi: 10.1016/S1672-0229(07)60007-2 pmid: 17531802
[27] Kang C H, Jung W Y, Kang Y H, Kim J Y, Kim D G, Jeong J C, Baek D W, Jin J B, Lee J Y, Kim M O, Chung W S, Mengiste T, Koiwa H, Kwak S S, Bahk J D, Lee S Y, Nam J S, Yun D J, Cho M J. AtBAG6, a novel calmodulin-binding protein, induces programmed cell death in yeast and plants. Cell Death Differ, 2006, 13: 84-95.
pmid: 16003391
[28] Koundrioukoff S, Polo S, Almouzni G. Interplay between chromatin and cell cycle checkpoints in the context of ATR/ATM- dependent checkpoints. DNA Repair, 2004, 3: 969-978.
doi: 10.1016/j.dnarep.2004.03.010 pmid: 15279783
[29] Meshorer E. Chromatin in embryonic stem cell neuronal differentiation. Histol Histopathol, 2007, 22: 311-319.
doi: 10.14670/HH-22.311 pmid: 17163405
[30] Cannon S B, Mitra A, Baumgarten A, Young N D, May G. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol, 2004, 4: 10.
doi: 10.1186/1471-2229-4-10
[31] Kong F, Wang J, Cheng L, Liu S, Wu J, Peng Z, Lu G. Genome-wide analysis of the mitogen-activated protein kinase gene family in Solanum lycopersicum Gene, 2012, 499: 108-120.
doi: 10.1016/j.gene.2012.01.048
[32] Tao Y, Wang F, Jia D, Li J, Zhang Y, Jia C, Wang D, Pan H. Cloning and functional analysis of the promoter of a stress- inducible gene (ZmRXO1) in maize. Plant Mol Biol Rep, 2014, 33: 200-208.
doi: 10.1007/s11105-014-0741-1
[33] Lee S C, Kim S H, Kim S R. Drought inducible OsDhn1 promoter is activated by OsDREB1A and OsDREB1D. J Plant Biol, 2013, 56: 115-121.
doi: 10.1007/s12374-012-0377-3
[34] Nakashima K, Jan A, Todaka D, Maruyama K, Goto S, Shinozaki K, Yamaguchi-Shinozaki K. Comparative functional analysis of six drought-responsive promoters in transgenic rice. Planta, 2014, 239: 47-60.
doi: 10.1007/s00425-013-1960-7 pmid: 24062085
[35] 张新宇, 赵兰杰, 李艳军. 盐胁迫对拟南芥AtPUB18基因的诱导表达及其启动子分析. 西北植物学报, 2014, 34(1): 54-59.
Zhang X Y, Zhao L J, Li Y J. Salt Stress induced expression and promoter analysis of AtPUB18 gene in Arabidopsis thaliana. Acta Bot Boreali-Occident Sin, 2014, 34(1): 54-59. (in Chinese with English abstract)
[36] Yasumura Y, Moylan E C, Langdale J A. A conserved transcription factor mediates nuclear control of organelle biogenesis in anciently diverged land plants. Plant Cell, 2005, 17: 1894-1907.
doi: 10.1105/tpc.105.033191 pmid: 15923345
[37] Ahmad R, Liu Y, Wang T J, Meng Q, Yin H, Wang X, Wu Y, Nan N, Liu B, Zheng Y X. GOLDEN2-LIKE transcription factors regulate WRKY40 expression in response to abscisic acid. Plant Physiol, 2019, 179: 1844-1860.
doi: 10.1104/pp.18.01466
[38] Yin X, Cui Y, Wang M, Xia X. Overexpression of a novel MYB-related transcription factor, OsMYBR1, confers improved drought tolerance and decreased ABA sensitivity in rice. Biochem Biophys Res Commun, 2017, 490: 1355-1361.
doi: 10.1016/j.bbrc.2017.07.029
[39] Guo H, Wu T, Li S, He Q, Yang Z, Zhang W, Gan Y, Sun P, Xiang G, Zhang H, Deng H. The methylation patterns and transcriptional responses to chilling stress at the seedling stage in rice. Int J Mol Sci, 2019, 20: 5089-5106.
doi: 10.3390/ijms20205089
[40] Sagar M, Chervin C, Mila I, Hao Y, Roustan J, Benichou M, Gibon Y, Biais B, Maury P, Latche A, Pech J C, Bouzayen M, Zouine M. SlARF4, an auxin response factor involved in the control of sugar metabolism during tomato fruit development. Plant Physiol, 2013, 161: 1362-1374.
doi: 10.1104/pp.113.213843 pmid: 23341361
[1] ZHU Xu-Dong, YANG Lan-Feng, CHEN Yuan-Yuan, HOU Ze-Hao, LUO Yi-Rou, XIONG Ze-Hao, FANG Zheng-Wu. Biological functional analysis of common buckwheat (Fagopyrum esculentum) FeSGT1 gene in enhancing drought stress resistance [J]. Acta Agronomica Sinica, 2023, 49(6): 1573-1583.
[2] WANG Hao, SUN Ni-Na, WANG Chu, XIAO Lu-Ning, XIAO Bei, LI Dong, LIU Jie, QIN Ran, WU Yong-Zhen, SUN Han, ZHAO Chun-Hua, LI Lin-Zhi, CUI Fa, LIU Wei. Genetic basis analysis of high-yielding in Yannong wheat varieties [J]. Acta Agronomica Sinica, 2023, 49(6): 1584-1600.
[3] GAO Xin, GUO Lei, SHAN Bao-Xue, XIAO Yan-Jun, LIU Xiu-Kun, LI Tao-Sheng, LIU Jian-Jun, ZHAO Zhen-Dong, CAO Xin-You. Types and ratios of starch granules in grains and their roles in the formation and improvement of wheat quality properties [J]. Acta Agronomica Sinica, 2023, 49(6): 1447-1454.
[4] MEI Yu-Qin, LIU Yi, WANG Chong, LEI Jian, ZHU Guo-Peng, YANG Xin-Sun. Genome-wide identification and expression analysis of PHB gene family in sweet potato [J]. Acta Agronomica Sinica, 2023, 49(6): 1715-1725.
[5] LU Mao-Ang, PENG Xiao-Ai, ZHANG Ling, WANG Jian-Lai, HE Xian-Fang, ZHU Yu-Lei. Genetic diversity of wheat breeding parents revealed by 55K SNP-based microarray [J]. Acta Agronomica Sinica, 2023, 49(6): 1708-1714.
[6] LEI Xin-Hui, LENG Jia-Jun, TAO Jin-Cai, WAN Chen-Xi, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, FENG Bai-Li, GAO Jin-Feng. Effects of foliar spraying selenium on photosynthetic characteristics, yield, and selenium accumulation of common buckwheat (Fagopyrum esculentum M.) [J]. Acta Agronomica Sinica, 2023, 49(6): 1678-1689.
[7] FENG Lian-Jie, YU Zhen-Wen, ZHANG Yong-Li, SHI Yu. Effects of irrigation on tiller occurrence, photo-assimilates production and distribution in different stem and tillers and spike formation in wheat#br# [J]. Acta Agronomica Sinica, 2023, 49(6): 1653-1667.
[8] LIU Jia, GONG Fang-Yi, LIU Ya-Xi, YAN Ze-Hong, ZHONG Xiao-Ying, CHEN Hou-Lin, HUANG Lin, and WU Bi-Hua. Genome-wide association study for agronomic traits in common wheat lines derived from wild emmer wheat [J]. Acta Agronomica Sinica, 2023, 49(5): 1184-1196.
[9] ZHANG Xiao, LU Cheng-Bin, JIANG Wei, ZHANG Yong, LYU Guo-Feng, WU Hong-Ya, WANG Chao-Shun, LI Man, WU Su-Lan, GAO De-Rong. Quality selection indices and parent combination principle of weak-gluten wheat [J]. Acta Agronomica Sinica, 2023, 49(5): 1282-1291.
[10] SUN Xian-Jun, JIANG Qi-Yan, HU Zheng, LI Hong-Bo, PANG Bin-Shuang, ZHANG Feng-Ting, ZHANG Sheng-Quan, ZHANG Hui. Identification and evaluation of wheat germplasm resources at seedling stage [J]. Acta Agronomica Sinica, 2023, 49(4): 1132-1139.
[11] ZHANG Jin-Xin, GE Jun-Zhu, MA Wei, DING Zai-Song, WANG Xin-Bing, LI Cong-Feng, ZHOU Bao-Yuan, ZHAO Ming. Research advance on annual water use efficiency of winter wheat-summer maize cropping system in North China Plain [J]. Acta Agronomica Sinica, 2023, 49(4): 879-892.
[12] ZHU Zhi, LI Long, LI Chao-Nan, MAO Xin-Guo, HAO Chen-Yang, ZHU Ting, WANG Jing-Yi, CHANG Jian-Zhong, JING Rui-Lian. Transcription factor TaMYB5-3B is associated with plant height and 1000- grain weight in wheat [J]. Acta Agronomica Sinica, 2023, 49(4): 906-916.
[13] ZHOU Bin-Han, YANG Zhu, WANG Shu-Ping, FANG Zheng-Wu, HU Zan-Min, XU Zhao-Shi, ZHANG Ying-Xin. Screening of active LTR retrotransposons in wheat (Triticum aestivum L.) seedlings and analysis of their responses to abiotic stresses [J]. Acta Agronomica Sinica, 2023, 49(4): 966-977.
[14] YANG Bin, QIAO Ling, ZHAO Jia-Jia, WU Bang-Bang, WEN Hong-Wei, ZHANG Shu-Wei, ZHENG Xing-Wei, ZHENG Jun. QTL mapping and validation of chlorophyll content of flag leaves in wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2023, 49(3): 744-754.
[15] WANG Xue, GU Shu-Bo, LIN Xiang, WANG Wei-Yan, ZHANG Bao-Jun, ZHU Jun-Ke, WANG Dong. Effects of supplemental irrigation with micro-sprinkling hoses and water and fertilizer integration on yield and water and nitrogen use efficiency in winter wheat [J]. Acta Agronomica Sinica, 2023, 49(3): 784-794.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .