Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (6): 1518-1531.doi: 10.3724/SP.J.1006.2023.24153

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Effects of BnMAPK2 on drought tolerance in Brassica napus

YUAN Da-Shuang1,2,3(), ZHANG Xiao-Li1,2, ZHU Dong-Ming1,2, YANG You-Hong1,2, YAO Meng-Nan1,2, LIANG Ying1,2,*()   

  1. 1College of Agronomy and Biotechnology, Southwest University/Chongqing Engineering Research Center for Rapeseed, Chongqing 400715, China
    2Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
    3Natural Resources Bureau of Liuzhi Special Economic Zone, Liupanshui City, Guizhou Province, Liupanshui 553400, Guizhou, China
  • Received:2022-07-01 Accepted:2022-10-10 Online:2023-06-12 Published:2023-04-07
  • Contact: *E-mail: yliang@swu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(31872876)

Abstract:

The mitogen-activated protein kinase (MAPK) cascade is involved in various biotic and abiotic stress responses in plants. BnMAPK2 belongs to the most downstream C-family genes in the MAPK cascade pathway. In this study, BnMAPK2 overexpression (OE-MAPK2) and RNA interference expression (RNAi-MAPK2) transgenic Brassica napus were successfully obtained. Under drought conditions, the drought tolerance of OE-MAPK2 plants was increased, and the drought tolerance of RNAi-MAPK2 plants was decreased. The related physiological indicators showed that under drought stress BnMAPK2 could slow down the degree of leaf dehydration, promote the accumulation of proline in plants, reduce the content of malondialdehyde, and increase the activity of POD at the later stage of drought. We compared the differences in the relative expression levels between transgenic and wild-type plants in the drought-related genes (P5CSB, SCE1), BnMAPK2-interacting drought-related genes (STRS2, CRL1), and STRS2-dependent ABA signaling pathway-related genes (RD22, MYC, SnRK2). The results showed that BnMAPK2 positively regulated the relative expression levels of P5CSB, SCE1, CRL1, RD22, MYC, and SnRK2, negatively regulated the relative expression levels of STRS2, and the relative expression trends of genes related to STRS2-dependent ABA signaling pathway in OE-MAPK2 plants and strs2 mutants were consistent. Therefore, it was speculated that BnMAPK2 can increase plant drought tolerance by regulating the in vivo permeability, leaf water content, cell membrane and protein structure stability, scavenging free radicals, and reducing membrane lipid peroxidation, which can also negatively regulate STRS2 by interacting with STRS2. The relative expression of the genes mediated the STRS2-dependent ABA signaling pathway and increased the drought tolerance of plants. This study lays a foundation for further elucidating the anti-stress mechanism of BnMAPK2 gene.

Key words: Brassica napus, BnMAPK2, drought tolerance, qRT-PCR

Table 1

Primers used in this study"

引物名称
Primer name
上游引物
Forward sequence (5′-3′)
下游引物
Reverse sequence (5′-3′)
OV-BnMAPK2 CACCATGTTATTGCATAACTTGTCTGAAGG GAGCTCAGAGTTAACAGTTTCTGGA
impk2-A ctGACGTCTATTCCCGGGGACAGAATGTC cgCCATGGTCTGAAGCAGATCAATGGCTAG
impk2-B ctGGATCCTATTCCCGGGGACAGAATGTC cgTCTAGATCTGAAGCAGATCAATGGCTAG
F35s3ND GGAAGTTCATTTCATTTGGAGAG GCTGCATAATTCTCGGGGCAGCA
Bar CGACATCCGCCGTGCCACCGA CAAATCTCGGTGACGGGCAGG
26S CACAATGATAGGAAGAGCCGAC CAAGGGAACGGGCTTGGCAGAATC
ACT7 TGGGTTTGCTGGTGACGAT TGCCTAGGACGACCAACAATACT
MAPK2-q GGGGACAGAATGTCTTAACCAGA GGGAGAGACTCTATGTATCTTTTG
P5CSB CAGAAGCCACAGACTGAACTTG AAACTGCTATCAGTCACCAGCA
PLC CTGATCGATGTTCAGAAGCAAG TCGAGGTGGAGACCGTTACTAT
SCE1 AGGCTTTTTCCACCCTAATGTCTATCCA ACCCTTTTCTTGTACTCAACTGCATCC
STRS2 GAAGCAAGATCATGAGTTCGTC CTGGTTCTGTAACTCTGAGGTT
SnRK ATATCGAGCGAGGTGAGAAGA AGCTGCGTATTCCATAACAATA
BnMYC2 CGACGATAACGCCTCTATGA CCTTCGTTTGTCCCTTCAAT
BnRD22 CGCAGCGGCTGGAGTAAAGA ACCGCGTAAACGCTCGTCAT

Fig. 1

Identification of the relative expression levels of BnMAPK2 genes in transgenic plants and wild-type plants Different lowercase letters are significantly different at P < 0.05 within the same treatment."

Fig. 2

Relative expression levels of BnMAPK2 genes under drought conditions Data are presented as means ± SDs (n = 3)."

Fig. 3

Comparison of leaf water content and phenotype between transgenic and wild-type plants Data are presented as means ± SDs (n = 3). *, **, and *** indicate significant differences at the 0.05, 0.01, and 0.001 probability levels, respectively. Significance refers to the difference between the transgenic plant and the wild type."

Fig. 4

Comparison of proline and malondialdehyde between transgenic and wild-type plants under natural drought conditions Data are presented as means ± SDs (n = 3). *, **, and *** indicate significant differences at the 0.05, 0.01, and 0.001 probability levels, respectively. Significance refers to the difference between the transgenic plant and the wild type."

Fig. 5

Comparison of antioxidant enzyme contents in transgenic plants and wild-type plants under natural drought conditions Data are presented as means ± SDs (n = 3). *, **, and *** indicate significant differences at the 0.05, 0.01, and 0.001 probability levels, respectively. Significance refers to the difference between the transgenic plant and the wild type."

Fig. 6

Relative expression levels of drought-related genes in transgenic and wild-type plants under drought conditions Data are presented as means ± SDs (n = 3). *, **, and *** indicate significant differences at the 0.05, 0.01, and 0.001 probability levels, respectively. Significance refers to the difference between the transgenic plant and the wild type."

Fig. 7

Relative expression levels of BnMAPK2 interacting genes under drought conditions Data are presented as means ± SDs (n = 3). *, **, and *** indicate significant differences at the 0.05, 0.01, and 0.001 probability levels, respectively. Significance refers to the difference between the transgenic plant and the wild type."

Fig. 8

Gene expression patterns related to ABA pathway Data are presented as mean ± SD (n = 3). *, **, and *** indicate significant differences at the 0.05, 0.01, and 0.001 probability levels, respectively. Significance refers to the difference between the transgenic plant and the wild type."

[1] 王汉中. 我国油菜产需形势分析及产业发展对策. 中国油料作物学报, 2007, 29: 101-105.
Wang H Z. Analysis of my country’s rapeseed production and demand situation and industrial development countermeasures. Chin J Oil Crop Sci, 2007, 29: 101-105. (in Chinese with English abstract)
[2] 杨春杰, 张学昆, 邹崇顺, 程勇, 郑普英, 李桂英. PEG-6000模拟干旱胁迫对不同甘蓝型油菜品种萌发和幼苗生长的影响. 中国油料作物学报, 2007, 29: 425-430.
Yang C J, Zhang X K, Zou C S, Cheng Y, Zheng P Y, Li G Y. Effects of PEG-6000 simulated drought stress on germination and seedling growth of different Brassica napus varieties. Chin J Oil Crop Sci, 2007, 29: 425-430. (in Chinese with English abstract)
[3] 伊淑丽. 高温对不同基因型甘蓝型油菜影响的生理生化机理研究. 西南大学博士学位论文, 重庆, 2008.
Yi S L. Physiological and Biochemical Mechanisms of the Effects of High Temperature on Different Genotypes of Brassica napus. PhD Dissertation of Southwest University, Chongqing, China, 2008. (in Chinese with English abstract)
[4] Xu J, Zhang S. Mitogen-activated protein kinase cascades in signaling plant growth and development. Trends Plant Sci, 2015, 20: 56-64.
doi: 10.1016/j.tplants.2014.10.001 pmid: 25457109
[5] Danquah A, Zelicourt A D, Colcombet J, Hirt H. The role of ABA and MAPK signaling pathways in plant abiotic stress responses. Biotechnol Adv, 2014, 32: 40-52.
doi: 10.1016/j.biotechadv.2013.09.006 pmid: 24091291
[6] Hamel L P, Nicole M C, Sritubtim S, Morency M J, Ellis M, Ehlting J, Beaudoin N, Barbazuk B, Dan K, Lee J. Ancient signals: comparative genomics of plant MAPK and MAPKK gene families. Trends Plant Sci, 2006, 11: 192-198.
doi: 10.1016/j.tplants.2006.02.007
[7] Kumar K, Raina S K, Sultan S M. Arabidopsis MAPK signaling pathways and their cross talks in abiotic stress response. J Plant Biochem Biotechnol, 2020, 29: 1-15.
doi: 10.1007/s13562-020-00550-3
[8] Mahmood T, Khalid S, Abdullah M, Ahmed Z, Shah M K N, Ghafoor A, Du X. Insights into drought stress signaling in plants and the molecular genetic basis of cotton drought tolerance. Cells, 2019, 9: 105.
doi: 10.3390/cells9010105
[9] Kovtun Y, Chiu W L, Tena G, Sheen J. Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci USA, 2000, 97: 2940-2945.
doi: 10.1073/pnas.97.6.2940 pmid: 10717008
[10] Du X, Jin Z, Zhang L, Liu X, Yang G, Pei Y. H2S is involved in ABA-mediated stomatal movement through MPK4 to alleviate drought stress in Arabidopsis thaliana. Plant Soil, 2019, 435: 295-307.
doi: 10.1007/s11104-018-3894-0
[11] 王伟威, 林浩, 唐晓飞, 魏崃, 董兴月, 吴广锡, 刘丽君. 干旱胁迫下大豆相关基因的表达特性. 分子植物育种, 2014, 12: 903-908.
Wang W W, Lin H, Tang X F, Wei L, Dong X Y, Wu G X, Liu L J. Expression characteristics of soybean-related genes under drought stress. Mol Plant Breed, 2014, 12: 903-908. (in Chinese with English abstract)
[12] 潘月云, 朱寿松, 张银东, 陈银华. 木薯促分裂原激活蛋白激酶MeMAPK2基因的克隆和功能分析. 分子植物育种, 2019, 17: 1112-1120.
Pan Y Y, Zhu S S, Zhang Y D, Chen Y H. Cloning and functional analysis of cassava mitogen-activated protein kinase MeMAPK2 gene. Mol Plant Breed, 2019, 17: 1112-1120 (in Chinese with English abstract)
[13] Ortiz-Masia D, Perez-Amador M A, Carbonell P, Aniento F, Carbonell J, Marcote M J. Characterization of PsMPK2, the first C1 subgroup MAP kinase from pea (Pisum sativum L.). Planta, 2008, 227: 1333-1342.
doi: 10.1007/s00425-008-0705-5 pmid: 18283488
[14] Agrawal G K, Rakwal R, Iwahashi H. Isolation of novel rice (Oryza sativa L.) multiple stress responsive MAP kinase gene, OsMSRMK2, whose mRNA accumulates rapidly in response to environmental cues. Biochem Biophy Res Commun, 2002, 294: 1009-1016.
doi: 10.1016/S0006-291X(02)00571-5
[15] 陆俊杏. 甘蓝型油菜及其亲本物种白菜和甘蓝MAPK C组基因家族的克隆及甘蓝型油菜MAPK1的功能鉴定. 西南大学博士学位论文, 重庆, 2013.
Lu J X. Cloning of Brassica napus and Its Parent Species Chinese Cabbage and Brassica napus MAPK Group C Gene Family and Functional Identification of Brassica napus MAPK1. PhD Dissertation of Southwest University, Chongqing, China, 2013. (in Chinese with English abstract)
[16] Wang Z, Wan Y Y, Meng X J, Zhang X L, Yao M N, Miu W J, Zhu D M, Yuan D S, Lu K, Li J N, Qu C M, Liang Y. Genome-wide identification and analysis of MKK and MAPK gene families in Brassica species and response to stress in Brassica napus. Int J Mol Sci, 2021, 22: 544.
doi: 10.3390/ijms22020544
[17] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析. 作物学报, 2022, 48: 840-850.
doi: 10.3724/SP.J.1006.2022.14061
Yuan D S, Deng W Y, Wang Z, Pen Q, Zhang X L, Yao M N, Miu W J, Zhu D M, Li J N, Liang Y. Cloning and functional analysis of BnMAPK2 gene in Brassica napus. Acta Agron Sin, 2022, 48: 840-850. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.14061
[18] Wang Y, Wu W H. Potassium transport and signaling in higher plants. Annu Rev Plant Biol, 2013, 64: 451-476.
doi: 10.1146/annurev-arplant-050312-120153 pmid: 23330792
[19] 康雯. 土壤自然失水胁迫对地锦幼苗生理生化特性的影响. 东北林业大学硕士学位论文, 黑龙江哈尔滨, 2010.
Kang W. Effect of Soil Natural Water Stress on Physiological and Biochemical Indexes in Parthenocissus tricuspidata Seedling. Ms Thesis of Northeast Forestry University, Harbin, Heilongjiang, China, 2010. (in Chinese with English abstract)
[20] 张治安, 张美善, 蔚荣海. 植物生理学实验指导. 北京: 中国农业科学技术出版社, 2004. pp 265-296.
Zhang Z A, Zhang M S, Wei R H. Plant Physiology Experiment Guide. Beijing: China Agricultural Science and Technology Press, 2004. pp 265-296. (in Chinese with English abstract)
[21] 宗学凤, 王三根. 植物生理研究技术. 重庆: 西南师范大学出版社, 2011.
Zong X F, Wang S G. Plant Physiology Research Technology. Chongqing: Southwest Normal University Press, 2011. (in Chinese)
[22] Kant P, Kant S, Gordon M, Shaked R, Barak S. Stress response suppressor 1 and stress response suppressor 2, two DEAD-Box RNA helicases that attenuate Arabidopsis responses to multiple abiotic stresses. Plant Physiol, 2007, 145: 814-830.
doi: 10.1104/pp.107.099895
[23] Prakash S, Wu X, Bhat S R. History, evolution and domestication of Brassica crops. Plant Breed Rev, 2012, 35: 19-84.
[24] 朱斌, 陆俊杏, 彭茜, 翁昌梅, 王淑文, 余浩, 李加纳, 卢坤, 梁颖. 甘蓝型油菜MAPK7基因家族及其启动子的克隆与表达分析. 作物学报, 2013, 39: 789-805.
doi: 10.3724/SP.J.1006.2013.00789
Zhu B, Lu J X, Peng Q, Weng C M, Wang S W, Yu H, Li J N, Lu K, Liang Y. Cloning and expression analysis of MAPK7 gene family and its promoter in Brassica napus. Acta Agron Sin, 2013, 39: 789-805. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.00789
[25] Szabados L, Savouré A. Proline: a multifunctional amino acid. Trends Plant Sci, 2010, 15: 89-97.
doi: 10.1016/j.tplants.2009.11.009 pmid: 20036181
[26] Kishor P, Hong Z, Miao G H, Hu C, Verma D. Overexpression of [delta]-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol, 1995, 108: 1387-1394.
doi: 10.1104/pp.108.4.1387 pmid: 12228549
[27] Hare P D, Cress W A. Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul, 1997, 21: 79-102.
doi: 10.1023/A:1005703923347
[28] Bandurska H, Niedziela J, Pietrowska-Borek M, Nuc K, Chadzinikolau T, Radzikowska D. Regulation of proline biosynthesis and resistance to drought stress in two barley (Hordeum vulgare L.) genotypes of different origin. Plant Physiol Biochem, 2017, 118: 427-437.
doi: 10.1016/j.plaphy.2017.07.006
[29] Sharma P, Dubey R S. Ascorbate peroxidase from rice seedlings: properties of enzyme isoforms, effects of stresses and protective roles of osmolytes. Plant Sci, 2004, 167: 541-550.
doi: 10.1016/j.plantsci.2004.04.028
[30] Türkan I, Bor M, Ozdemir F, Koca H. Differential responses of lipid peroxidation and antioxidants in the leaves of drought- tolerant P. acutifolius Gray and drought-sensitive P. vulgaris L. subjected to polyethylene glycol mediated water stress. Plant Sci, 2005, 168: 223-231.
doi: 10.1016/j.plantsci.2004.07.032
[31] Per T S, Khan N A, Reddy P S, Masood A, Hasanuzzaman M, Khan M I R, Anjum N A. Approaches in modulating proline metabolism in plants for salt and drought stress tolerance: phytohormones, mineral nutrients and transgenics. Plant Physiol Biochem, 2017, 115: 126-140
doi: 10.1016/j.plaphy.2017.03.018
[32] Chaves M M, Oliveira M M. Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J Exp Bot, 2004, 407: 2365-2384.
[33] Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci, 2002, 7: 405-410.
doi: 10.1016/s1360-1385(02)02312-9 pmid: 12234732
[34] Zhang C S, Lu Q, Verma D P. Removal of feedback inhibition of delta 1-pyrroline-5-carboxylate synthetase, a bifunctional enzyme catalyzing the first two steps of proline biosynthesis in plants. J Biol Chem, 1995, 270: 20491-20496.
doi: 10.1074/jbc.270.35.20491 pmid: 7657626
[35] Bandurska H. Does proline accumulated in leaves of water deficit stressed barley plants confine cell membrane injuries? II: Proline accumulation during hardening and its involvement in reducing membrane injuries in leaves subjected to severe osmotic stress. Acta Physiol Plant, 2001, 23: 483-490.
doi: 10.1007/s11738-001-0059-0
[36] Parida A K, Dagaonkar V S, Phalak M S, Aurangabadkar L P. Differential responses of the enzymes involved in proline biosynthesis and degradation in drought tolerant and sensitive cotton genotypes during drought stress and recovery. Acta Physiol Plant, 2008, 30: 619-627.
doi: 10.1007/s11738-008-0157-3
[37] Chakraborty K, Sairam R K, Bhattacharya R C. Salinity-induced expression of pyrrolline-5-carboxylate synthetase determine salinity tolerance in Brassica spp. Acta Physiol Plant, 2012, 34: 1935-1941.
doi: 10.1007/s11738-012-0994-y
[38] Pichler A, Fatouros C, Lee H, Eisenhardt N. SUMO conjugation: a mechanistic view. Biomol Concepts, 2017, 8: 13-36.
doi: 10.1515/bmc-2016-0030 pmid: 28284030
[39] Eisenhardt N, Ilic D, Nagamalleswari E, Pichler A. Biochemical characterization of SUMO-conjugating enzymes by in vitro sumoylation assays. Methods Enzymol. 2019, 618: 167-185.
[40] Ghimire S, Tang X, Liu W, Fu X, Zhang H, Zhang N, Si H. SUMO conjugating enzyme: a vital player of SUMO pathway in plants. Physiol Mol Biol Plants, 2021, 27: 2421-2431.
doi: 10.1007/s12298-021-01075-2
[41] Wang H, Wang M, Xia Z. Overexpression of a maize SUMO conjugating enzyme gene (ZmSCE1) increases sumoylation levels and enhances salt and drought tolerance in transgenic tobacco. Plant Sci, 2019, 281: 113-121.
doi: 10.1016/j.plantsci.2019.01.020
[42] Joo J, Choi D H, Lee Y H, Seo H S, Song S. The rice SUMO conjugating enzymes OsSCE1 and OsSCE3 have opposing effects on drought stress. J Plant Physiol, 2019, 240: 152993.
doi: 10.1016/j.jplph.2019.152993
[43] Stergaard L, Lauvergeat V V, Naested H, Mattsson O, Mundy J. Two differentially regulated Arabidopsis genes define a new branch of the DFR superfamily. Plant Sci, 2001, 160: 463-472.
doi: 10.1016/S0168-9452(00)00407-6
[44] Yin X, Bai YL, Ye T, Yu M, Wu Y, Feng Y Q. Cinnamoyl coA: NADP oxidoreductase-like 1 regulates abscisic acid response by modulating phaseic acid homeostasis in Arabidopsis thaliana. J Exp Bot, 2022, 73: 860-872.
doi: 10.1093/jxb/erab474
[45] Schmid S R, Linder P. D-E-A-D protein family of putative RNA helicases. Mol Microbiol, 1992, 6: 283-291.
pmid: 1552844
[46] Kim J S, Kim K A, Oh T R, Park C M, Kang H. Functional characterization of DEAD-box RNA helicases in Arabidopsis thaliana under abiotic stress conditions. Plant Cell Physiol, 2008, 49: 1563-1571.
doi: 10.1093/pcp/pcn125
[47] Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K. Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell, 1997, 9: 1859-1868.
doi: 10.1105/tpc.9.10.1859 pmid: 9368419
[48] Huai J, Wang M, He J, Zheng J, Dong Z, Lv H, Zhao J, Wang G. Cloning and characterization of the SnRK2 gene family from Zea mays. Plant Cell Rep, 2008, 27: 1861-1868.
doi: 10.1007/s00299-008-0608-8
[49] 沈元月, 黄丛林, 张秀海, 曹鸣庆. 植物抗旱的分子机制研究. 中国生态农业学报, 2002, 10: 30-34.
Shen Y Y, Huang C L, Zhang X H, Cao M Q. Molecular mechanism of plant drought resistance. Chin J Ecol Agric, 2002, 10: 30-34. (in Chinese with English abstract)
[1] PAN Jie-Ming, TIAN Shao-Rui, LIANG Yan-Lan, ZHU Yu-Lin, ZHOU Ding-Gang, QUE You-Xiong, LING Hui, HUANG Ning. Identification and expression analysis of PIN-LIKES gene family in sugarcane [J]. Acta Agronomica Sinica, 2023, 49(2): 414-425.
[2] PU Xue, WANG Kai-Tong, ZHANG Ning, SI Huai-Jun. Relative expression analysis of StMAPKK4 gene and screening and identification of its interacting proteins in potato (Solanum tuberosum L.) [J]. Acta Agronomica Sinica, 2023, 49(1): 36-45.
[3] KE Hui-Feng, ZHANG Zhen, GU Qi-Shen, ZHAO Yan, LI Pei-Yu, ZHANG Dong-Mei, CUI Yan-Ru, WANG Xing-Fen, WU Li-Qiang, ZHANG Gui-Yin, MA Zhi-Ying, SUN Zheng-Wen. Genome-wide association study of root biomass related traits at seeding stage under low phosphorus stress in cotton (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2022, 48(9): 2168-2179.
[4] YANG Xin, LI Yu, LIU Chuan-Bing, ZHANG Li-Lan, HE Qin-Yao, QI Jian-Min, ZHANG Li-Wu. Reference genes screening for expression analysis of secondary cell wall synthesis related genes in jute (Corchorus capsularis) [J]. Acta Agronomica Sinica, 2022, 48(7): 1614-1624.
[5] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[6] WANG Xia, YIN Xiao-Yu, Yu Xiao-Ming, LIU Xiao-Dan. Effects of drought hardening on contemporary expression of drought stress memory genes and DNA methylation in promoter of B73 inbred progeny [J]. Acta Agronomica Sinica, 2022, 48(5): 1191-1198.
[7] LI Zeng-Qiang, DING Xin-Chao, LU Hai, HU Ya-Li, YUE Jiao, HUANG Zhen, MO Liang-Yu, CHEN Li, CHEN Tao, CHEN Peng. Physiological characteristics and DNA methylation analysis under lead stress in kenaf (Hibiscus cannabinus L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1031-1042.
[8] MENG Jiang-Yu, LIANG Guang-Wei, HE Ya-Jun, QIAN Wei. QTL mapping of salt and drought tolerance related traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(3): 462-471.
[9] LU Hai, LI Zeng-Qiang, TANG Mei-Qiong, LUO Deng-Jie, CAO Shan, YUE Jiao, HU Ya-Li, HUANG Zhen, CHEN Tao, CHEN Peng. DNA methylation in response to cadmium stress and expression of different methylated genes in kenaf [J]. Acta Agronomica Sinica, 2021, 47(12): 2324-2334.
[10] Shan-Bin CHEN, Si-Fan SUN, Nan NIE, Bing DU, Shao-Zhen HE, Qing-Chang LIU, Hong ZHAI. Cloning of IbCAF1 and identification on tolerance to salt and drought stress in sweetpotato [J]. Acta Agronomica Sinica, 2020, 46(12): 1862-1869.
[11] ZHANG Huan, YANG Nai-Ke, SHANG Li-Li, GAO Xiao-Ru, LIU Qing-Chang, ZHAI Hong, GAO Shao-Pei, HE Shao-Zhen. Cloning and functional analysis of a drought tolerance-related gene IbNAC72 in sweet potato [J]. Acta Agronomica Sinica, 2020, 46(11): 1649-1658.
[12] Zuo-Min WANG,Jin LIU,Shi-Chao SUN,Xin-Yu ZHANG,Fei XUE,Yan-Jun LI,Jie SUN. Identification and Expression Analysis of Multidrug and Toxic Compound Extrusion Protein Family Genes in Colored Cotton [J]. Acta Agronomica Sinica, 2018, 44(9): 1380-1392.
[13] Long LI,Xin-Guo MAO,Jing-Yi WANG,Xiao-Ping CHANG,Yu-Ping LIU,Rui-Lian JING. Drought Tolerance Evaluation of Wheat Germplasm Resources [J]. Acta Agronomica Sinica, 2018, 44(7): 988-999.
[14] Bin YU,Hong-Yu YANG,Li WANG,Yu-Hui LIU,Jiang-Ping BAI,Feng ZHANG,Di WANG,Jun-Lian ZHANG. Relationship between Potato Canopy-air Temperature Difference and Drought Tolerance [J]. Acta Agronomica Sinica, 2018, 44(7): 1086-1094.
[15] Jian-Wei WANG,Xiao-Lan HE,Wen-Xu LI,Xin-Hong CHEN. Molecular Cloning and Functional Analysis of 1-FFT in Wheat Relatives [J]. Acta Agronomica Sinica, 2018, 44(6): 814-823.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .