Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (6): 1532-1541.doi: 10.3724/SP.J.1006.2023.24121
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
LIU Ting-Xuan1,2,**(), GU Yong-Zhe2,**(), ZHANG Zhi-Hao3, WANG Jun1,*(), SUN Jun-Ming2,*(), QIU Li-Juan1,2,*()
[1] |
Huang J H, Ma Q B, Cai Z D, Xia Q J, Cheng Y B. Identification and mapping of stable QTLs for seed oil and protein content in soybean [Glycine max (L.) Merr]. J Agric Food Chem, 2020, 68: 6448-6460.
doi: 10.1021/acs.jafc.0c01271 |
[2] |
Wang J, Chen P, Wang D, Shannon G, Zeng A, Orazaly M, Wu C. Identification and mapping of stable QTL for protein content in soybean seeds. Mol Breed, 2015, 35: 92-102.
doi: 10.1007/s11032-015-0285-6 |
[3] |
Pathan S M, Vuong T, Clark K, Lee J D, Sleper D A. Genetic mapping and confirmation of quantitative trait loci for seed protein and oil contents and seed weight in soybean. Crop Sci, 2013, 53: 765-774.
doi: 10.2135/cropsci2012.03.0153 |
[4] |
Wilcox J R. Increasing seed protein in soybean with eight cycles of recurrent selection. Crop Sci, 1998, 38: 1536-1540.
doi: 10.2135/cropsci1998.0011183X003800060021x |
[5] |
Keim P, Diers B W, Olson T C, Shoemaker R C. RFLP mapping in soybean: association between marker loci and variation in quantitative traits. Genetics, 1990, 126: 735-742.
doi: 10.1093/genetics/126.3.735 pmid: 1979039 |
[6] |
Du W J, Wang M, Fu S X, Yu D Y. Mapping QTLs for seed yield and drought susceptibility index in soybean (Glycine max L.) across different environments. J Genet Genomics, 2009, 36: 721-731.
doi: 10.1016/S1673-8527(08)60165-4 |
[7] |
Pipolo C V, Pipolo A E, Haleem A H, Boerma H R, Sinclair T R. Identification of QTLs associated with limited leaf hydraulic conductance in soybean. Euphytica, 2012, 186: 679-686.
doi: 10.1007/s10681-011-0535-6 |
[8] |
Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed, 1996, 2: 225-238.
doi: 10.1007/BF00564200 |
[9] | Apuya N R, Frazier B L, Keim P, Roth E J, Lark K G. Restriction fragment length polymorphisms as genetic markers in soybean, Glycine max (L.) Merrill. Theorl Appl Genet, 1988, 75: 889-901. |
[10] |
Keim P S, Diers B W, Olson T C, Shoemaker R C. RFLP mapping in soybean: association between marker loci and variation in quantitative traits. Genetics, 1990, 126: 735-742.
doi: 10.1093/genetics/126.3.735 pmid: 1979039 |
[11] |
Keim P, Schupp J M, Travis S E, Clayton K, Zhu T, Shi L, Ferreira A, Webb D M. A high-density soybean genetic map based on AFLP markers. Crop Sci, 1997, 37: 537-543.
doi: 10.2135/cropsci1997.0011183X003700020038x |
[12] |
Akkaya M S, Shoemaker R C, Specht J E, Bhagwat A A, Cregan P B. Integration of simple sequence repeat DNA markers into a soybean linkage map. Crop Sci, 1995, 35: 1439-1445.
doi: 10.2135/cropsci1995.0011183X003500050030x |
[13] |
Cregan P B, Jarvik T, Bush A L, Kaya N, Vantoai T T, Lohnes D G, Chung J. An integrated genetic linkage map of the soybean genome. Crop Sci, 1999, 39: 1464-1490.
doi: 10.2135/cropsci1999.3951464x |
[14] |
Liu N X, Li M, Hu X B, Ma Q B, Mu Y H, Tan Z Y, Xia Q J, Zhang G Y, Nian H. Construction of high-density genetic map and QTL mapping of yield-related and two quality traits in soybean RILs population by RAD-sequencing. BMC Genomics, 2017, 18: 466-479.
doi: 10.1186/s12864-017-3854-8 pmid: 28629322 |
[15] |
Varshney R K, Nayak S N, May G D, Jackson S A. Next- generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol, 2009, 27: 522-530.
doi: 10.1016/j.tibtech.2009.05.006 pmid: 19679362 |
[16] |
Joosen R V L, Arends D, Willems L A J, Ligterink W, Jansen R C, Hilhorst H W M. Visualizing the genetic landscape of Arabidopsis seed performance. Plant Physiol, 2012, 158: 570-589.
doi: 10.1104/pp.111.186676 |
[17] |
Yu H H, Xie W B, Wang J, Xing Y Z, Xu C G, Li X H, Xiao J H, Zhang Q F. Gains in QTL detection using an ultra-high density SNP map based on population sequencing relative to traditional RFLP/SSR markers. PLoS One, 2011, 6: e17595.
doi: 10.1371/journal.pone.0017595 |
[18] |
Song W B, Wang B B, Hauck A L, Dong X M, Li J P, Lai J S. Genetic dissection of maize seedling root system architecture traits using an ultra-high density bin-map and a recombinant inbred line population. J Integr Plant Biol, 2015, 58: 266-279.
doi: 10.1111/jipb.12452 |
[19] |
Cheng Y B, Ma Q B, Ren H L, Xia Q J, Song E L, Tan Z Y, Li S X, Zhang G Y, Nian H. Fine mapping of a phytophthora- resistance gene RpsWY in soybean (Glycine max L.) by high- throughput genome-wide sequencing. Theor Appl Genet, 2017, 130: 1041-1051.
doi: 10.1007/s00122-017-2869-5 |
[20] |
Jiang N F, Shi S L, Shi H, Khanzada H, Wassan G M, Zhu C L, Peng X S, Yu Q Y, Chen X R, He X P, Fu J R, Hu L F, Xu J, Ou-Yang L J, Sun X T, Zhou D H, He H H, Bian J M. Mapping QTL for seed germinability under low temperature using a new high-density genetic map of rice. Front Plant Sci, 2017, 8: 1223-1232.
doi: 10.3389/fpls.2017.01223 pmid: 28747923 |
[21] |
Yu T, Lei Y, Lu H F, Zhang B, Li Y F, Liu C, Ge T L, Liu Y L, Han J N, Li Y H, Qiu L J. QTL analysis for plant height and fine mapping of two environmentally stable QTLs with major effects in soybean. J Integr Agric, 2022, 21: 933-946.
doi: 10.1016/S2095-3119(21)63693-6 |
[22] |
Pan L Y, He J B, Zhao T J, Xing G N, Wang Y F, Yu D Y, Chen S Y, Gai J Y. Efficient QTL detection of flowering date in a soybean RIL population using the novel restricted two-stage multi-locus GWAS procedure. Theor Appl Genet, 2018, 131: 2581-2599.
doi: 10.1007/s00122-018-3174-7 pmid: 30167759 |
[23] |
Wang W B, Liu M F, Wang Y F, Li X L, Cheng S X, Shu L P, Yu Z P, Kong J J, Zhao T J, Gai J Y. Characterizing two inter-specific bin maps for the exploration of the QTLs/genes that confer three soybean evolutionary traits. Front Plant Sci, 2016, 7: 1248-1264.
doi: 10.3389/fpls.2016.01248 pmid: 27602037 |
[24] |
Allen G C, Flores-Vergara M A, Krasnyanski S, Kumar S, Thompson W F. A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nat Protoc, 2006, 1: 2320-2325.
doi: 10.1038/nprot.2006.384 pmid: 17406474 |
[25] |
Wang L X, Wang J, Luo G L, Yuan X X, Gong D, Hu L L, Chen H L, Wang S H, Chen X, Cheng X Z. Construction of a high- density adzuki bean genetic map and evaluation of its utility based on a QTL analysis of seed size. J Integr Agric, 2021, 20: 1753-1761.
doi: 10.1016/S2095-3119(20)63343-3 |
[26] |
Shen Y T, Du H L, Liu Y C, Ni L B, Wang Z, Liang C Z, Tian Z X. Update soybean Zhonghuang 13 genome to a golden reference. Sci China Life Sci, 2019, 62: 1257-1260.
doi: 10.1007/s11427-019-9822-2 pmid: 31444683 |
[27] |
Liu D Y, Ma C X, Hong W G, Huang L, Liu M, Liu H, Zeng H P, Deng D J, Xin H, Song J, Xu C H, Sun X W, Hou X L, Wang X W, Zheng H K. Construction and analysis of high-density linkage map using high-throughput sequencing data. PLoS One, 2014, 9: e98855.
doi: 10.1371/journal.pone.0098855 |
[28] | McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T. Report on QTL nomenclature. Rice Genet Newsl, 1997, 14: 11-12. |
[29] |
董骥驰, 杨靖, 郭涛, 陈立凯, 陈志强, 王慧. 基于高密度Bin图谱的水稻抽穗期QTL定位. 作物学报, 2018, 44: 938-946.
doi: 10.3724/SP.J.1006.2018.00938 |
Dong J C, Yang J, Guo T, Chen L K, Chen Z Q, Wang H. QTL mapping for heading date in rice using high-density bin map. Acta Agron Sin, 2018, 44: 938-946 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2018.00938 |
|
[30] |
Hori K, Kobayashi T, Shimizu A, Sato K, Takeda K, Kawasaki S. Efficient construction of high-density linkage map and its application to QTL analysis in barley. Theor Appl Genet, 2003, 107: 806-813.
pmid: 12838391 |
[31] |
Xu X Y, Zeng L, Tao Y, Vuong T, Wan J R, Boerma R, Noe J, Li Z L, Finnerty S, Pathan S M, Shannon J G, Nguyen H T. Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing. Proc Natl Acad Sci USA, 2013, 110: 13469-13474.
doi: 10.1073/pnas.1222368110 pmid: 23898176 |
[32] |
Karikari B, Li S G, Bhat J A, Cao Y, Kong J J, Yang J Y, Gai J Y, Zhao T J. Genome-wide detection of major and epistatic effect QTLs for seed protein and oil content in soybean under multiple environments using high-density bin map. Int J Mol Sci, 2019, 20: 979-1000.
doi: 10.3390/ijms20040979 |
[33] |
Ma Y J, Ma W Y, Hu D Z, Zhang X N, Yuan W J, He X H, Kan G Z, Yu D Y. QTL mapping for protein and sulfur-containing amino acid contents using a high-density bin-map in soybean (Glycine max L. Merr.). J Agric Food Chem, 2019, 67: 12313-12321.
doi: 10.1021/acs.jafc.9b04497 |
[34] |
Huang J H, Ma Q B, Cai Z D, Xia Q J, Li S X, Jia J, Chu L, Lian T X, Nian H, Cheng Y B. Identification and mapping of stable QTLs for seed oil and protein content in soybean [Glycine max (L.) Merr.]. J Agric Food Chem, 2020, 68: 6448-6460.
doi: 10.1021/acs.jafc.0c01271 |
[35] |
Wang J, Mao L, Zeng Z Q, Yu X B, Lian J Q, Feng J, Yang W Y, An J G, Wu H Y, Zhang M G, Liu L Z. Genetic mapping high protein content QTL from soybean ‘Nanxiadou 25’ and candidate gene analysis. BMC Plant Biol, 2021, 21: 388.
doi: 10.1186/s12870-021-03176-2 pmid: 34416870 |
[36] |
Patil G, Vuong T D, Kale S, Valliyodan B, Deshmukh R, Zhu C S, Wu X L, Bai Y H, Yungbiuth D, Lu F, Kumpatla S, Shannon J G, Varshney R K, Nguyen H T. Dissecting genomic hotspots underlying seed protein, oil, and sucrose content in an interspecific mapping population of soybean using high-density linkage mapping. Plant Biotechnol J, 2018, 16: 1939-1953.
doi: 10.1111/pbi.12929 pmid: 29618164 |
[37] |
Mansur L M, Orf J H, Chase K, Jarvik T, Cregan P B, Lark K G. Genetic mapping of agronomic traits using recombinant inbred lines of soybean. Crop Sci, 1996, 36: 1327-1336.
doi: 10.2135/cropsci1996.0011183X003600050042x |
[38] |
Mao T T, Jiang Z F, Han Y P, Teng W L, Zhao X, Li W B. Identification of quantitative trait loci underlying seed protein and oil contents of soybean across multi-genetic backgrounds and environments. Plant Breed, 2013, 132: 630-641.
doi: 10.1111/pbr.12091 |
[39] | Li X Y, Xue H, Zhang K X, Li W B, Ning H L. Mapping QTLs for protein and oil content in soybean by removing the influence of related traits in a four-way recombinant inbred line population. J Agric Sci, 2020, 158: 659-675. |
[40] |
Wang W, Sun Y, Yang P, Cai X, Yang L, Ma J, Ou Y, Liu T, Ali I, Liu D. A high density SLAF-seq SNP genetic map and QTL for seed size, oil and protein content in upland cotton. BMC Genomics, 2019, 20: 599-610.
doi: 10.1186/s12864-019-5819-6 pmid: 31331266 |
[41] |
Zhang J P, Wang X Z, Lu Y M, Bhusal S J, Song Q J, Cregan P B, Yen Y, Brown M, Jiang G L. Genome-wide scan for seed composition provides insights into soybean quality improvement and the impacts of domestication and breeding. Mol Plant, 2018, 11: 460-472.
doi: S1674-2052(17)30386-6 pmid: 29305230 |
[42] | Kaleri A A, Li L, Zhang Y, Liu W, Jiang C, Zhang Y, Liu C, Kaleri H A, Nizamani M M, Mehmood A, Bahadur S, Li W X, Ning H. Recognition of QTL for seed protein and oil content in two soybean recombinat inbred lines populations. J Anim Plant Sci, 2021, 31: 1669-1685. |
[43] | 邱红梅, 厉志, 于妍, 高淑芹, 马晓萍, 郑宇宏, 孟凡凡, 侯云龙, 王跃强, 王曙明. 基于元分析的大豆含硫氨基酸相关基因挖掘与信息学分析. 中国油料作物学报, 2015, 37: 141-147. |
Qiu H M, Li Z, Yu Y, Gao S Q, Ma X P, Zheng Y H, Meng F F, Hou Y L, Wang Y Q, Wang S M. Mining and analysis of genes related to sulfur-containing amino acids in soybean based on meta-QTL. Chin Oil Crop Sci, 2015, 37: 141-147. (in Chinese with English abstract) | |
[44] |
Li Z W, Meyer S, Essig J S, Liu Y, Schapaugh M A, Muthukrishnan S, Hainline B E, Trick H N. High-level expression of maize γ-zein protein in transgenic soybean (Glycine max). Mol Breed, 2005, 16: 11-20.
doi: 10.1007/s11032-004-7658-6 |
[1] | LI Hui, LU Yi-Ping, WANG Xiao-Kai, WANG Lu-Yao, QIU Ting-Ting, ZHANG Xue-Ting, HUANG Hai-Yan, CUI Xiao-Yu. GmCIPK10, a CBL-interacting protein kinase promotes salt tolerance in soybean [J]. Acta Agronomica Sinica, 2023, 49(5): 1272-1281. |
[2] | WU Zong-Sheng, XU Cai-Long, LI Rui-Dong, XU Yi-Fan, SUN Shi, HAN Tian-Fu, SONG Wen-Wen, WU Cun-Xiang. Effects of wheat straw mulching on physical properties of topsoil and yield formation in soybean [J]. Acta Agronomica Sinica, 2023, 49(4): 1052-1064. |
[3] | SHU Ze-Bing, LUO Wan-Yu, PU Tian, CHEN Guo-Peng, LIANG Bing, YANG Wen-Yu, WANG Xiao-Chun. Optimization of field configuration technology of strip intercropping of fresh corn and fresh soybean based on high yield and high efficiency [J]. Acta Agronomica Sinica, 2023, 49(4): 1140-1150. |
[4] | YANG Jun-Fang, WANG Zhou, QIAO Lin-Yi, WANG Ya, ZHAO Yi-Ting, ZHANG Hong-Bin, SHEN DengGao, WANG HongWei, CAO Yue. QTL mapping of seed size traits based on a high-density genetic map in castor [J]. Acta Agronomica Sinica, 2023, 49(3): 719-730. |
[5] | YANG Bin, QIAO Ling, ZHAO Jia-Jia, WU Bang-Bang, WEN Hong-Wei, ZHANG Shu-Wei, ZHENG Xing-Wei, ZHENG Jun. QTL mapping and validation of chlorophyll content of flag leaves in wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2023, 49(3): 744-754. |
[6] | LIU Shan-Shan, PANG Ting, YUAN Xiao-Ting, LUO Kai, CHEN Ping, FU Zhi-Dan, WANG Xiao-Chun, YANG Feng, YONG Tai-Wen, YANG Wen-Yu. Effects of row spacing on root nodule growth and nitrogen fixation potential of different nodulation characteristics soybeans in intercropping [J]. Acta Agronomica Sinica, 2023, 49(3): 833-844. |
[7] | YANG Shuo, WU Yang-Chun, LIU Xin-Lei, TANG Xiao-Fei, XUE Yong-Guo, CAO Dan, WANG Wan, LIU Ting-Xuan, QI Hang, LUAN Xiao-Yan, QIU Li-Juan. Fine mapping of qPRO-20-1 related to high protein content in soybean [J]. Acta Agronomica Sinica, 2023, 49(2): 310-320. |
[8] | WANG Hui, WU Zhi-Yi, ZHANG Yu-E, YU De-Yue. Transcriptional expression profiling of soybean genes under sulfur-starved conditions by RNA-seq [J]. Acta Agronomica Sinica, 2023, 49(1): 105-118. |
[9] | LIANG Zheng, KE Mei-Yu, CHEN Zhi-Wei, CHEN Xu, GAO Zhen. Function of GmPIN2 family gene in regulating root development in soybean [J]. Acta Agronomica Sinica, 2023, 49(1): 24-35. |
[10] | BAI Zhi-Yuan, CHEN Xiang-Yang, ZHENG A-Xiang, ZHANG Li, ZOU Jun, ZHANG Da-Tong, CHEN Fu, YIN Xiao-Gang. Spatial-temporal variations for agronomic and quality characters of soybeans varieties (strains) tested in America from 1991 to 2019 [J]. Acta Agronomica Sinica, 2023, 49(1): 177-187. |
[11] | ZHAO Ling, LIANG Wen-Hua, ZHAO Chun-Fang, WEI Xiao-Dong, ZHOU Li-Hui, YAO Shu, WANG Cai-Lin, ZHANG Ya-Dong. Mapping of QTLs for heading date of rice with high-density bin genetic map [J]. Acta Agronomica Sinica, 2023, 49(1): 119-128. |
[12] | QI Yang-Yang, DOU Ru-Na, ZHAO Cai-Tong, ZHANG Zhi, LI Wen-Bin, JIANG Zhen-Feng. Analysis of key genes involved in GA pathway responding to temperature and exogenous GA related to internode development in soybean [J]. Acta Agronomica Sinica, 2023, 49(1): 62-72. |
[13] | LIU Cheng, ZHANG Ya-Xuan, CHEN Xian-Lian, HAN Wei, XING Guang-Nan, HE Jian-Bo, ZHANG Jiao-Ping, ZHANG Feng-Kai, SUN Lei, LI Ning, WANG Wu-Bin, GAI Jun-Yi. Wild segments associated with 100-seed weight and their candidate genes in a wild chromosome segment substitution line population [J]. Acta Agronomica Sinica, 2022, 48(8): 1884-1893. |
[14] | HUAI Yuan-Yuan, ZHANG Sheng-Rui, WU Ting-Ting, AZAM Muhammad, LI Jing, SUN Shi, HAN Tian-Fu, LI Bin, SUN Jun-Ming. Potential evaluation of molecular markers related to major nutritional quality traits in soybean breeding [J]. Acta Agronomica Sinica, 2022, 48(8): 1957-1976. |
[15] | KE Dan-Xia, HUO Ya-Ya, LIU Yi, LI Jin-Ying, LIU Xiao-Xue. Functional analysis of GmTGA26 gene under salt stress in soybean [J]. Acta Agronomica Sinica, 2022, 48(7): 1697-1708. |
|