Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (6): 1699-1707.doi: 10.3724/SP.J.1006.2023.22028

• RESEARCH NOTES • Previous Articles     Next Articles

Identification and gene mapping of long grain and degenerated palea (lgdp) in rice (Oryza sativa L.)

LIN Xiao-Xin(), HUANG Ming-Jiang, WEI Yi, ZHU Hong-Hui, WANG Zi-Yi, LI Zhong-Cheng, ZHUANG Hui, LI Yan-Xi, LI Yun-Feng*(), CHEN Rui*()   

  1. Rice Research Institute, Southwest University/Academy of Agricultural Sciences, Southwest University/Transgenic Plants and Safety Control, Chongqing Key Laboratory, Chongqing 400715, China
  • Received:2022-05-09 Accepted:2022-10-10 Online:2023-06-12 Published:2022-11-17
  • Contact: *E-mail: chenruin998@gmail.com;E-mail: liyf1980@swu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(32172044)


The grain shape, which consists of grain length and grain width, is the primary determinant of grain yield and one of the important appearance quality traits in rice. It is of great significance to identify the related genes associated with grain shape and to study molecular mechanisms for improving the yield and quality of rice. In this study, a long grain mutant named long grain and degenerated palea (lgdp) deriving from EMS (ethyl methane sulfonate) mutation groups of Xida 1B was reported. In lgdp mutant, the elongation of lemma resulted in a long grain. Further SEM analysis revealed that the main reason for lemma elongation was the extremely significant increase in the number of glume cells. Genetic analysis showed that the lgdp trait was regulated by a pair of recessive genes. Using BSA method and the F2 population crossing lgdp with ZH11, the target gene was located between the molecular markers ZLN43 and ZLN-1 on chromosome 3, with a physical distance of about 810 kb. The analysis of RNA-seq and PCR indicated the LGDP candidate gene might encode a MADS-box protein. The qPCR referred that LGDP negatively regulated the relative expression levels of several positive grain length regulatory factors, GW7/GL7, GS3, TGW6, which affected the cell proliferation of glumes and the grain length. The results of this study laid a foundation for the molecular function analysis of LGDP gene in the future.

Key words: rice (Oryza sativa L.), grain shape, cell number, gene mapping

Fig. 1

Phenotype identification of wild-type (WT) and lgdp mutant A: WT spikelet; B: the lemma and palea were removed in A; C: the transverse sections of WT spikelet; D: amplified part of Fig. 1-C; E: scanning electron microscopy (SEM) mi-croscopical structure of wild-type spikelet primordium; F, K: Type1 and Type2 spikelets of lgdp; G, L: the lemma and palea were removed in F, K; H: transverse sections of Type1 lgdp spikelet; I: amplified part of picture H; J: SEM mi-croscopical structure of Type1 lgdp spikelet primordium; M: transverse sections of Type2 lgdp spikelet; N: amplified part of picture. O: SEM mi-croscopical structure of Type1 lgdp spikelet primordium; le: lemma; sl: sterile lemma; lo: lodicule; pa: palea; pi: pistil; st: stamen. Bar: 22 mm (A); 20 mm (B); 240 μm (C); 75 μm (D); 100 μm (E, J, O); 23 mm (F, G, K, L); 300 μm (H); 78 μm (I); 300 μm (M); 80 μm (N)."

Fig. 2

Plant and grain characters of the wild-type (WT) and lgdp mutant A: plants of WT and lgdp; B: the comparison of grain width between WT and lgdp; C: the comparison of kernel width between WT and lgdp; D: the comparison of grain length between WT and lgdp; E: the comparison of kernel length between WT and lgdp; F: the statistics of plant height. G: the number of internodes; H: the statistics of panicle height; I: the number of primary branch; J: the number of secondary branch; K: the number of spikelets; L: the number of seeds per panicle; M: the statistics of grain width; N: the statistics of kernel width; O: the statistics of grain length; P: the statistics of kernel length; Q: the statistics of seed-setting rate; R: the statistics of 1000-grain weight. ** and * indicate significant difference between WT and lgdp by t-test at the 0.01 and 0.05 probability levels, respectively. Bar: 40 cm (A); 33 mm (B); 40 mm (C); 90 mm (D)."

Fig. 3

Scanning electron microscopy (SEM) analysis of glumes in wild-type (WT) and lgdp mutant A: grain glume of WT; B: grain glume of lgdp; C, D: the epidermal cells of lemma of WT and lgdp were observed by scanning electron microscope; E, F: the epidermal cells of palea of WT and lgdp were observed by scanning electron microscope; F: lemma length statistics; G: number of longitudinal epidermal cells in lemma; H: number of longitudinal epidermal cells in palea; I: number of longitudinal epidermal cells in palea; J: number of epidermal cells in lemma per unit area. K: statistics of cell size of palea epidermis. L: statistics of cell size of lemma epidermis. le: lemma; pa: palea. ** and * indicate significant difference at P < 0.01 and P < 0.05 between WT and lgdp by t-test, respectively. Bar: 5 mm (A, B); 300 μm (C-F)."

Table 1

Test of Chi-square on segregation rate of F2 population between wild-type (WT) and lgdp mutant"

Male parent
Female parent
Wild type
Mutant type
Chi-square value (χ20.05=3.84)
组合1 Combination 1 lgdp 56S 355 106 0.89
组合2 Combination 2 lgdp ZH11 176 44 2.67
组合3 Combination 3 lgdp NIP 70 13 3.38

Fig. 4

Map-based cloning of the LGDP A: mapping of the LGDP gene; B: RNA-sequencing analysis of LGDP candidate gene; C: PCR analysis and sequence alignment of LGDP candidate gene. N: asparagine; E: glutamic acid; A: alanine; D: aspartic acid; M: methionine; V: valine; H: histidine; TGA: the terminate codon."

Fig. 5

Expression analysis of grain shape genes Set the transcription level in the panicle of 1B to 1.0, Bars represent standard deviation (n = 3); ** indicates significant difference at P < 0.01 between 1B and lgdp by t-test."

[1] 施思, 刘坚, 马伯军, 钱前. 水稻颖壳发育的研究进展. 中国稻米, 2012, 18(5): 25-29.
doi: 10.3969/j.issn.1006-8082.2012.05.007
Shi S, Liu J, Ma B J, Qian Q. Research progress of rice glume development. Chin Rice, 2012, 18(5): 25-29. (in Chinese with English abstract)
[2] Ashikari M, Wu J Z, Yano M, Sasaki T, Yoshimura A. Rice gibberellin-insensitive dwarf mutant gene Dwarf 1 encodes the α-subunit of GTP-binding protein. Proc Natl Acad Sci USA, 1999, 96: 10284-10289.
doi: 10.1073/pnas.96.18.10284 pmid: 10468600
[3] Wang L, Xu Y Y, Ma Q B, Li D, Xu Z H, Chong K. Heterotrimeric G protein α subunit is involved in rice brassinosteroid response. Cell Res, 2006, 16: 916-922.
doi: 10.1038/sj.cr.7310111 pmid: 17117160
[4] Utsunomiya Y, Samejima C, Takayanagi Y, Izawa Y, Yoshida T, Sawada Y, Fujisawa Y, Kato H, Iwasaki Y. Suppression of the rice heterotrimeric G protein β-subunit gene, RGB1, causes dwarfism and browning of internodes and lamina joint regions. Plant J, 2011, 67: 907-916.
doi: 10.1111/j.1365-313X.2011.04643.x
[5] Mao H L, Sun S Y, Yao J L, Wang C R, Yu S B, Xu C G, Li X H, Zhang Q F. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proc Natl Acad Sci USA, 2010, 107: 19579-19584.
doi: 10.1073/pnas.1014419107 pmid: 20974950
[6] Sun H Y, Qian Q, Wu K, Luo J J, Wang S S, Zhang C W, Ma Y F, Liu Q, Huang X Z, Yuan Q B, Han R X, Zhao M, Dong G J, Guo L B, Zhu X D, Gou Z H, Wang W, Wu Y J, Lin H X, Fu X D. Heterotrimeric G proteins regulate nitrogen-use efficiency in rice. Nat Genet, 2014, 46: 652-656.
doi: 10.1038/ng.2958 pmid: 24777451
[7] Fan C C, Xing Y Z, Mao H L, Lu T T, Han B, Xu C G, Li X H, Zhang Q F. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet, 2006, 112: 1164-1171.
doi: 10.1007/s00122-006-0218-1 pmid: 16453132
[8] Takano-Kai N, Jiang H, Kubo T, Sweeney M, Matsumoto T, Kanamori H, Padhukasahasram B, Bustamante C, Yoshimura A, Doi K,, McCouch S. Evolutionary history of GS3, a gene conferring grain length in rice. Genetics, 2009, 182: 1323-1334.
doi: 10.1534/genetics.109.103002 pmid: 19506305
[9] Sun S Y, Wang L, Mao H L, Shao L, Li X H, Xiao J H, Ouyang Y D, Zhang Q F. A G-protein pathway determines grain size in rice. Nat Commun, 2018, 9: 851.
doi: 10.1038/s41467-018-03141-y pmid: 29487318
[10] Huang X Z, Qian Q, Liu Z B, Sun H Y, He S Y, Luo D, Xia G M, Chu C C, Li J Y, Fu X D. Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet, 2009, 41: 494-497.
doi: 10.1038/ng.352 pmid: 19305410
[11] Tao Y J, Miao J, Wang J, Li W Q, Xu Y, Wang F Q, Jiang Y J, Chen Z H, Fan F J, Xu M B, Zhou Y, Liang G H, Yang J. RGG1, involved in the cytokinin regulatory pathway, controls grain size in rice. Rice, 2020, 13: 76.
doi: 10.1186/s12284-020-00436-x pmid: 33169285
[12] Miao J, Yang Z F, Zhang D P, Wang Y Z, Xu M B, Zhou L H, Wang J, Wu S J, Yao Y L, Du X, Gu F F, Gong Z Y, Gu M H, Liang G H, Zhou Y. Mutation of RGG 2, which encodes a type B heterotrimeric G protein γ subunit, increases grain size and yield production in rice. Plant Biotechnol J, 2019, 17: 650-664.
doi: 10.1111/pbi.13005 pmid: 30160362
[13] Song X J, Huang W, Shi M, Zhu M Z, Lin H X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet, 2007, 39: 623-630.
doi: 10.1038/ng2014
[14] Huang K, Wang D K, Duan P G, Zhang B L, Xu R, Li N, Li Y H. WIDE AND THICK GRAIN 1, which encodes an otubain-like protease with deubiquitination activity, influences grain size and shape in rice. Plant J, 2017, 91: 849-860.
doi: 10.1111/tpj.2017.91.issue-5
[15] Hao J Q, Wang D K, Wu Y B, Huang K, Duan P G, Li N, Xu R, Zeng D L, Dong G J, Zhang B L, Zhang L M, Inzé D, Qian Q, Li Y H. The GW2-WG1-OsbZIP47 pathway controls grain size and weight in rice. Mol Plant, 2021, 14: 1266-1280.
doi: 10.1016/j.molp.2021.04.011 pmid: 33930509
[16] Wang S S, Wu K, Qian Q, Liu Q, Li Q, Pan Y J, Ye Y F, Liu X Y, Wang J, Zhang J Q, Li S, Wu Y J, Fu X D. Non-canonical regulation of SPL transcription factors by a human OTUB1-like deubiquitinase defines a new plant type rice associated with higher grain yield. Cell Res, 2017, 27: 1142-1156.
doi: 10.1038/cr.2017.98 pmid: 28776570
[17] Shi C L, Ren Y L, Liu L L, Wang F, Zhang H, Tian P, Pan T, Wang Y F, Jing R N, Liu T Z, Wu F Q, Lin Q B, Lei C L, Zhang X, Zhu S S, Guo X P, Wang J L, Zhao Z C, Wang J, Zhai H Q, Cheng Z J, Wan J M. Ubiquitin specific protease 15 has an important role in regulating grain width and size in rice. Plant Physiol, 2019, 180: 381-391.
doi: 10.1104/pp.19.00065 pmid: 30796160
[18] Guo T, Chen K, Dong N Q, Shi C L, Ye W W, Gao J P, Shan J X, Lin H X. GRAIN SIZE AND NUMBER1 negatively regulates the OsMKKK10-OsMKK4-OsMPK6 cascade to coordinate the trade-off between grain number per panicle and grain size in rice. Plant Cell, 2018, 30: 871-888.
doi: 10.1105/tpc.17.00959
[19] Xu R, Duan P G, Yu H Y, Zhou Z K, Zhang B L, Wang R C, Li J, Zhang G Z, Zhuang S S, Lyu J, Li N, Chai T Y, Tian Z X, Yao S G, Li Y H. Control of grain size and weight by the OsMKKK10- OsMKK4-OsMAPK6 signaling pathway in rice. Mol Plant, 2018, 11: 860-873.
doi: 10.1016/j.molp.2018.04.004
[20] Duan P G, Rao Y C, Zeng D L, Yang Y L, Xu R, Zhang B L, Dong G J, Qian Q, Li Y H. SMALL GRAIN 1, which encodes a mitogen‐activated protein kinase kinase 4, influences grain size in rice. Plant J, 2014, 77: 547-557.
doi: 10.1111/tpj.2014.77.issue-4
[21] Li N, Xu R, Duan P G, Li Y H. Control of grain size in rice. Plant Reprod, 2018, 31: 237-251.
doi: 10.1007/s00497-018-0333-6 pmid: 29523952
[22] Hong Z, Ueguchi-Tanaka M, Umemura K, Uozu S, Fujioka S, Takatsuto S, Yoshida S, Ashikari M, Kitano H, Matsuoka M. A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. Plant Cell, 2003, 15: 2900-2910.
doi: 10.1105/tpc.014712 pmid: 14615594
[23] Tanabe S, Ashikari M, Fujioka S, Takatsuto S, Yoshida S, Yano M, Yoshimura A, Kitano H, Matsuoka M, Fujisawa Y, Kato H, Iwasaki Y. A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length. Plant Cell, 2005, 17: 776-790.
doi: 10.1105/tpc.104.024950 pmid: 15705958
[24] Liu L C, Tong H N, Xiao Y H, Che R H, Xu F, Hu B, Liang C Z, Chu J F, Li J Y, Chu C C. Activation of Big Grain1 significantly improves grain size by regulating auxin transport in rice. Proc Natl Acad Sci USA, 2015, 112: 11102-11107.
doi: 10.1073/pnas.1512748112 pmid: 26283354
[25] Hu Z J, Lu S J, Wang M J, He H H, Sun L, Wang H R, Liu X H, Jiang L, Sun J L, Xin X Y, Kong W, Chu C C, Xue H W, Yang J S, Luo X J, Liu J X. A novel QTL qTGW3 encodes the GSK3/ SHAGGY-like kinase OsGSK5/OsSK41 that interacts with OsARF4 to negatively regulate grain size and weight in rice. Mol Plant, 2018, 11: 736-749.
doi: 10.1016/j.molp.2018.03.005
[26] Ying J Z, Ma M, Bai C, Huang X H, Liu J L, Fan Y Y, Song X J. TGW3, a major QTL that negatively modulates grain length and weight in rice. Mol Plant, 2018, 11: 750-753.
doi: 10.1016/j.molp.2018.03.007
[27] Xia D, Zhou H, Liu R J, Dan W H, Li P B, Wu B, Chen J X, Wang L Q, Gao G J, Zhang Q L, He Y Q. GL3.3, a novel QTL encoding a GSK3/SHAGGY-like kinase, epistatically interacts with GS3 to produce extra-long grains in rice. Mol Plant, 2018, 11: 754-756.
doi: S1674-2052(18)30092-3 pmid: 29567448
[28] Hu J, Wang Y X, Fang Y X, Zeng L J, Xu J, Yu H P, Shi Z Y, Pan J J, Zhang D, Kang S J, Zhu L, Dong G J, Guo L B, Zeng D L, Zhang G H, Xie L H, Xiong G S, Li J Y, Qian Q. A rare allele of GS2 enhances grain size and grain yield in rice. Mol Plant, 2015, 8: 1455-1465.
doi: 10.1016/j.molp.2015.07.002 pmid: 26187814
[29] Duan P G, Ni S, Wang J M, Zhang B L, Xu R, Wang Y X, Chen H Q, Zhu X D, Li Y H. Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice. Nat Plants, 2015, 2: 15203.
doi: 10.1038/nplants.2015.203 pmid: 27250749
[30] Wang S K, Li S, Liu Q, Wu K, Zhang J Q, Wang S S, Wang Y, Chen X B, Zhang Y, Gao C X, Wang F, Huang H X, Fu X D. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nat Genet, 2015, 47: 949-954.
doi: 10.1038/ng.3352 pmid: 26147620
[31] Wang Y X, Xiong G S, Hu J, Jiang L, Yu H, Xu J, Fang Y X, Zeng L J, Xu E B, Xu J, Ye W J, Meng X B, Liu R F, Chen H Q, Jing Y H, Wang Y H, Zhu X D, Li J Y, Qian Q. Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nat Genet, 2015, 47: 944-948.
doi: 10.1038/ng.3346 pmid: 26147619
[32] Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu B I, Onishi A, Miyagawa H, Katoh E. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat Genet, 2013, 45: 707-711.
doi: 10.1038/ng.2612 pmid: 23583977
[33] Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991, 88: 9828-9832.
doi: 10.1073/pnas.88.21.9828 pmid: 1682921
[34] Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res, 1980, 8: 4321-4326.
doi: 10.1093/nar/8.19.4321 pmid: 7433111
[35] Sang X C, He G H, Zhang Y, Yang Z L, Pei Y. The simple gain of templates of rice genomes DNA for PCR. Hereditas, 2003, 25: 705-707.
[36] Jeon J S, Jang S, Lee S, Nam J, Kim C, Lee S H, Chung Y Y, Kim S R, Lee Y H, Cho Y G, An G. Leafy hull sterile1 is a homeotic mutation in a rice MADS box gene affecting rice flower development. Plant Cell, 2000, 12: 871-884.
doi: 10.1105/tpc.12.6.871 pmid: 10852934
[37] Chen Z X, Wu J G, Ding W N, Chen H M, Wu P, Shi C H. Morphogenesis and molecular basis on naked seed rice, a novel homeotic mutation of OsMADS1 regulating transcript level of AP3 homologue in rice. Planta, 2006, 223: 882-890.
doi: 10.1007/s00425-005-0141-8
[38] Liu Q, Han R X, Wu K, Zhang J Q, Ye Y F, Wang S S, Chen J F, Pan Y J, Li Q, Xu X P, Zhou J W, Tao D Y, Wu Y J, Fu X D. G-protein βγ subunits determine grain size through interaction with MADS-domain transcription factors in rice. Nat Commun, 2018, 9: 852.
doi: 10.1038/s41467-018-03047-9 pmid: 29487282
[39] Wang C S, Tang S C, Zhan Q L, Hou Q Q, Zhao Y, Zhao Q, Feng Q, Zhou C C, Lyu D F, Cui L L, Li Y, Miao J S, Zhu C R, Lu Y Q, Wang Y C, Wang Z Q, Zhu J J, Shangguan Y Y, Gong J Y, Yang S H, Wang W Q, Zhang J F, Xie H A, Huang X H, Han B. Dissecting a heterotic gene through Graded Pool-Seq mapping informs a rice-improvement strategy. Nat Commun, 2019, 10: 2982.
doi: 10.1038/s41467-019-11017-y
[1] DAI Wen-Hui, ZHU Qi, ZHANG Xiao-Fang, LYU Shen-Yang, XIANG Xian-Bo, MA Tao, CHEN Yu-Jie, ZHU Shi-Hua, DING Wo-Na. Identification and gene mapping of brittle culm mutant bc21 in rice [J]. Acta Agronomica Sinica, 2023, 49(5): 1426-1431.
[2] YAN Xin, XIANG Chao, LIU Rong, LI Guan, LI Meng-Wei, LI Zheng-Li, ZONG Xu-Xiao, YANG Tao. Fine mapping of flower colour gene in pea (Pisum sativum L.) based on BSA-seq technique [J]. Acta Agronomica Sinica, 2023, 49(4): 1006-1015.
[3] LI Qiu-Ping, ZHANG Chun-Long, YANG Hong, WANG Tuo, LI Juan, JIN Shou-Lin, HUANG Da-Jun, LI Dan-Dan, WEN Jian-Cheng. Physiological characteristics analysis and gene mapping of a semi-sterility plant mutant sfp10 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2023, 49(3): 634-646.
[4] XIANG Si-Qian, LI Ru-Xiang, XU Guang-Yi, DENG Ke-Li, YU Jin-Jin, LI Miao-Miao, YANG Zheng-Lin, LING Ying-Hua, SANG Xian-Chun, HE Guang-Hua, ZHAO Fang-Ming. Identification and pyramid analysis of QTLs for grain size based on rice long-large-grain chromosome segment substitution line Z66 [J]. Acta Agronomica Sinica, 2023, 49(3): 731-743.
[5] ZHAO Ling, LIANG Wen-Hua, ZHAO Chun-Fang, WEI Xiao-Dong, ZHOU Li-Hui, YAO Shu, WANG Cai-Lin, ZHANG Ya-Dong. Mapping of QTLs for heading date of rice with high-density bin genetic map [J]. Acta Agronomica Sinica, 2023, 49(1): 119-128.
[6] WEI Gang, CHEN Dan-Yang, REN De-Yong, YANG Hong-Xia, WU Jing-Wen, FENG Ping, WANG Nan. Identification and gene mapping of slender stem mutant sr10 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(8): 2125-2133.
[7] DU Qi-Di, GUO Hui-Jun, XIONG Hong-Chun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, SONG Xi-Yun, LIU Lu-Xiang. Gene mapping of apical spikelet degeneration mutant asd1 in wheat [J]. Acta Agronomica Sinica, 2022, 48(8): 1905-1913.
[8] HUANG Fu-Deng, HUANG Yan, JIN Ze-Yan, HE Huan-Huan, LI Chun-Shou, CHENG Fang-Min, PAN Gang. Physiological characters and gene mapping of a precocious leaf senescence mutant ospls7 in rice (Orzo sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(7): 1832-1842.
[9] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[10] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
[11] XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579.
[12] GUO Jun-Yao, LIU Bin-Mei, YANG Hui-Jie, QIN Chao-Qi, REN Yan, JIANG Hong-Rui, TAO Liang-Zhi, YE Ya-Feng, WU Yue-Jin. Genetic analysis and gene mapping of the yellow midrib leaf mutant (yml) in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(12): 3120-3129.
[13] YANG Ming, LI Dan-Ting, FAN De-Jia, TAN Song-Juan, CHENG Xia-Nian, LIU Yu-Qiang, WAN Jian-Min. Mapping of QTLs for resistance to white-backed planthopper in Guangxi wild rice Y11 [J]. Acta Agronomica Sinica, 2022, 48(11): 2715-2723.
[14] YAO Jia-Yu, YU Ji-Xiang, WANG Zhi-Qin, LIU Li-Jun, ZHOU Juan, ZHANG Wei-Yang, YANG Jian-Chang. Response of endogenous brassinosteroids to nitrogen rates and its regulatory effect on spikelet degeneration in rice [J]. Acta Agronomica Sinica, 2021, 47(5): 894-903.
[15] SHEN Wen-Qiang, ZHAO Bing-Bing, YU Guo-Ling, LI Feng-Fei, ZHU Xiao-Yan, MA Fu-Ying, LI Yun-Feng, HE Guang-Hua, ZHAO Fang-Ming. Identification of an excellent rice chromosome segment substitution line Z746 and QTL mapping and verification of important agronomic traits [J]. Acta Agronomica Sinica, 2021, 47(3): 451-461.
Full text



[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .