Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (6): 1532-1541.doi: 10.3724/SP.J.1006.2023.24121

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Mapping soybean protein QTLs based on high-density genetic map

LIU Ting-Xuan1,2,**(), GU Yong-Zhe2,**(), ZHANG Zhi-Hao3, WANG Jun1,*(), SUN Jun-Ming2,*(), QIU Li-Juan1,2,*()   

  1. 1Yangtze University, Jingzhou 434025, Hubei, China
    2National Key Facility for Gene Resources and Genetic Improvement of MARA/Beijing Key Laboratory of Soybean Biology of MARA/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    3College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
  • Received:2022-05-19 Accepted:2022-10-10 Online:2023-06-12 Published:2022-10-20
  • Contact: *E-mail: qiulijuan@caas.cn;E-mail: wangjagri@yangtzeu.edu.cn;E-mail: qiulijuan@caas.cn
  • About author:First author contact:**Contributed equally to this work
  • Supported by:
    Sino-Uruguayan Joint Laboratory(2018YFE0116900)

Abstract:

Soybean is an important food crop and economic crop, and its grain protein is about 40%, which is one of the main sources of high-quality vegetable protein. Mining the quantitative trait loci (QTL) that control soybean high protein and molecular marker breeding are of great significance for the breeding of high protein soybean. In this study, a recombinant inbred line population consisting of 192 lines constructed by crossing Zhonghuang 35 (ZH35) and Zhonghuang 13 (ZH13) with significant differences in protein content was used as the experimental materials. A high-density genetic map containing 4879 bin markers was constructed with the total genetic distance of 3760.71 cM and the genetic distance between adjacent markers of 0.77 cM by resequencing the two parents and the RIL population. The RIL population and its parents were grown in Shunyi, Beijing and Puyang, Henan, respectively. A total of 15 protein content-related QTL loci were detected in the two environments, which were distributed on chromosomes 5, 12, 15, 17, 18, 19, and 20, respectively. The contribution rate was 4.36%-11.39%, among which, qPro-20-1 and qPro-20-3 were detected in Shunyi, Beijing and Puyang, Henan, respectively. The contribution rates of the two QTLs were 7.65% and 7.58%, respectively, and the overlapping regions included 33 genes. This study is helpful for fine mapping and map-based cloning of soybean protein content-related genes, and provides genetic resources for further breeding of high-protein soybean varieties.

Key words: soybean, protein content, recombinant inbred lines, bin map, QTL mapping

Table 1

Statistical analysis of protein content in two generations of parents recombinant inbred lines"

环境
Environment
中黄35
Zhonghuang 35
(mean±SD, %)
中黄13
Zhonghuang 13 (mean±SD, %)
RIL群体RIL population
最大值
Max. (%)
最小值
Min. (%)
变异系数
CV (%)
峰度
Kurtosis
偏度
Skewness
北京顺义
Shunyi, Beijing
38.24±0.17 44.99±0.25 46.00 37.51 2.48 0.22 -0.07
河南濮阳
Puyang, Henan
38.20±0.22 44.20±0.32 45.98 37.04 2.98 -0.17 0.02

Fig. 1

F2:6 population protein content phenotype box plots in two environments ***: P < 0.001."

Fig. 2

Distribution of protein content and oil phenotype of ZH35/ZH13 RIL population and parents A: the distribution of protein content of RIL population in Shunyi, Beijing; B: the distribution of protein content of RIL population in Puyang, Henan. ZH35: Zhonghuang 35; ZH13: Zhonghuang 13. RIL: the recombinant inbred lines."

Fig. 3

Linkage group marker distribution map X-axis represents chromosome number; Y-axis represents genetic distance (cM); the blue represents the bin mark."

Table 2

Information of molecular on the RIL linkage map derived from Zhonghuang 35/Zhonghuang 13"

染色体
Chr.
上图标记数
Total marker
总图距
Total distance (cM)
平均图距
Average distance (cM)
小于5 cM gap数量/gap总数×100%
Gap less than 5 cM/gap total number×100%
Chr.01 247 169.29 0.69 100
Chr.02 264 213.61 0.81 99.62
Chr.03 301 179.80 0.60 100
Chr.04 226 205.36 0.91 99.56
Chr.05 203 177.41 0.87 100
Chr.06 290 291.38 1.00 98.62
Chr.07 235 186.79 0.79 100
Chr.08 289 216.94 0.75 100
Chr.09 245 183.47 0.75 100
Chr.10 227 199.14 0.88 100
Chr.11 214 219.26 1.02 98.13
Chr.12 205 163.48 0.80 99.02
Chr.13 126 96.81 0.77 97.62
Chr.14 204 153.72 0.75 99.51
Chr.15 402 215.29 0.54 99.75
Chr.16 209 158.00 0.76 100
Chr.17 220 192.44 0.87 99.55
Chr.18 266 198.39 0.75 99.25
Chr.19 299 176.74 0.59 100
Chr.20 207 163.40 0.79 99.52
平均Average 243.95 188.03 0.77 99.51

Table 3

QTLs for soybean protein content detected in two environments"

环境
Environment
位点名称
QTL name
染色体
Chr.
定位区间
Mapping interval (bp)
QTL位置
Position (cM)
阈值
LOD
加性效应
Additive
effect
贡献率
R2 (%)
报道位点
Reported locus
北京顺义
Shunyi, Beijing
qPro-15-1 15 bin3524-bin3532 71.51 3.05 0.33 5.13 [40][41]
qPro-17-1 17 bin4087-bin4090 19.41 2.71 -0.31 4.63 New
qPro-17-2 17 bin4095-bin4110 28.11 3.67 -0.36 6.21 New
qPro-18-1 18 bin4523-bin4526 170.21 2.57 -0.31 4.44 New
qPro-18-2 18 bin4525-bin4529 175.91 4.14 -0.39 7.26 New
qPro-19-1 19 bin4807-bin4811 130.71 2.57 -0.31 4.38 [42]
qPro-19-2 19 bin4816-bin4821 140.61 3.41 -0.36 5.77 [42]
qPro-19-3 19 bin4824-bin4829 147.41 2.85 -0.33 4.88 New
qPro-20-1 20 bin5059-bin5063 161.01 4.48 -0.40 7.65 New
河南濮阳
Puyang, Henan
qPro-5-1 5 bin1167-bin1170 84.81 2.67 -0.38 4.83 [39]
qPro-5-2 5 bin1161-bin1164 91.41 4.82 -0.50 8.51 [36] [37] [38]
qPro-5-3 5 bin1154 100.71 3.50 -0.43 6.29 [36] [36] [38]
qPro-12-1 12 bin2906-bin2911 95.01 3.42 0.42 5.94 New
qPro-20-2 20 bin5046-bin5049 150.61 4.14 -0.46 7.28 New
qPro-20-3 20 bin5057-bin5060 159.11 4.33 -0.47 7.58 New

Fig. 4

Correlation analysis between genotype and phenotypic by bin5059 and bin5060 markers in overlapping regions (A): the correlation analysis between genotype and phenotype of bin5059; (B): the correlation analysis between genotype and phenotype of bin5060. The abscissa is the genotype, low protein is denoted as a and A, high protein content is denoted as band B, and the vertical ordinate is the number of protein content. **: P < 0.01."

Table 4

Functional annotation of candidate genes within overlapping interval"

基因名称
Gene name
功能注释
Functional annotation
Glyma.20G237700 α/β-水解酶折叠蛋白 Alpha/beta-Hydrolase fold-containing protein
Glyma.20G237800 植物转化酶/果胶甲酯酶抑制剂 Plant invertase/pectin methylesterase inhibitor
Glyma.20G238000 脂质生物合成过程 Lipid biosynthetic process
Glyma.20G238400 WD40重复蛋白 WD40 repeat-containing protein
Glyma.20G238500 预测PRP38剪接因子 Predicted PRP38-like splicing factor
Glyma.20G238600 线粒体靶向单链DNA结合蛋白 Mitochondrially targeted single-stranded DNA binding protein
Glyma.20G238700 蛋白质去磷酸化; 蛋白质丝氨酸/苏氨酸磷酸酶活性
Protein dephosphorylation; protein serine/threonine phosphatase activity
Glyma.20G238800 锌指(C3HC4型环指)家族蛋白; BRCT结构域蛋白/RING/U-box蛋白
Zinc finger (C3HC4-type RING finger) family protein; BRCT domain-containing protein/RING/U-box protein
Glyma.20G238900 磷酸甘油酸变位酶家族蛋白 Phosphoglycerate mutase family protein
Glyma.20G239000 干旱响应家族蛋白; 干旱诱导的19蛋白(Di19), 锌结合
Drought-responsive family protein; rought induced 19 protein (Di19), zinc-binding
Glyma.20G239100 细胞内蛋白质转运; 囊泡介导的转运 Intracellular protein transport; vesicle-mediated transport
基因名称
Gene name
功能注释
Functional annotation
Glyma.20G239200 蛋白质转运; 导入α亚型 Protein transport; importin alpha isoform
Glyma.20G239300 多核苷酸转移酶, 核糖核酸酶H样超家族蛋白; 3¢-5¢外切酶活性
Polynucleotidyl transferase, ribonuclease H-like superfamily protein; 3¢-5¢ exonuclease activity
Glyma.20G239600 分泌相关的RAS超家族2; 细胞内蛋白质转运
Secretion-associated RAS super family 2; intracellular protein transport
Glyma.20G239700 PsbP样蛋白2; 光系统II氧进化复合物 PsbP-like protein 2; photosystem II oxygen evolving complex
Glyma.20G239800 跨膜转运; ATP酶活性, 与物质的跨膜运动相耦合
Transmembrane transport; ATPase activity, coupled to transmembrane movement of substances
Glyma.20G240000 碳水化合物代谢过程; β-N-乙酰氨基己糖苷酶活性
Carbohydrate metabolic process; beta-N-acetylhexosaminidase activity
Glyma.20G240200 多核苷酸转移酶, 核糖核酸酶H样超家族蛋白
Polynucleotidyl transferase, ribonuclease H-like superfamily protein
Glyma.20G240300 谷胱甘肽代谢过程; 谷胱甘肽转移酶活性 Glutathione metabolic process; glutathione transferase activity
Glyma.20G240400 质体转录活性17; 钴胺素合成蛋白 Plastid transcriptionally active 17; cobalamin synthesis protein
Glyma.20G240500 裂解和多腺苷酸化特异性因子(CPSF) A亚基蛋白; 通过剪接体剪接mRNA
Cleavage and polyadenylation specificity factor (CPSF) A subunit protein; mRNA splicing, via spliceosome
Glyma.20G240600 α/β-水解酶超家族蛋白; 脂质代谢过程 Alpha/beta-Hydrolases superfamily protein; lipid metabolic process
Glyma.20G240700 核糖体L29家族蛋白; 核糖体的结构成分 Ribosomal L29 family protein; structural constituent of ribosome
Glyma.20G240800 果胶裂解酶样超家族蛋白; 果胶分解代谢过程 Pectin lyase-like superfamily protein; pectin catabolic process
Glyma.20G240900 脂质生物合成过程 Lipid biosynthetic process

Fig. 5

Relative expression levels of seeds at the different developmental stages in the candidate interval of SoyBase website"

[1] Huang J H, Ma Q B, Cai Z D, Xia Q J, Cheng Y B. Identification and mapping of stable QTLs for seed oil and protein content in soybean [Glycine max (L.) Merr]. J Agric Food Chem, 2020, 68: 6448-6460.
doi: 10.1021/acs.jafc.0c01271
[2] Wang J, Chen P, Wang D, Shannon G, Zeng A, Orazaly M, Wu C. Identification and mapping of stable QTL for protein content in soybean seeds. Mol Breed, 2015, 35: 92-102.
doi: 10.1007/s11032-015-0285-6
[3] Pathan S M, Vuong T, Clark K, Lee J D, Sleper D A. Genetic mapping and confirmation of quantitative trait loci for seed protein and oil contents and seed weight in soybean. Crop Sci, 2013, 53: 765-774.
doi: 10.2135/cropsci2012.03.0153
[4] Wilcox J R. Increasing seed protein in soybean with eight cycles of recurrent selection. Crop Sci, 1998, 38: 1536-1540.
doi: 10.2135/cropsci1998.0011183X003800060021x
[5] Keim P, Diers B W, Olson T C, Shoemaker R C. RFLP mapping in soybean: association between marker loci and variation in quantitative traits. Genetics, 1990, 126: 735-742.
doi: 10.1093/genetics/126.3.735 pmid: 1979039
[6] Du W J, Wang M, Fu S X, Yu D Y. Mapping QTLs for seed yield and drought susceptibility index in soybean (Glycine max L.) across different environments. J Genet Genomics, 2009, 36: 721-731.
doi: 10.1016/S1673-8527(08)60165-4
[7] Pipolo C V, Pipolo A E, Haleem A H, Boerma H R, Sinclair T R. Identification of QTLs associated with limited leaf hydraulic conductance in soybean. Euphytica, 2012, 186: 679-686.
doi: 10.1007/s10681-011-0535-6
[8] Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed, 1996, 2: 225-238.
doi: 10.1007/BF00564200
[9] Apuya N R, Frazier B L, Keim P, Roth E J, Lark K G. Restriction fragment length polymorphisms as genetic markers in soybean, Glycine max (L.) Merrill. Theorl Appl Genet, 1988, 75: 889-901.
[10] Keim P S, Diers B W, Olson T C, Shoemaker R C. RFLP mapping in soybean: association between marker loci and variation in quantitative traits. Genetics, 1990, 126: 735-742.
doi: 10.1093/genetics/126.3.735 pmid: 1979039
[11] Keim P, Schupp J M, Travis S E, Clayton K, Zhu T, Shi L, Ferreira A, Webb D M. A high-density soybean genetic map based on AFLP markers. Crop Sci, 1997, 37: 537-543.
doi: 10.2135/cropsci1997.0011183X003700020038x
[12] Akkaya M S, Shoemaker R C, Specht J E, Bhagwat A A, Cregan P B. Integration of simple sequence repeat DNA markers into a soybean linkage map. Crop Sci, 1995, 35: 1439-1445.
doi: 10.2135/cropsci1995.0011183X003500050030x
[13] Cregan P B, Jarvik T, Bush A L, Kaya N, Vantoai T T, Lohnes D G, Chung J. An integrated genetic linkage map of the soybean genome. Crop Sci, 1999, 39: 1464-1490.
doi: 10.2135/cropsci1999.3951464x
[14] Liu N X, Li M, Hu X B, Ma Q B, Mu Y H, Tan Z Y, Xia Q J, Zhang G Y, Nian H. Construction of high-density genetic map and QTL mapping of yield-related and two quality traits in soybean RILs population by RAD-sequencing. BMC Genomics, 2017, 18: 466-479.
doi: 10.1186/s12864-017-3854-8 pmid: 28629322
[15] Varshney R K, Nayak S N, May G D, Jackson S A. Next- generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol, 2009, 27: 522-530.
doi: 10.1016/j.tibtech.2009.05.006 pmid: 19679362
[16] Joosen R V L, Arends D, Willems L A J, Ligterink W, Jansen R C, Hilhorst H W M. Visualizing the genetic landscape of Arabidopsis seed performance. Plant Physiol, 2012, 158: 570-589.
doi: 10.1104/pp.111.186676
[17] Yu H H, Xie W B, Wang J, Xing Y Z, Xu C G, Li X H, Xiao J H, Zhang Q F. Gains in QTL detection using an ultra-high density SNP map based on population sequencing relative to traditional RFLP/SSR markers. PLoS One, 2011, 6: e17595.
doi: 10.1371/journal.pone.0017595
[18] Song W B, Wang B B, Hauck A L, Dong X M, Li J P, Lai J S. Genetic dissection of maize seedling root system architecture traits using an ultra-high density bin-map and a recombinant inbred line population. J Integr Plant Biol, 2015, 58: 266-279.
doi: 10.1111/jipb.12452
[19] Cheng Y B, Ma Q B, Ren H L, Xia Q J, Song E L, Tan Z Y, Li S X, Zhang G Y, Nian H. Fine mapping of a phytophthora- resistance gene RpsWY in soybean (Glycine max L.) by high- throughput genome-wide sequencing. Theor Appl Genet, 2017, 130: 1041-1051.
doi: 10.1007/s00122-017-2869-5
[20] Jiang N F, Shi S L, Shi H, Khanzada H, Wassan G M, Zhu C L, Peng X S, Yu Q Y, Chen X R, He X P, Fu J R, Hu L F, Xu J, Ou-Yang L J, Sun X T, Zhou D H, He H H, Bian J M. Mapping QTL for seed germinability under low temperature using a new high-density genetic map of rice. Front Plant Sci, 2017, 8: 1223-1232.
doi: 10.3389/fpls.2017.01223 pmid: 28747923
[21] Yu T, Lei Y, Lu H F, Zhang B, Li Y F, Liu C, Ge T L, Liu Y L, Han J N, Li Y H, Qiu L J. QTL analysis for plant height and fine mapping of two environmentally stable QTLs with major effects in soybean. J Integr Agric, 2022, 21: 933-946.
doi: 10.1016/S2095-3119(21)63693-6
[22] Pan L Y, He J B, Zhao T J, Xing G N, Wang Y F, Yu D Y, Chen S Y, Gai J Y. Efficient QTL detection of flowering date in a soybean RIL population using the novel restricted two-stage multi-locus GWAS procedure. Theor Appl Genet, 2018, 131: 2581-2599.
doi: 10.1007/s00122-018-3174-7 pmid: 30167759
[23] Wang W B, Liu M F, Wang Y F, Li X L, Cheng S X, Shu L P, Yu Z P, Kong J J, Zhao T J, Gai J Y. Characterizing two inter-specific bin maps for the exploration of the QTLs/genes that confer three soybean evolutionary traits. Front Plant Sci, 2016, 7: 1248-1264.
doi: 10.3389/fpls.2016.01248 pmid: 27602037
[24] Allen G C, Flores-Vergara M A, Krasnyanski S, Kumar S, Thompson W F. A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nat Protoc, 2006, 1: 2320-2325.
doi: 10.1038/nprot.2006.384 pmid: 17406474
[25] Wang L X, Wang J, Luo G L, Yuan X X, Gong D, Hu L L, Chen H L, Wang S H, Chen X, Cheng X Z. Construction of a high- density adzuki bean genetic map and evaluation of its utility based on a QTL analysis of seed size. J Integr Agric, 2021, 20: 1753-1761.
doi: 10.1016/S2095-3119(20)63343-3
[26] Shen Y T, Du H L, Liu Y C, Ni L B, Wang Z, Liang C Z, Tian Z X. Update soybean Zhonghuang 13 genome to a golden reference. Sci China Life Sci, 2019, 62: 1257-1260.
doi: 10.1007/s11427-019-9822-2 pmid: 31444683
[27] Liu D Y, Ma C X, Hong W G, Huang L, Liu M, Liu H, Zeng H P, Deng D J, Xin H, Song J, Xu C H, Sun X W, Hou X L, Wang X W, Zheng H K. Construction and analysis of high-density linkage map using high-throughput sequencing data. PLoS One, 2014, 9: e98855.
doi: 10.1371/journal.pone.0098855
[28] McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T. Report on QTL nomenclature. Rice Genet Newsl, 1997, 14: 11-12.
[29] 董骥驰, 杨靖, 郭涛, 陈立凯, 陈志强, 王慧. 基于高密度Bin图谱的水稻抽穗期QTL定位. 作物学报, 2018, 44: 938-946.
doi: 10.3724/SP.J.1006.2018.00938
Dong J C, Yang J, Guo T, Chen L K, Chen Z Q, Wang H. QTL mapping for heading date in rice using high-density bin map. Acta Agron Sin, 2018, 44: 938-946 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2018.00938
[30] Hori K, Kobayashi T, Shimizu A, Sato K, Takeda K, Kawasaki S. Efficient construction of high-density linkage map and its application to QTL analysis in barley. Theor Appl Genet, 2003, 107: 806-813.
pmid: 12838391
[31] Xu X Y, Zeng L, Tao Y, Vuong T, Wan J R, Boerma R, Noe J, Li Z L, Finnerty S, Pathan S M, Shannon J G, Nguyen H T. Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing. Proc Natl Acad Sci USA, 2013, 110: 13469-13474.
doi: 10.1073/pnas.1222368110 pmid: 23898176
[32] Karikari B, Li S G, Bhat J A, Cao Y, Kong J J, Yang J Y, Gai J Y, Zhao T J. Genome-wide detection of major and epistatic effect QTLs for seed protein and oil content in soybean under multiple environments using high-density bin map. Int J Mol Sci, 2019, 20: 979-1000.
doi: 10.3390/ijms20040979
[33] Ma Y J, Ma W Y, Hu D Z, Zhang X N, Yuan W J, He X H, Kan G Z, Yu D Y. QTL mapping for protein and sulfur-containing amino acid contents using a high-density bin-map in soybean (Glycine max L. Merr.). J Agric Food Chem, 2019, 67: 12313-12321.
doi: 10.1021/acs.jafc.9b04497
[34] Huang J H, Ma Q B, Cai Z D, Xia Q J, Li S X, Jia J, Chu L, Lian T X, Nian H, Cheng Y B. Identification and mapping of stable QTLs for seed oil and protein content in soybean [Glycine max (L.) Merr.]. J Agric Food Chem, 2020, 68: 6448-6460.
doi: 10.1021/acs.jafc.0c01271
[35] Wang J, Mao L, Zeng Z Q, Yu X B, Lian J Q, Feng J, Yang W Y, An J G, Wu H Y, Zhang M G, Liu L Z. Genetic mapping high protein content QTL from soybean ‘Nanxiadou 25’ and candidate gene analysis. BMC Plant Biol, 2021, 21: 388.
doi: 10.1186/s12870-021-03176-2 pmid: 34416870
[36] Patil G, Vuong T D, Kale S, Valliyodan B, Deshmukh R, Zhu C S, Wu X L, Bai Y H, Yungbiuth D, Lu F, Kumpatla S, Shannon J G, Varshney R K, Nguyen H T. Dissecting genomic hotspots underlying seed protein, oil, and sucrose content in an interspecific mapping population of soybean using high-density linkage mapping. Plant Biotechnol J, 2018, 16: 1939-1953.
doi: 10.1111/pbi.12929 pmid: 29618164
[37] Mansur L M, Orf J H, Chase K, Jarvik T, Cregan P B, Lark K G. Genetic mapping of agronomic traits using recombinant inbred lines of soybean. Crop Sci, 1996, 36: 1327-1336.
doi: 10.2135/cropsci1996.0011183X003600050042x
[38] Mao T T, Jiang Z F, Han Y P, Teng W L, Zhao X, Li W B. Identification of quantitative trait loci underlying seed protein and oil contents of soybean across multi-genetic backgrounds and environments. Plant Breed, 2013, 132: 630-641.
doi: 10.1111/pbr.12091
[39] Li X Y, Xue H, Zhang K X, Li W B, Ning H L. Mapping QTLs for protein and oil content in soybean by removing the influence of related traits in a four-way recombinant inbred line population. J Agric Sci, 2020, 158: 659-675.
[40] Wang W, Sun Y, Yang P, Cai X, Yang L, Ma J, Ou Y, Liu T, Ali I, Liu D. A high density SLAF-seq SNP genetic map and QTL for seed size, oil and protein content in upland cotton. BMC Genomics, 2019, 20: 599-610.
doi: 10.1186/s12864-019-5819-6 pmid: 31331266
[41] Zhang J P, Wang X Z, Lu Y M, Bhusal S J, Song Q J, Cregan P B, Yen Y, Brown M, Jiang G L. Genome-wide scan for seed composition provides insights into soybean quality improvement and the impacts of domestication and breeding. Mol Plant, 2018, 11: 460-472.
doi: S1674-2052(17)30386-6 pmid: 29305230
[42] Kaleri A A, Li L, Zhang Y, Liu W, Jiang C, Zhang Y, Liu C, Kaleri H A, Nizamani M M, Mehmood A, Bahadur S, Li W X, Ning H. Recognition of QTL for seed protein and oil content in two soybean recombinat inbred lines populations. J Anim Plant Sci, 2021, 31: 1669-1685.
[43] 邱红梅, 厉志, 于妍, 高淑芹, 马晓萍, 郑宇宏, 孟凡凡, 侯云龙, 王跃强, 王曙明. 基于元分析的大豆含硫氨基酸相关基因挖掘与信息学分析. 中国油料作物学报, 2015, 37: 141-147.
Qiu H M, Li Z, Yu Y, Gao S Q, Ma X P, Zheng Y H, Meng F F, Hou Y L, Wang Y Q, Wang S M. Mining and analysis of genes related to sulfur-containing amino acids in soybean based on meta-QTL. Chin Oil Crop Sci, 2015, 37: 141-147. (in Chinese with English abstract)
[44] Li Z W, Meyer S, Essig J S, Liu Y, Schapaugh M A, Muthukrishnan S, Hainline B E, Trick H N. High-level expression of maize γ-zein protein in transgenic soybean (Glycine max). Mol Breed, 2005, 16: 11-20.
doi: 10.1007/s11032-004-7658-6
[1] LI Hui, LU Yi-Ping, WANG Xiao-Kai, WANG Lu-Yao, QIU Ting-Ting, ZHANG Xue-Ting, HUANG Hai-Yan, CUI Xiao-Yu. GmCIPK10, a CBL-interacting protein kinase promotes salt tolerance in soybean [J]. Acta Agronomica Sinica, 2023, 49(5): 1272-1281.
[2] WU Zong-Sheng, XU Cai-Long, LI Rui-Dong, XU Yi-Fan, SUN Shi, HAN Tian-Fu, SONG Wen-Wen, WU Cun-Xiang. Effects of wheat straw mulching on physical properties of topsoil and yield formation in soybean [J]. Acta Agronomica Sinica, 2023, 49(4): 1052-1064.
[3] SHU Ze-Bing, LUO Wan-Yu, PU Tian, CHEN Guo-Peng, LIANG Bing, YANG Wen-Yu, WANG Xiao-Chun. Optimization of field configuration technology of strip intercropping of fresh corn and fresh soybean based on high yield and high efficiency [J]. Acta Agronomica Sinica, 2023, 49(4): 1140-1150.
[4] YANG Jun-Fang, WANG Zhou, QIAO Lin-Yi, WANG Ya, ZHAO Yi-Ting, ZHANG Hong-Bin, SHEN DengGao, WANG HongWei, CAO Yue. QTL mapping of seed size traits based on a high-density genetic map in castor [J]. Acta Agronomica Sinica, 2023, 49(3): 719-730.
[5] YANG Bin, QIAO Ling, ZHAO Jia-Jia, WU Bang-Bang, WEN Hong-Wei, ZHANG Shu-Wei, ZHENG Xing-Wei, ZHENG Jun. QTL mapping and validation of chlorophyll content of flag leaves in wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2023, 49(3): 744-754.
[6] LIU Shan-Shan, PANG Ting, YUAN Xiao-Ting, LUO Kai, CHEN Ping, FU Zhi-Dan, WANG Xiao-Chun, YANG Feng, YONG Tai-Wen, YANG Wen-Yu. Effects of row spacing on root nodule growth and nitrogen fixation potential of different nodulation characteristics soybeans in intercropping [J]. Acta Agronomica Sinica, 2023, 49(3): 833-844.
[7] YANG Shuo, WU Yang-Chun, LIU Xin-Lei, TANG Xiao-Fei, XUE Yong-Guo, CAO Dan, WANG Wan, LIU Ting-Xuan, QI Hang, LUAN Xiao-Yan, QIU Li-Juan. Fine mapping of qPRO-20-1 related to high protein content in soybean [J]. Acta Agronomica Sinica, 2023, 49(2): 310-320.
[8] WANG Hui, WU Zhi-Yi, ZHANG Yu-E, YU De-Yue. Transcriptional expression profiling of soybean genes under sulfur-starved conditions by RNA-seq [J]. Acta Agronomica Sinica, 2023, 49(1): 105-118.
[9] LIANG Zheng, KE Mei-Yu, CHEN Zhi-Wei, CHEN Xu, GAO Zhen. Function of GmPIN2 family gene in regulating root development in soybean [J]. Acta Agronomica Sinica, 2023, 49(1): 24-35.
[10] BAI Zhi-Yuan, CHEN Xiang-Yang, ZHENG A-Xiang, ZHANG Li, ZOU Jun, ZHANG Da-Tong, CHEN Fu, YIN Xiao-Gang. Spatial-temporal variations for agronomic and quality characters of soybeans varieties (strains) tested in America from 1991 to 2019 [J]. Acta Agronomica Sinica, 2023, 49(1): 177-187.
[11] ZHAO Ling, LIANG Wen-Hua, ZHAO Chun-Fang, WEI Xiao-Dong, ZHOU Li-Hui, YAO Shu, WANG Cai-Lin, ZHANG Ya-Dong. Mapping of QTLs for heading date of rice with high-density bin genetic map [J]. Acta Agronomica Sinica, 2023, 49(1): 119-128.
[12] QI Yang-Yang, DOU Ru-Na, ZHAO Cai-Tong, ZHANG Zhi, LI Wen-Bin, JIANG Zhen-Feng. Analysis of key genes involved in GA pathway responding to temperature and exogenous GA related to internode development in soybean [J]. Acta Agronomica Sinica, 2023, 49(1): 62-72.
[13] LIU Cheng, ZHANG Ya-Xuan, CHEN Xian-Lian, HAN Wei, XING Guang-Nan, HE Jian-Bo, ZHANG Jiao-Ping, ZHANG Feng-Kai, SUN Lei, LI Ning, WANG Wu-Bin, GAI Jun-Yi. Wild segments associated with 100-seed weight and their candidate genes in a wild chromosome segment substitution line population [J]. Acta Agronomica Sinica, 2022, 48(8): 1884-1893.
[14] HUAI Yuan-Yuan, ZHANG Sheng-Rui, WU Ting-Ting, AZAM Muhammad, LI Jing, SUN Shi, HAN Tian-Fu, LI Bin, SUN Jun-Ming. Potential evaluation of molecular markers related to major nutritional quality traits in soybean breeding [J]. Acta Agronomica Sinica, 2022, 48(8): 1957-1976.
[15] KE Dan-Xia, HUO Ya-Ya, LIU Yi, LI Jin-Ying, LIU Xiao-Xue. Functional analysis of GmTGA26 gene under salt stress in soybean [J]. Acta Agronomica Sinica, 2022, 48(7): 1697-1708.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .