Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (6): 1653-1667.doi: 10.3724/SP.J.1006.2022.21045

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of irrigation on tiller occurrence, photo-assimilates production and distribution in different stem and tillers and spike formation in wheat

FENG Lian-Jie(), YU Zhen-Wen, ZHANG Yong-Li*(), SHI Yu   

  1. College of Agronomy, Shandong Agricultural University/State Key Laboratory of Crop Biology/Key Laboratory of Crop Ecophysiology and Farming System, Ministry of Agriculture and Rural Affairs, Tai’an 271018, Shandong, China
  • Received:2022-06-28 Accepted:2022-10-10 Online:2023-06-12 Published:2022-12-26
  • Contact: *E-mail: zhangyl@sdau.edu.cn
  • Supported by:
    Special funds for Taishan Scholars Project;China Agriculture Research System of MOF and MARA(CARS-3-1-19);National Natural Science Foundation of China(31771717)

Abstract:

Moderate irrigation based on soil moisture content could increase spike number of wheat, and realize water-saving and high-yielding cultivation, but the physiological mechanism of tiller occurrence and spike formation under this condition is still unclear. A field experiment was conducted in wheat growth seasons of 2019-2020 and 2020-2021, in which the medium-spike wheat Jimai 22 and large-spike wheat Shannong 23 were used as the experimental materials. Three treatments were designed in this field experiment, including no irrigation during the whole growth period, water-saving irrigation, and sufficient irrigation. The characteristics of tiller occurrence and spike formation of wheat were studied. The results showed that the tiller node area and trans zeatin content, the photosynthetic parameters of the uppermost unfloding leaves in main stem at wintering and turn-green stage of two wheat cultivars under water-saving irrigation treatment were higher than no irrigation treatment. Under water-saving irrigation, the stem number of tillers II, III, IP, IV, and others in two spike-type wheat cultivars were increased, the total stem number per plant of Jimai 22 and Shannong 23 under W70 were 1.01 and 0.75 higher at wintering stage and 0.71 and 0.56 higher at jointing stage. The photosynthetic parameter of the uppermost unfolding leaves at jointing stage, dry matter weight and distribution amount of 13C assimilates of main stem and tillers in different positions increased significantly, the total spike number per plant of Jimai 22 and Shannong 23 were 0.36 and 0.41 higher than no irrigation in two years. The grain yield of Jimai 22 and Shannong 23 under water-saving irrigation treatment increased by 35.00% and 44.27%, and water use efficiency increased by 9.23% and 8.55% than no irrigation, respectively. Further increasing the amount of irrigation to sufficient irrigation treatment could increase the total stem number per plant at wintering and jointing stage, but there was no significant difference with water-saving irrigation in the total formation spike number per plant, spike number, and grain yield per hectare, water use efficiency was decreased. Comparison among the cultivars the total stem and spike number per plant of Jimai 22 were higher than Shannong 23, the main reason was that Jimai 22 had higher tiller node area and trans zeatin content, photosynthetic capacity in main stem, and tillers in different positions. The correlation analysis showed that the total stem number and spike number per plant, spike number, and grain yield per hectare were positively correlated with the tiller node area and trans zeatin content, and net photosynthetic rate of the uppermost unfolding leaves in main stem in two wheat cultivars, and there was significantly negatively correlated with auxin and abscisic acid content. These results indicated that the water-saving irrigation could regulate tiller occurrence and spike formation by increasing tiller node area and hormone content, improving the capacity of photo-assimilates production and distribution in main stem and tillers in different positions, thus resulting in the higher yield and water use efficiency.

Key words: irrigation, different spike types wheat, tiller occurrence, photo-assimilates production and distribution, spike formation

Fig. 1

Monthly precipitation and monthly air temperature in the growing seasons of winter wheat in 2019?2020 and 2020?2021"

Table 1

Effect of irrigation on tiller node area of main stem and tillers in different positions and total area of tiller node at wintering stage in wheat (2020-2021)"

品种
Cultivar
处理
Treatment
分蘖节面积 Tiller node area (mm2) 分蘖节总面积
Total area of tiller node (mm2)
O I II 其余分蘖Other tillers
J22 W0 4.20 e 1.05 e 0.64 e 0.22 e 6.11 d
W70 6.09 b 1.20 d 1.11 c 1.80 b 10.20 b
W90 6.50 a 1.36 c 1.26 b 2.27 a 11.39 a
S23 W0 3.56 f 1.26 d 0.96 d 5.78 e
W70 4.68 d 1.76 b 1.23 b 1.01 d 8.68 c
W90 5.06 c 1.89 a 1.36 a 1.66 c 9.97 b

Fig. 2

Effect of irrigation on hormone content and ratio of tiller node in wheat in 2020 and 2021 Different lowercase letters are significantly different at the 0.05 probability level. tZ: trans zeatin; IAA: auxin; ABA: abscisic acid."

Fig. 3

Effect of irrigation on net photosynthetic rate, transpiration rate, and stomatal conductance of main stem at wintering and turn-green stage in wheat Different lowercase letters are significantly different at the 0.05 probability level."

Fig. 4

Effect of irrigation on net photosynthetic rate, transpiration rate and stomatal conductance of main stem and tillers in different positions at jointing stage in wheat in 2020 and 2021 Different lowercase letters are significantly different at the 0.05 probability level."

Fig. 5

Effect of irrigation on net photosynthetic rate, transpiration rate, and stomatal conductance of main stem at anthesis stage in wheat in 2020 and 2021 Different lowercase letters are significantly different at the 0.05 probability level."

Table 2

Effect of irrigation on dry matter weight and distribution amount of 13C assimilates of main stem and tillers in different positions in wheat (2020-2021)"

品种
Cultivar
处理
Treatment
干物质重
Dry matter weight (g)
13C同化物分配量
Distribution amount of 13C assimilates (mg)
O I II III O I II III
标记后7 d (单茎) 7 days after labeling (stem)
J22 W0 1.84 d 1.64 c 1.04 c 0.57 c 2.98 b 2.52 c 1.57 c 0.43 b
W70 2.04 c 1.87 b 1.36 a 1.14 a 3.40 a 3.23 a 2.76 a 1.62 a
S23 W0 2.18 b 1.91 b 0.71 d 0.46 d 2.65 c 2.25 d 0.72 d 0.23 d
W70 2.49 a 2.37 a 1.29 b 0.61 b 3.26 a 2.92 b 2.23 b 0.34 c
成熟期(籽粒) Maturity (grain)
J22 W0 1.34 d 1.23 d 0.87 c 0.98 b 0.94 c 0.86 c
W70 1.50 c 1.49 c 1.19 b 0.73 a 1.36 a 1.32 a 1.16 a 0.90 a
S23 W0 1.97 b 1.59 b 0.88 c 0.79 d
W70 2.13 a 2.06 a 1.61 a 1.32 a 1.24 b 1.09 b
成熟期(营养器官) Maturity (vegetative organ)
J22 W0 1.41 d 1.37 c 1.19 c 0.53 b 0.49 b 0.40 b
W70 1.81 c 1.86 b 1.64 b 1.47 a 0.65 a 0.61 a 0.50 a 0.49 a
S23 W0 2.27 b 2.04 b 0.39 c 0.33 c
W70 2.65 a 2.62 a 2.37 a 0.54 b 0.48 b 0.36 c

Table 3

Effect of irrigation on leaf age of main stem, stem number of main stem and tillers in different positions and total stem number per plant in wheat"

生长季和
生育时期
Growth
season and growth stage
品种
Cultivar
处理
Treatment
主茎叶龄
Leaf age of mean stem
不同茎蘖发生数
Stem number in main stem and tillers in different positions per plant (stem plant-1)
单株总茎蘖数
Total stem number
per plant
(stem plant-1)
O I II III IP IV 其余分蘖
Other
tillers
2019-2020
越冬期
Wintering
J22 W0 5.5 c 1.00 a 1.00 a 0.83 b 0.57 d 0.34 d 0.16 c 3.90 e
W70 6.3 b 1.00 a 1.00 a 1.00 a 0.84 a 0.62 b 0.27 b 4.73 b
W90 6.8 a 1.00 a 1.00 a 1.00 a 0.88 a 0.73 a 0.41 a 5.02 a
S23 W0 5.1 d 1.00 a 1.00 a 0.67 c 0.44 e 0.13 f 3.24 f
W70 5.7 c 1.00 a 1.00 a 0.98 a 0.64 c 0.29 e 0.17 c 4.08 d
W90 6.1 b 1.00 a 1.00 a 0.94 a 0.73 b 0.43 c 0.24 b 4.34 c
2020-2021
越冬期
Wintering
J22 W0 5.3 d 1.00 a 1.00 a 0.72 c 0.30 c 0.12 d 0.07 d 3.21 d
W70 6.1 b 1.00 a 1.00 a 1.00 a 0.71 b 0.47 b 0.22 b 4.40 b
W90 6.5 a 1.00 a 1.00 a 0.99 a 0.84 a 0.67 a 0.30 a 4.80 a
S23 W0 4.9 e 1.00 a 1.00 a 0.58 d 0.12 d 2.70 e
W70 5.4 d 1.00 a 1.00 a 0.77 c 0.39 c 0.10 d 0.09 d 3.35 d
W90 5.8 c 1.00 a 1.00 a 0.90 b 0.63 b 0.31 c 0.14 c 3.98 c
2020-2021
拔节期
Jointing
J22 W0 9.3 c 1.00 a 1.00 a 0.90 b 0.77 c 0.63 c 0.57 c 1.68 c 6.54 c
W70 10.2 b 1.00 a 1.00 a 1.00 a 0.87 b 0.76 b 0.69 b 1.93 b 7.25 b
W90 10.9 a 1.00 a 1.00 a 1.00 a 0.99 a 0.88 a 0.79 a 2.05 a 7.71 a
S23 W0 8.7 d 1.00 a 1.00 b 0.83 c 0.70 d 0.40 d 0.30 d 0.34 f 4.58 f
W70 9.5 c 1.00 a 1.00 a 0.91 b 0.80 c 0.57 c 0.43 c 0.43 e 5.14 e
W90 10.1 b 1.00 a 1.00 a 0.99 a 0.99 a 0.83 a 0.68 b 0.69 d 6.18 d

Table 4

Effect of irrigation on formation spike number of main stem and tillers in different positions and total formation spike number per plant at maturity stage in wheat"

生长季
Growth season
品种
Cultivar
处理
Treatment
不同茎蘖成穗数
Formation spike number of main stem and tillers in different positions per plant (stem plant-1)
单株成穗数
Total Formation spike number per plant (stem plant-1)
O I II III
2019-2020 J22 W0 1.00 a 0.90 b 0.34 b 2.24 b
W70 1.00 a 1.00 a 0.53 a 0.04 b 2.58 a
W90 1.00 a 1.00 a 0.33 b 0.20 a 2.53 a
S23 W0 1.00 a 0.42 e 1.42 d
W70 1.00 a 0.64 c 0.14 d 1.79 c
W90 1.00 a 0.56 d 0.23 c 1.80 c
2020-2021 J22 W0 1.00 a 1.00 a 0.30 c 2.30 b
W70 1.00 a 1.00 a 0.57 a 0.11 b 2.68 a
W90 1.00 a 1.00 a 0.40 b 0.29 a 2.69 a
S23 W0 1.00 a 0.41 d 1.41 d
W70 1.00 a 0.67 b 0.19 d 1.86 c
W90 1.00 a 0.60 c 0.29 c 1.90 c
F
F-value
生长季 Growth season (G) 8.33** 7.00* 16.33** 25.55**
品种 Cultivar (C) 2045.37** 761.29** 280.33** 2448.32**
灌溉 Irrigation (I) 78.04** 148.61** 126.33** 242.40**
G×C 0.33ns 0.57ns 16.33** 2.89ns
G×I 0.78ns 6.64** 4.33* 3.17ns
C×I 30.70** 73.96** 126.33** 2.47ns
G×C×I 6.78** 0.68ns 4.33* 0.12ns

Fig. 6

Effect of irrigation on total number of population stems at different growth stages in wheat"

Table 5

Effect of irrigation on grain yield and its components, water consumption amount and water use efficiency"

生长季
Growth season
品种
Cultivar
处理
Treatment
公顷穗数
Spike number per hectare
(×104 hm-2)
穗粒数
Grain
number per spike
千粒重
1000-grain weight (g)
籽粒产量
Grain yield
(kg hm-2)
总耗水量
Water
consumption amount (mm)
水分利用效率
Water use
efficiency
(kg hm-2 mm−1)
2019-2020 J22 W0 503.67 b 28.32 d 38.11 c 5435.99 c 326.49 e 16.64 e
W70 580.17 a 31.68 c 41.88 b 7623.94 b 419.07 c 18.19 c
W90 574.33 a 31.55 c 41.64 b 7545.21 b 471.73 a 15.99 f
S23 W0 321.33 d 42.43 b 41.33 b 5634.95 c 300.04 f 18.79 b
W70 401.83 c 46.32 a 43.20 a 8040.71 a 392.03 d 20.51 a
W90 406.33 c 45.95 a 42.58 a 7950.05 a 449.42 b 17.69 d
2020-2021 J22 W0 516.82 b 31.33 d 40.19 d 6507.55 c 373.36 e 17.43 d
W70 601.21 a 33.02 c 42.53 c 8443.04 b 443.17 c 19.05 b
W90 604.12 a 32.95 c 42.29 c 8418.14 b 516.34 a 16.30 e
S23 W0 320.15 d 42.23 b 44.33 b 5989.29 d 307.28 f 19.49 b
W70 422.58 c 45.00 a 45.96 b 8739.80 a 415.39 d 21.04 a
W90 435.76 c 44.82 a 45.27 a 8841.58 a 481.15 b 18.37 c
F
F-value
生长季 Growth season (G) 30.47** 4.91* 169.90** 194.76** 135.24** 37.64**
品种 Cultivar (C) 2746.76** 3101.84** 306.04ns 13.26** 179.33** 542.44**
灌溉 Irrigation (I) 295.00** 65.77** 83.53** 748.05** 1211.92** 279.32**
G×C 0.54ns 36.07** 24.68** 5.96* 12.12** 0.04ns
G×I 4.09* 3.68* 2.74ns 0.80ns 2.93ns 0.51ns
C×I 3.26ns 1.09ns 10.38ns 10.49** 5.68* 0.62ns
G×C×I 0.47ns 0.21ns 1.14ns 4.08* 5.07* 0.96ns

Table 6

Pearson’s correlation coefficients"

性状Trait TAD tZ IAA ABA NPW NPT TNJ SNP HSN GY
TAD 0.967** -0.979** -0.856** 0.954** 0.983** 0.948** 0.945** 0.966** 0.969**
tZ 0.985** -0.967** -0.908** 0.949** 0.953** 0.981** 0.864** 0.887** 0.877**
IAA -0.922** -0.913** 0.876** -0.921** -0.962** -0.941** -0.926** -0.920** -0.923**
ABA -0.939** -0.945** 0.919** -0.812** -0.804** -0.866** -0.693* -0.705* -0.744*
NPW 0.897** 0.874** -0.961** -0.935** 0.983** 0.929** 0.836** 0.912** 0.888**
NPT 0.968** 0.974* -0.833** -0.917** 0.823** 0.929** 0.913** 0.961** 0.942**
TNJ 0.919** 0.881* -0.922** -0.943** 0.919** 0.850** 0.867** 0.868** 0.869**
SNP 0.968** 0.983** -0.854** -0.913** 0.828** 0.976** 0.820** 0.970** 0.977**
HSN 0.957** 0.962** -0.806** -0.884** 0.788** 0.966** 0.797* 0.989** 0.985**
GY 0.954** 0.969** -0.820** -0.856** 0.765** 0.956** 0.774* 0.984** 0.987**
[1] 孟丽梅, 杨子光, 孙军伟, 张珂, 郭军伟. 黄淮旱地组小麦品种抗旱性鉴定比较分析. 农学学报, 2020, 10(8): 6-12.
doi: 10.11923/j.issn.2095-4050.cjas20191200309
Meng L M, Yang Z G, Sun W J, Zhang K, Guo J W. Drought resistance identification of wheat varieties in Huanghuai dryland group: comparative analysis. J Agric, 2020, 10(8): 6-12. (in Chinese with English abstract)
doi: 10.11923/j.issn.2095-4050.cjas20191200309
[2] Li Y, Huang G H, Chen Z J, Xiong Y W, Huang Q Z, Xu X, Huo Z L. Effects of irrigation and fertilization on grain yield, water and nitrogen dynamics and their use efficiency of spring wheat farmland in an arid agricultural watershed of Northwest China. Agric Water Manage, 2022, 260: 107277.
doi: 10.1016/j.agwat.2021.107277
[3] Li Q Q, Bian C Y, Liu X H, Ma C J, Liu Q R. Winter wheat grain yield and water use efficiency in wide-precision planting pattern under deficit irrigation in North China Plain. Agric Water Manag, 2015, 153: 71-76.
doi: 10.1016/j.agwat.2015.02.004
[4] Li X M, Xia X C, Xiao Y G, He Z H, Wang D S, Trethowan R, Wang H J, Chen X M. QTL mapping for plant height and yield components in common wheat under water-limited and full irrigation environments. Crop Past Sci, 2015, 66: 660-670.
doi: 10.1071/CP14236
[5] Li D X, Zhang D, Wang H G, Li H R, Fang Q, Li H Y, Li R Q. Optimized planting density maintains high wheat yield under limiting irrigation in North China Plain. Int J Plant Prod, 2020, 14: 107-117.
doi: 10.1007/s42106-019-00071-7
[6] Zhao H X, Zhang P, Wang Y Y, Ning T Y, Xu C L, Wang P. Canopy morphological changes and water use efficiency in winter wheat under different irrigation treatments. J Integr Agric, 2020, 19: 1105-1116.
doi: 10.1016/S2095-3119(19)62750-4
[7] Xie Y X, Zhang H, Zhu Y J, Zhao L, Yang J H, Cha F N, Liu C, Wang C Y, Guo T C. Grain yield and water use of winter wheat as affected by water and sulfur supply in the North China Plain. J Integr Agric, 2017, 16: 614-625.
doi: 10.1016/S2095-3119(16)61481-8
[8] Guo Z J, Yu Z W, Wang D, Shi Y, Zhang Y L. Photosynthesis and winter wheat yield responses to supplemental irrigation based on measurement of water content in various soil layers. Field Crops Res, 2014, 166: 102-111.
doi: 10.1016/j.fcr.2014.06.004
[9] 许骥坤, 石玉, 赵俊晔, 张永丽, 于振文. 测墒补灌对小麦水分利用特征和产量的影响. 水土保持学报, 2015, 29: 277-281.
Xu J K, Shi Y, Zhao J Y, Zhang Y L, Yu Z W. Effect of supplemental irrigation with micro-sprinkling hoses and water and fertilizer integration on yield and water nitrogen use efficiency in winter wheat. J Soil Water Conserv, 2015, 29: 277-281. (in Chinese with English abstract)
[10] 石玉华, 初金鹏, 尹立俊, 贺明荣, 邓淑珍, 张良, 孙晓乐, 田奇卓, 代兴龙. 宽幅播种提高不同播期小麦产量与氮素利用率. 农业工程学报, 2018, 34(17): 127-133.
Shi Y H, Chu J P, Yin L J, He M R, Deng S Z, Zhang L, Sun X L, Tian Q Z, Dai X L. Wide-range sowing improving yield and nitrogen use efficiency of wheat sown at different dates. Trans CSAE, 2018, 34(17): 127-133. (in Chinese with English abstract)
[11] Hu Y S, Ren T H, Li Z, Tang Y Z, Ren Z L, Yan B J. Molecular mapping and genetic analysis of a QTL controlling spike formation rate and tiller number in wheat. Gene, 2017, 634: 15-21.
doi: 10.1016/j.gene.2017.08.039
[12] 李敏敏, 李卓夫, 王晓楠, 付连双, 宋永超, 王璐. 寒地冬小麦不同品种越冬期组织结构的差异. 麦类作物学报, 2016, 36: 795-800.
Li M M, Li Z F, Wang X N, Fu L S, Song Y C, Wang L. Differences of organization structure in different winter wheat varieties at over-wintering stage in cold region. J Triticeae Crops, 2016, 36: 795-800. (in Chinese with English abstract)
[13] 冯伟, 徐丽娜, 朱云集, 王晨阳, 郭天财. 小麦‘兰考矮早八’茎蘖分蘖节的内源激素差异及其密度调控效应. 植物生理学报, 2011, 47: 581-588.
Feng W, Xu L N, Zhu Y J, Wang C Y, Guo T C. Differences of endogenous hormones in tillering node between main stem and tillers and their regulation by density in wheat ‘Lankao Aizao 8’. Plant Physiol J, 2011, 47: 581-588 (in Chinese with English abstract).
doi: 10.1104/pp.47.4.581
[14] 张敏, 王岩岩, 蔡瑞国, 李婧实, 王文颇, 周印富, 李彦生, 杨树宗. 播期推迟对冬小麦产量形成和籽粒品质的调控效应. 麦类作物学报, 2013, 33: 325-330.
Zhang M, Wang Y Y, Cai R G, Li J S, Wang W P, Zhou Y F, Li Y S, Yang S Z. Regulating effect of delayed sowing date on yield formation and grain quality of winter wheat. J Triticeae Crops, 2013, 33: 325-330. (in Chinese with English abstract)
[15] 欧行奇, 王永霞, 李新华, 乔红, 王紫娟, 欧阳娟. 百农207不同生育期的光合、干物质动态与产量性状研究. 东北农业科学, 2020, 45(4): 13-15.
Ou X Q, Wang Y X, Li X H, Qiao H, Wang Z J, Ouyang J. Study on photosynthesis, dry matter dynamics and yield characters of Bainong 207 at different growth stages. J Northeast Agric Sci, 2020, 45(4): 13-15. (in Chinese with English abstract)
[16] 蔡铁, 徐海成, 尹燕枰, 杨卫兵, 彭佃亮, 倪英丽, 徐彩龙, 杨东清, 王振林. 外源IAA、GA3和ABA影响不同穗型小麦分蘖发生的机制. 作物学报, 2013, 39: 1835-1842.
doi: 10.3724/SP.J.1006.2013.01835
Cai T, Xu H C, Yin Y P, Yang W B, Peng D L, Ni Y L, Xu C L, Yang D Q, Wang Z L. Mechanisms of tiller occurrence affected by exogenous IAA, GA3, and ABA in wheat with different spike-types. Acta Agron Sin, 2013, 39: 1835-1842. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.01835
[17] 周羊梅, 顾正中, 王安邦, 朱新开, 郭文善. 小麦主茎光合产物的运转与分配. 核农学报, 2008, 22: 80-83.
Zhou Y M, Gu Z Z, Wang A B, Zhu X K, Guo W S. The transportation and distribution of 14C-photosynthate produced in main stems of wheat. J Nucl Agric Sci, 2008, 22: 80-83. (in Chinese with English abstract)
[18] 胡卫丽, 王永华, 李刘霞, 轩红梅, 郭天财. 氮密调控对两种穗型冬小麦品种茎蘖干物质积累与转运的影响. 麦类作物学报, 2014, 34: 808-815.
Hu W L, Wang Y H, Li L X, Xuan H M, Guo T C. Effects of nitrogen and plant density on dry matter accumulation and translocation in main stem and tillers of two spike-types of winter wheat varieties. J Triticeae Crops, 2014, 34: 808-815. (in Chinese with English abstract)
[19] Wang X J, Wu W, Liao Y C. Mitigating ammonia volatilization and increasing nitrogen use efficiency through appropriate nitrogen management under supplemental irrigation and rainfed condition in winter wheat. Agric Water Manag, 2021, 255: 107050.
doi: 10.1016/j.agwat.2021.107050
[20] 王思宇, 荣晓椒, 樊高琼, 吴舸, 胡雯媚. 播期对四川小麦分蘖发生、消亡及成穗特性的影响. 麦类作物学报, 2017, 37: 656-665.
Wang S Y, Rong X J, Fan G Q, Wu G, Hu W M. Effect of sowing dates on tiller occurring, withering away and earbearing. J Triticeae Crops, 37: 656-665. (in Chinese with English abstract)
[21] Xu C L, Cao Y B, Tian B J, Ren J H, Meng Q F, Wang P. Effects of EDAH, a novel plant growth regulator, on mechanical strength, stalk vascular bundles and grain yield of summer maize at high densities. Field Crops Res, 2017, 200: 71-79.
doi: 10.1016/j.fcr.2016.10.011
[22] Yang R C, Yang T, Zhang H J, Qi Y, Xing Y X, Zhang N, Li R, Weeda S, Ren S X, Ouyang B, Guo Y D. Hormone profiling and transcription analysis reveal a major role of ABA in tomato salt tolerance. Plant Physiol Biochem, 2014, 77: 23-34.
doi: 10.1016/j.plaphy.2014.01.015
[23] Li Y H, Shi D Y, Li G H, Zhao B, Zhang J W, Liu P, Ren B Z, Dong S T. Maize/peanut intercropping increases photosynthetic characteristics, 13C-photosynthate distribution, and grain yield of summer maize. J Integr Agric, 2019, 18: 2219-2229.
doi: 10.1016/S2095-3119(19)62616-X
[24] Liu Z, Ma F Y, Hu T X, Zhao K G, Gao T P, Zhao H X, Ning T Y. Using stable isotopes to quantify water uptake from different soil layers and water use efficiency of wheat under long-term tillage and straw return practices. Agric Water Manag, 2020, 229: 105933.
doi: 10.1016/j.agwat.2019.105933
[25] Hou H Z, Zhang X C, Xin J D, Fang Y J, Yu X F, Wang H L, Ma Y F. Effects of soil-plastic mulching on water consumption characteristics and grain yield of spring wheat in a semiarid area. Irrig Drain, 2020, 69: 914-927.
doi: 10.1002/ird.v69.4
[26] Al-Ghobari H M, Mohammad F S, El Marazky M S A. Effect of intelligent irrigation on water use efficiency of wheat crop in arid region. J Anim Plant Sci, 2013, 23: 1691-1699.
[27] 王森, 尚云秋, 朱俊科, 谷淑波, 王东. 不同播种方案下补灌对冬小麦水分利用和产量的影响. 麦类作物学报, 2021, 41: 1151-1160.
Wang S, Shang Y Q, Zhu J K, Gu S B, Wang D. Effect of supplemental irrigation on water use and grain yield of winter wheat with different sowing schemes. J Triticeae Crops, 2021, 41: 1151-1160. (in Chinese with English abstract)
[28] 张现超, 乔冬梅, 齐学斌, 郭魏, 周媛, 肖亚涛. 不同井渠配比灌水模式对土壤盐分及冬小麦生长发育的影响. 灌溉排水学报, 2015, 34(4): 49-54.
Zhang X C, Qiao D M, Qi X B, Guo W, Zhou Y, Xiao Y T. Effects of irrigation models with different well-canal water percentages on the growth of winter wheat and soil salt. J Irrig Drain, 2015, 34(4): 49-54. (in Chinese with English abstract)
[29] 张晶, 党建友, 张定一, 王姣爱, 裴雪霞, 姬虎太, 闫翠萍, 程麦凤. 微喷灌水肥一体化小麦磷钾肥减施稳产提质研究. 中国土壤与肥料, 2018, (5): 115-121.
Zhang J, Dang J Y, Zhang D Y, Wang J A, Pei X X, Ji H T, Yan C P, Cheng M F. Study on effect of micro-sprinkler irrigation combined with reduced phosphorus, potassium fertilizer on yield and quality of wheat. Soils Fert Sci China, 2018, (5): 115-121. (in Chinese with English abstract)
[30] 党红凯, 曹彩云, 郑春莲, 马俊永, 郭丽, 王亚楠, 李伟, 李科江. 造墒与播后镇压对小麦冬前耗水和生长发育的影响. 中国生态农业学报, 2016, 24: 1071-1079.
Dang H K, Cao C Y, Zheng C L, Ma J Y, Guo L, Wang Y N, Li W, Li K J. Effects of pre-sowing irrigation and post-sowing soil compaction on water use and growth of winter wheat. Chin J Eco-Agric, 2016, 24: 1071-1079. (in Chinese with English abstract)
[31] 刘冲, 贾永红, 张金汕, 孙鹏, 李俊志, 李鹏, 石书兵. 播种方式和灌水量对春小麦干物质和产量的影响. 麦类作物学报, 2019, 39: 728-737.
Liu C, Jia Y H, Zhang J S, Sun P, Li J Z, Li P, Shi S B. Effects of sowing patterns and irrigation amount on dry matter and yield of spring wheat. J Triticeae Crops, 2019, 39: 728-737. (in Chinese with English abstract)
[32] 肖云, 陈松鹤, 杨洪坤, 张雪, 郭翔, 樊高琼. 优化栽培管理对四川丘陵旱地不同穗型小麦分蘖质量与产量形成的影响. 核农学报, 2021, 35: 2616-2625.
doi: 10.11869/j.issn.100-8551.2021.11.2616
Xiao Y, Chen S H, Yang H K, Zhang X, Guo X, Fan G Q. Effects of optimal management on tillering quality and yield of two spike-type wheat cultivars in hilly dryland of Sichuan. J Nucl Agric Sci, 2021, 35: 2616-2625. (in Chinese with English abstract)
doi: 10.11869/j.issn.100-8551.2021.11.2616
[33] Cai T, Xu H C, Peng D L, Yin Y P, Yang W B, Ni Y L, Chen X G, Xu C L, Yang D Q, Cui Z Y, Wang Z L. Exogenous hormonal application improves grain yield of wheat by optimizing tiller productivity. Field Crops Res, 2014, 155: 172-183.
doi: 10.1016/j.fcr.2013.09.008
[34] 郭天财, 盛坤, 冯伟, 徐丽娜, 王晨阳. 种植密度对两种穗型小麦品种分蘖期茎蘖生理特性的影响. 西北植物学报, 2009, 29: 350-355.
Guo T C, Sheng K, Feng W, Xu L N, Wang C Y. Effects of plant density on physiological characteristics of different stems during tillering stage in two spike-types winter wheat cultivars. Acta Bot Boreali-Occident Sin, 2009, 29: 350-355. (in Chinese with English abstract)
[35] 张经廷, 吕丽华, 董志强, 张丽华, 姚艳荣, 申海平, 姚海坡, 贾秀领. 华北冬小麦开花期补灌的增产效应及其影响因素. 作物学报, 2019, 45: 1746-1755.
doi: 10.3724/SP.J.1006.2019.81060
Zhang J T, Lyu L H, Dong Z Q, Zhang L H, Yao Y R, Shen H P, Yao H P, Jia X L. Yield-increasing effect of supplementary irrigation at winter wheat flowering and influencing factors based on water and nitrogen coupling in north China. Acta Agron Sin, 2019, 45: 1746-1755. (in Chinese with English abstract)
[36] Tatar Q, Cakalogullari U, Aykut Tonk F, Istipliler D, Karakoc R. Effect of drought stress on yield and quality traits of common wheat during grain filling stage. Turk J Field Crops, 2020, 25: 236-244.
[37] 郑飞娜, 初金鹏, 张秀, 费立伟, 代兴龙, 贺明荣. 播种方式与种植密度互作对大穗型小麦品种产量和氮素利用率的调控效应. 作物学报, 2020, 46: 423-431.
doi: 10.3724/SP.J.1006.2020.91046
Zheng F N, Chu J P, Zhang X, Fei L W, Dai X L, He M R. Interactive effects of sowing pattern and planting density on grain yield and nitrogen use efficiency in large spike wheat cultivar. Acta Agron Sin, 2020, 46: 423-431 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2020.91046
[38] 杨贝贝, 赵丹丹, 任永哲, 辛泽毓, 王志强, 林同保. 不同小麦品种对干旱胁迫的形态生理响应及抗旱性分析. 河南农业大学学报, 2017, 51: 131-139.
Yang B B, Zhao D D, Ren Y Z, Xin Z Y, Wang Z Q, Lin T B. Drought resistance of different wheat cultivar and physiological response to drought stress. J Henan Agric Univ, 2017, 51: 131-139. (in Chinese with English abstract)
[1] LI Pan, CHEN Gui-Ping, GOU Zhi-Wen, YIN Wen, FAN Zhi-Long, HU Fa-Long, FAN Hong, CHAI Qiang. Response on light energy utilization and water production benefit of spring wheat to straw retention in an oasis irrigated area [J]. Acta Agronomica Sinica, 2023, 49(5): 1316-1326.
[2] LI Hui, WANG Xu-Min, LIU Miao, LIU Peng-Zhao, LI Qiao-Li, WANG Xiao-Li, WANG Rui, LI Jun. Water and nitrogen reduction scheme optimization based on yield and nitrogen utilization of summer maize [J]. Acta Agronomica Sinica, 2023, 49(5): 1292-1304.
[3] ZHANG Jin-Xin, GE Jun-Zhu, MA Wei, DING Zai-Song, WANG Xin-Bing, LI Cong-Feng, ZHOU Bao-Yuan, ZHAO Ming. Research advance on annual water use efficiency of winter wheat-summer maize cropping system in North China Plain [J]. Acta Agronomica Sinica, 2023, 49(4): 879-892.
[4] FU Jing, WANG Ya, YANG Wen-Bo, WANG Yue-Tao, LI Ben-Yin, WANG Fu-Hua, WANG Sheng-Xuan, BAI Tao, YIN Hai-Qing. Effects of alternate wetting and drying irrigation and nitrogen coupling on grain filling physiology and root physiology in rice [J]. Acta Agronomica Sinica, 2023, 49(3): 808-820.
[5] ER Chen, LIN Tao, XIA Wen, ZHANG Hao, XU Gao-Yu, TANG Qiu-Xiang. Coupling effects of irrigation and nitrogen levels on yield, water distribution and nitrate nitrogen residue of machine-harvested cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 497-510.
[6] YANG Heng-Shan, ZHANG Yu-Shan, GE Xuan-Liang, LI Wei-Min, GUO Zi-He, GUO Nuan. Effects of different amount of drip irrigation on carbon metabolism and photosynthetic nitrogen utilization efficiency of maize after anthesis under shallow buried drip irrigation [J]. Acta Agronomica Sinica, 2022, 48(10): 2614-2624.
[7] DONG Yu-Xin, WEI Bing-Qi, WU Qiang, ZHANG Yong-Ping. Cropping effect and variety adaptability of winter-seeded spring wheat in Inner Mongolia Plain irrigation area [J]. Acta Agronomica Sinica, 2021, 47(3): 481-493.
[8] SHI Meng-Xia, ZHANG Jia-Xiao, SHI Xiao-Yu, CHU Qing-Quan, CHEN Fu, LEI Yong-Deng. Water use efficiency of several water-intensive crops in Hebei province in recent 20 years [J]. Acta Agronomica Sinica, 2021, 47(12): 2450-2458.
[9] LI Min, LUO De-Qiang, JIANG Xue-Hai, JIANG Ming-Jin, JI Guang-Mei, LI Li-Jiang, ZHOU Wei-Jia. Regulations of controlled irrigations and increased densities on yield formation of hybrid indica rice under nitrogen-reduction conditions [J]. Acta Agronomica Sinica, 2020, 46(9): 1430-1447.
[10] WANG Yan-Li,WU Peng-Nian,LI Pei-Fu,WANG Xi-Na,ZHU Xu. Effects of organic manure combined with nitrogen fertilizer on spring maize yield and soil fertility under drip irrigation [J]. Acta Agronomica Sinica, 2019, 45(8): 1230-1237.
[11] Li-Na JIANG,Jing-Li MA,Bao-Ting FANG,Jian-Hui MA,Chun-Xi LI,Zhi-Min WANG,Bao-Zhen HAO. Effect of lower water and nitrogen supply on grain yield and dry matter remobilization of organs in different layers of winter wheat plant in northern Henan province [J]. Acta Agronomica Sinica, 2019, 45(6): 957-966.
[12] Xin-Nan HE,Xiang LIN,Shu-Bo GU,Dong WANG. Effects of supplemental irrigation with micro-sprinkling hoses on soil physical properties, water consumption and grain yield of winter wheat [J]. Acta Agronomica Sinica, 2019, 45(6): 879-892.
[13] Hai-Yue YU,Yan YAN,Yu-Shi ZHANG,Ming-Cai ZHANG,Zhao-Hu LI. Regulatory effects of coronatine on photosynthetic characteristics and yield of soybean under different irrigation conditions [J]. Acta Agronomica Sinica, 2019, 45(12): 1851-1858.
[14] ZHANG Jing-Ting,LYU Li-Hua,DONG Zhi-Qiang,ZHANG Li-Hua,YAO Yan-Rong,SHEN Hai-Ping,YAO Hai-Po,JIA Xiu-Ling. Yield-increasing effect of supplementary irrigation at winter wheat flowering and its influencing factors based on water and nitrogen coupling in north China [J]. Acta Agronomica Sinica, 2019, 45(11): 1746-1755.
[15] Hong-Liang SHI,Qing-Qing YAN,Ju-Song ZHANG,Chun-Yan LI,Hai-Tao DOU. Compensation Effect of Nitrogen Fertilizer on Photosynthetic Characteristics and Yield during Cotton Flowering Boll-setting Stage under Non-sufficient Drip Irrigation [J]. Acta Agronomica Sinica, 2018, 44(8): 1196-1204.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .