Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (6): 1668-1677.doi: 10.3724/SP.J.1006.2023.24175

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effect of phosphorus fertilizer rate on rapeseed yield and quality (Brassica napus L.)

YAN Jin-Yao(), SONG Yi, LU Zhi-Feng, REN Tao, LU Jian-Wei*()   

  1. College of Resources and Environment, Huazhong Agricultural University/ Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs/Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, Hubei, China
  • Received:2022-08-03 Accepted:2022-10-10 Online:2023-06-12 Published:2022-10-18
  • Contact: *E-mail: lunm@mail.hzau.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2021YFD1600500);China Agriculture Research System of MOF and MARA(CARS-12);Fundamental Research Funds for the Central Universities(2662021ZH001)

Abstract:

Rapeseed is an important oil crop and is sensitive to phosphorus deficiency. The soil phosphorus supply in the main rapeseed producing areas in China is poor, and phosphorus deficiency often leads to yield reduction of seed. To investigate the effects of phosphorus nutrient supply status on rapeseed yield and quality at the same time, a phosphorus fertilizer rate field experiment was conducted in two seasons of 2019-2021 in the middle reaches of Yangtze River with five treatments of 0, 45, 90, 135, and 180 kg P2O5 hm-2. The results showed that phosphorus application significantly increased the number of pods per plant, seed number, and 1000-seed weight, and thus increasing rapeseed yield. The average yield without phosphorus treatment was only 190 kg hm-2, and phosphorus application increased the yield by 8.5-12.5 times, and the maximum yields obtained according to yield effects corresponded to phosphorus applications of 51.8-65.0 kg P2O5 hm-2. The response of rapeseed phosphorus content, water content, oil content, protein, glucosinolate, oleic acid, linolenic acid, and stearic acid to phosphorus fertilizer rate reached highly significant levels, while erucic acid, linoleic acid, and palmitic acid showed less response. The oil content of rapeseed tended to increase and then decrease with increasing phosphorus application (highest at 90 kg P2O5 hm-2 and 135 kg P2O5 hm-2), protein content tended to increase slowly, and glucosinolate content decreased significantly. Excessive application of phosphorus fertilizer decreased the oleic acid content and increased the linolenic acid content of rapeseed. Path analysis showed that seed phosphorus content, oil content, and linolenic acid content had a greater direct positive effect on yield, water content, protein and linolenic acid had a greater indirect positive effect on yield through seed phosphorus content, and glucosinolate, oleic acid, linoleic acid, and stearic acid had a greater indirect negative effect on yield through seed phosphorus content. The combined results showed that the recommended phosphorus fertilizer rate for targeting rapeseed yield and edible oil quality was 45-90 kg P2O5 hm-2, and for pursuing forage cake meal protein yield, the recommended phosphorus fertilizer rate was 90-135 kg P2O5 hm-2.

Key words: phosphorus fertilizer rate, rapeseed, yield, quality, oil production

Table 1

Physical and chemical properties of the top soil (0-20 cm) of the experiment fields"

年份
Year
pH 有机质
Organic matter
(g kg-1)
全氮
Total N
(g kg-1)
有效磷
Olsen-P
(mg kg-1)
速效钾
Available K
(mg kg-1)
有效硼
Available B
(mg kg-1)
2019/2020 5.76 36.50 1.75 6.96 71.13 0.38
2020/2021 5.22 31.76 1.94 4.98 58.90 0.25

Fig. 1

Effects of different P fertilizer application rates on rapeseed yield during 2019/2020 and 2020/2021 growing season P and Y represent phosphate fertilizer and yield, respectively. * and ** indicate significant differences at P < 0.05 and P < 0.01, respectively."

Table 2

Effects of different P fertilizer application rates on yield components of rapeseed during 2019/2020 and 2020/2021 growing seasons"

磷肥用量
P rates
(kg P2O5 hm-2)
单株角果数
Number of pods per plant (No. plant-1)
角粒数
Seed number (No. pod-1)
千粒重
1000-seed weight (g)
2019/2020 2020/2021 平均Average 2019/2020 2020/2021 平均Average 2019/2020 2020/2021 平均Average
0 93 c 24 c 59 20.1 b 15.4 b 17.7 2.82 c 4.21 b 3.51
45 392 b 184 b 288 23.8 ab 20.9 a 22.4 3.20 b 5.27 a 4.23
90 406 ab 197 ab 302 25.2 a 21.6 a 23.4 3.42 a 5.47 a 4.45
135 431 a 209 ab 320 24.2 a 20.9 a 22.6 3.32 ab 5.61 a 4.46
180 424 a 221 a 323 24.2 a 19.6 a 21.9 3.33 ab 5.41 a 4.37
方差分析ANOVA FF-value
磷肥 Phosphorus (P) 309.4** 9.4** 40.9**
年份 Year (Y) 1021.4** 35.8** 1262.0**
P×Y 25.0** 0.3ns 7.5**

Table 3

Effects of different P fertilizer application rates on P content in rapeseed"

磷肥用量
P rates (kg P2O5 hm-2)
磷含量 P content (%)
2019/2020 2020/2021
0 0.32 c 0.28 d
45 0.41 c 0.50 c
90 0.58 b 0.66 b
135 0.70 a 0.69 ab
180 0.69 ab 0.72 a
方差分析ANOVA FF-value
磷肥 Phosphorus (P) 90.7**
年份 Year (Y) 3.3ns
P×Y 2.3ns

Table 4

Effects of different P application rates on water content, oil content, protein content, and glucosinolates content in rapeseed"

磷肥用量
P rates
(kg P2O5 hm-2)
含水率
Water content
(%)
含油率
Oil content
(%)
蛋白质含量
Protein content
(%)
硫甙
Glucosinolate
(μmol g-1)
2019/2020 2020/2021 2019/2020 2020/2021 2019/2020 2020/2021 2019/2020 2020/2021
0 8.1 b 8.5 b 41.2 c 45.7 ab 21.8 c 25.7 c 28.5 a 26.1 ab
45 8.1 b 9.1 ab 42.8 ab 46.8 a 22.5 c 25.6 c 25.8 ab 26.3 a
90 9.0 a 10.6 ab 42.2 abc 46.9 a 23.6 bc 26.1 bc 26.6 ab 23.3 ab
135 9.3 a 10.2 ab 43.0 a 45.1 b 24.4 ab 27.2 b 25.6 ab 21.9 ab
180 9.7 a 11.0 a 41.8 bc 44.7 b 25.8 a 29.4 a 23.3 b 21.1 b
方差分析ANOVA FF-value
磷肥Phosphorus (P) 5.7** 5.1** 20.1** 4.8**
年份Year (Y) 9.7** 186.6** 102.7** 7.8*
P×Y 0.4ns 3.4* 0.7ns 0.9ns

Table 5

Effects of different P application rates on oil and protein yield in rapeseed"

磷肥用量
P rates (kg P2O5 hm-2)
籽粒油分产量
Seed oil yield (kg hm-2)
籽粒蛋白质产量
Seed protein yield (kg hm-2)
2019/2020 2020/2021 平均Average 2019/2020 2020/2021 平均Average
0 93 c 70 b 82 49 c 40 d 44
45 921 b 833 a 877 484 b 455 c 470
90 1250 a 925 a 1088 696 a 514 bc 605
135 1291 a 940 a 1116 734 a 566 ab 650
180 1280 a 903 a 1091 789 a 594 a 692
方差分析ANOVA FF-value
磷肥 Phosphorus (P) 92.6** 114.0**
年份 Year (Y) 32.3** 27.9**
P×Y 3.2* 3.3*

Table 6

Effects of different P fertilizer application rates on fatty acid components in rapeseed"

磷肥用量
P rates
(kg P2O5 hm-2)
芥酸
Erucic acid
(%)
油酸
Oleic acid
(%)
亚油酸
Linoleic acid
(%)
亚麻酸
Linolenic acid (%)
硬脂酸
Stearic acid
(kg hm-2)
棕榈酸
Palmitic acid
(kg hm-2)
2019/
2020
2020/
2021
2019/
2020
2020/
2021
2019/
2020
2020/
2021
2019/
2020
2020/
2021
2019/
2020
2020/
2021
2019/
2020
2020/
2021
0 1.5 a 2.0 a 76.5 a 70.5 a 17.8 a 17.3 a 6.5 b 8.4 b 3.3 a 1.2 a 4.7 a 4.6 a
45 1.4 a 2.0 a 76.7 a 67.1 ab 17.6 a 16.7 a 7.0 ab 9.4 ab 3.0 ab 0.9 ab 4.9 a 4.5 a
90 1.4 a 2.0 a 74.8 a 67.2 ab 17.6 a 16.6 a 8.2 a 9.7 ab 2.9 ab 0.8 ab 4.8 a 4.5 a
135 1.3 a 2.0 a 71.8 ab 66.7 ab 17.6 a 16.6 a 8.2 a 9.3 ab 3.1 ab 0.8 ab 4.9 a 4.6 a
180 1.2 a 1.8 a 65.9 b 61.3 b 17.6 a 16.0 a 8.3 a 11.1 a 2.7 b 0.5 b 4.8 a 4.4 a
方差分析ANOVA FF-value
磷肥 Phosphorus (P) 0.2ns 5.5** 1.0ns 5.3** 4.8** 0.7ns
年份 Year (Y) 8.7** 20.5** 15.6** 33.3** 547.3** 27.0**
P×Y 0.1ns 0.4ns 0.5ns 0.8ns 0.2ns 1.0ns

Fig. 2

Correlation between rapeseed yield and quality traits The data used for correlation analysis are nutrient, quality, and fatty acid data of all the experiments. *, **, and *** indicate significant difference at P < 0.05, P < 0.01, and P < 0.001, respectively."

Table 7

Path analysis between rapeseed main quality traits and yield"

性状
Trait
直接通径系数
Direct path
coefficient
间接通径系数 Indirect path coefficient 决定系数
Determination coefficient
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11
X1 0.743 -0.014 -0.004 -0.199 0.060 0.012 0.058 0.016 0.148 0.059 -0.006 0.873
X2 -0.021 0.487 0.001 -0.175 0.032 -0.017 0.075 0.024 0.137 0.063 0.005 0.609
X3 0.215 -0.014 0.000 0.060 -0.028 -0.008 -0.019 0.003 0.014 -0.022 -0.005 0.195
X4 -0.290 0.509 -0.013 -0.045 0.051 0.017 0.077 0.021 0.155 0.056 -0.004 0.535
X5 -0.101 -0.441 0.007 0.059 0.145 -0.028 -0.032 -0.004 -0.051 -0.054 0.011 -0.489
X6 -0.094 -0.096 -0.004 0.019 0.053 -0.030 0.014 0.020 0.007 0.034 -0.002 -0.079
X7 -0.117 -0.369 0.013 0.034 0.191 -0.027 0.011 -0.021 -0.114 -0.068 -0.001 -0.467
X8 -0.050 -0.236 0.010 -0.013 0.124 -0.008 0.037 -0.050 -0.090 -0.073 0.033 -0.316
X9 0.242 0.455 -0.012 0.012 -0.186 0.021 -0.003 0.055 0.019 0.037 -0.015 0.625
X10 -0.131 -0.335 0.010 0.037 0.124 -0.042 0.024 -0.060 -0.028 -0.069 -0.003 -0.474
X11 0.059 -0.081 0.004 0.017 0.026 0.007 -0.018 0.005 0.001 -0.062 0.007 -0.036
[1] 王汉中. 以新需求为导向的油菜产业发展战略. 中国油料作物学报, 2018, 40: 613-617.
Wang H Z. New-demand oriented oilseed rape industry developing strategy. Chin J Oil Crop Sci, 2018, 40: 613-617. (in Chinese with English abstract)
[2] 廖伯寿, 殷艳, 马霓. 中国油料作物产业发展回顾与展望. 农学学报, 2018, 8(1): 107-112.
Liao B S, Yin Y, Ma N. Review and future prospects of oil crops industry development in China. J Agric, 2018, 8(1): 107-112. (in Chinese with English abstract)
[3] USDA. World agricultural production. (2020-11-10) [2021-03-12]. http://apps.fas.usda.gov/psdonline/app/index.html#/app/downloads.
[4] 王汉中, 殷艳. 我国油料产业形势分析与发展对策建议. 中国油料作物学报, 2014, 36: 41-42.
Wang H Z, Yin Y. Analysis and strategy for oil crop industry in China. Chin J Oil Crop Sci, 2014, 36: 41-42. (in Chinese with English abstract)
[5] 殷艳, 尹亮, 张学昆, 郭静利, 王积军. 我国油菜产业高质量发展现状和对策. 中国农业科技导报, 2021, 23(8): 1-7.
Yin Y, Yin L, Zhang X K, Guo J L, Wang J J. Status and countermeasure of the high-quality development of rapeseed industry in China. J Agric Sci Technol, 2021, 23(8): 1-7. (in Chinese with English abstract)
[6] 刘红恩, 胡承孝, 聂兆军, 孙学成, 谭启玲. 钼磷配合施用对甘蓝型油菜产量和籽粒品质的影响. 植物营养与肥料学报, 2012, 18: 678-688.
Liu H E, Hu C X, Nie Z J, Sun X C, Tan Q L. Interactive effects of molybdenum and phosphorus fertilizers on grain yield and quality of Brassica napus. Plant Nutr Fert Sci, 2012, 18: 678-688. (in Chinese with English abstract)
[7] Hu Y F, Ye X S, Shi L, Duan H Y, Xu F S. Genotypic differences in root morphology and phosphorus uptake kinetics in Brassica napus under low phosphorus supply. J Plant Nutr, 2010, 33: 889-901.
doi: 10.1080/01904161003658239
[8] 邹娟, 鲁剑巍, 陈防, 李银水. 氮磷钾硼肥施用对长江流域油菜产量及经济效益的影响. 作物学报, 2009, 35: 87-92.
doi: 10.3724/SP.J.1006.2009.00087
Zou J, Lu J W, Chen F, Li Y S. Effect of nitrogen, phosphorus, potassium, and boron fertilizers on yield and profit of rapeseed (Brassica napus L.) in the Yangtze River Basin. Acta Agron Sin, 2009, 35: 87-92. (in Chinese with English abstract)
[9] 邹娟, 鲁剑巍, 李银水, 吴江生, 陈防. 氮、磷、钾、硼肥对甘蓝型油菜籽品质的影响. 植物营养与肥料学报, 2008, 14: 961-968.
Zou J, Lu J W, Li Y S, Wu J S, Chen F. Effects of N, P, K and B fertilization on quality of Brassica napus. Plant Nutr Fert Sci, 2008, 14: 961-968. (in Chinese with English abstract)
[10] 沈金雄, 李志宇, 廖星, 郭庆元. 磷对甘蓝型油菜产量及矿质营养吸收与积累的影响. 作物学报, 2006, 32: 1231-1235.
Shen J X, Li Z Y, Liao X, Guo Q Y. Effect of phosphorus on yield and mineral nutrient absorption and accumulation in rape seed (Brassica napus L.). Acta Agron Sin, 2006, 32: 1231-1235. (in Chinese with English abstract)
[11] 李银水, 鲁剑巍, 廖星, 邹娟, 李小坤, 余常兵, 马常宝, 高祥照. 磷肥用量对油菜产量及磷素利用效率的影响. 中国油料作物学报, 2011, 33: 52-56.
Li Y S, Lu J W, Liao X, Zou J, Li X K, Yu C B, Ma C B, Gao X Z. Effect of phosphorus application rate on yield and fertilizer- phosphorus utilization efficiency in rapeseed. Chin J Oil Crop Sci, 2011, 33: 52-56. (in Chinese with English abstract)
[12] 王寅, 鲁剑巍, 李小坤, 任涛, 丛日环, 占丽平. 长江流域直播冬油菜氮磷钾硼肥施用效果. 作物学报, 2013, 39: 1491-1500.
doi: 10.3724/SP.J.1006.2013.01491
Wang Y, Lu J W, Li X K, Ren T, Cong R H, Zhan L P. Effects of nitrogen, phosphorus, potassium, and boron fertilizers on winter oilseed rape (Brassica napus L.) direct-sown in the Yangtze River Basin. Acta Agron Sin, 2013, 39: 1491-1500. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.01491
[13] 张海伟, 徐芳森. 不同磷水平下甘蓝型油菜光合特性的基因型差异研究. 植物营养与肥料学报, 2010, 16: 1196-1202.
Zhang H W, Xu F S. Genotypic differences in photosynthetic characteristics in Brassica napus at different phosphorus levels. Plant Nutr Fert Sci, 2010, 16: 1196-1202. (in Chinese with English abstract)
[14] Diepenbrock W. Yield analysis of winter oilseed rape (Brassica napus L.): a review. Field Crops Res, 2000, 67: 35-49.
doi: 10.1016/S0378-4290(00)00082-4
[15] 雷建明, 杨志奇, 俄胜哲, 罗照霞, 袁金华, 郭永杰, 车宗贤. 磷及有机肥对白菜型冬油菜产量及品质的影响. 干旱地区农业研究, 2016, 34(5): 146-151.
Lei J M, Yang Z Q, E S Z, Luo Z X, Yuan J H, Guo Y J, Che Z X. Effects of phosphorus and manure on canola growth period, grain yield and quality. Agric Res Arid Areas, 2016, 34(5): 146-151. (in Chinese with English abstract)
[16] 李志玉, 胡琼, 廖星, 郭庆元, 秦亚平. 优质油菜中油杂8号施用氮磷硼肥的产量和品质效应. 中国油料作物学报, 2005, 27: 59-63.
Li Z Y, Hu Q, Liao X, Guo Q Y, Qin Y P. Effects of nitrogen, phosphorus and boron on the yield and quality of high-efficient oilseed rape hybrid Zhongyouza No.8. Chin J Oil Crop Sci, 2005, 27: 59-63. (in Chinese with English abstract)
[17] 张芳, 赵永国, 谷铁城, 张冬晓, 刘凤兰, 郭瑞星, 付桂萍, 张学昆. 2001-2010 年国家审定冬油菜品种的产量与主要性状分析. 中国油料作物学报, 2012, 34: 239-244.
Zhang F, Zhao Y G, Gu T C, Zhang D X, Liu F L, Guo R X, Fu G P, Zhang X K. Yield and agronomic traits of winter rapeseed cultivars registered in China from 2001 to 2010. Chin J Oil Crop Sci, 2012, 34: 239-244. (in Chinese with English abstract)
[18] 钱武, 戴成满, 郑成彧, 林秀秀, 梁全兴, 李飞, 吴景芳, 陈豪杰. 甘蓝型冬油菜在不同地区生育期、品质和产量差异性分析. 浙江农业科学, 2018, 59: 715-718.
Qian W, Dai C M, Zheng C Y, Lin X X, Liang Q F, Li F, Wu J F, Chen H J. Analysis of differences in growing period, quality and yield of Brassica napus L. in different regions. J Zhejiang Agric Sci, 2018, 59: 715-718. (in Chinese with English abstract)
[19] 曾宇, 雷雅丽, 李京, 胡立勇. 氮、磷、钾用量与种植密度对油菜产量和品质的影响. 植物营养与肥料学报, 2012, 18: 146-153.
Zeng Y, Lei Y L, Li J, Hu L Y. Effects of application amounts of nitrogen, phosphate, and potassium and planting density on yield and quality of rapeseed. Plant Nutr Fert Sci, 2012, 18: 146-153. (in Chinese with English abstract)
[20] 闫金垚, 郭丽璇, 王昆昆, 廖世鹏, 陆志峰, 丛日环, 李小坤, 任涛, 鲁剑巍. 长江流域稻-油轮作区土壤磷库现状及环境风险分析. 土壤学报, 2021, 60: 247-257.
Yan J Y, Guo L X, Wang K K, Liao S P, Lu Z F, Cong R H, Li X K, Ren T, Lu J W. Status of soil phosphorus pool and environmental risk assessment in rice-oilseed rape rotation area in the Yangtze River basin. Acta Pedol Sin, 2021, 60: 247-257. (in Chinese with English abstract)
[21] 鲁明星, 邹娟, 鲁剑巍, 王倩怡, 吴礼树. 湖北省油菜磷肥施用效果与土壤速效磷分级标准研究. 中国油料作物学报, 2006, 28: 448-452.
Lu M X, Zou J, Lu J W, Wang Q Y, Wu L S. Study on response of rapeseed to P application and classification criterion for available P in the soil. Chin J Oil Crop Sci, 2006, 28: 448-452. (in Chinese with English abstract)
[22] 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000. pp 25-114.
Bao S D. Soil Agricultural Chemistry Analysis. Beijing: China Agriculture Press, 2000. pp 25-114. (in Chinese)
[23] 智文良. 油菜生态雄性不育系373S及油菜籽近红外品质分析的研究. 西北农林科技大学硕士学位论文, 陕西杨凌, 2012.
Zhi W L. Studies on Ecotypical Male Sterile Line 373S and Determination of Rapeseed Quality with NYDL-3000. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2012. (in Chinese with English abstract)
[24] 汪瑞清, 杨国正, 史茜莎, 姚艳丽, 宋峥, 彭运磊. 氮磷钾镁锌混合施用对油菜产油量和蛋白质产量的影响. 湖北农业科学, 2009, 48: 1096-1100.
Wang R Q, Yang G Z, Shi Q S, Yao Y L, Song Z, Peng Y L. Effects of the mixed application of N, P, K, Mg, Zn on oil and protein yield of rapeseed (Brassica napus L.). Hubei Agric Sci, 2009, 48: 1096-1100. (in Chinese with English abstract)
[25] 刘荣, 尤晶晶, 郑经东, 王龙, 左青松. 磷肥用量对盐地条件下油菜干物质积累和分配的影响. 安徽农业科学, 2022, 50: 132-134.
Liu R, You J J, Zheng J D, Wang L, Zuo Q S. Effects of P rate on biomass accumulation and partitioning of canola (Brassica napus L.) in saline soil. J Anhui Agric Sci, 2022, 50: 132-134. (in Chinese with English abstract)
[26] Cheema M A, Malik M A, Hussain A, Shah S H, Basra S. Effects of time and rate of nitrogen and phosphorus application on the growth and the seed and oil yields of canola (Brassica napus L.). J Agron Crop Sci, 2010, 186: 103-110.
doi: 10.1046/j.1439-037X.2001.00463.x
[27] Diepenbrock W. Yield analysis of winter oilseed rape (Brassica napus L.): a review. Field Crops Res, 2000, 67: 35-49.
doi: 10.1016/S0378-4290(00)00082-4
[28] 刘开昌, 胡昌浩, 董树亭, 王空军, 李爱芹. 高油玉米需磷特性及磷素对籽粒营养品质的影响. 作物学报, 2001, 27: 267-272.
Liu K C, Hu C H, Dong S T, Wang K J, Li A Q. Characteristic of phosphorus absorption of high oil maize and effects of phosphor on its kernel quality. Acta Agron Sin, 2001, 27: 267-272. (in Chinese with English abstract)
[29] 王雪, 樊军鹏, 李海涛, 石磊, 蔡红梅, 徐芳森, 刘克德, 丁广大. 低磷胁迫对甘蓝型油菜自然群体产量及品质的影响. 中国农业科技导报, 2018, 20(2): 93-100.
doi: 10.13304/j.nykjdb.2017.0308
Wang X, Fan J P, Li H T, Shi L, Cai H M, Xu F S, Liu K D, Ding G D. Effect of phosphorus deficiency on seed yield and quality of a Brassica napus natural population. J Agric Sci Technol, 2018, 20(2): 93-100. (in Chinese with English abstract)
[30] Pinkerton A. Critical phosphorus concentrations in oilseed rape (Brassica napus) and Indian mustard (Brassica juncea) as affected by nitrogen and plant age. Aust J Exp Agric, 1991, 31: 107-115.
doi: 10.1071/EA9910107
[31] 张子龙. 甘蓝型黄籽油菜主要营养特性及其产量和品质的形成与调控规律研究. 西南大学博士学位论文, 重庆, 2007.
Zhang Z L. Studies on Main Nutritional Characteristics and the Formation and Regulation of Yield and Quality in Yellow-seeded Rapeseed (Brassica napus L.). PhD Dissertation of Southwestern University, Chongqing, China, 2007 (in Chinese with English abstract).
[32] 袁兆国. 低磷胁迫对双低油菜产量与品质的影响. 扬州大学硕士学位论文, 江苏扬州, 2007.
Yuan Z G. Response of Yield and Quality to Low-P Stress and Fertilizer Application in a Double-low Oilseed rape. MS Thesis of Yangzhou University, Yangzhou, Jiangsu, China, 2007. (in Chinese with English abstract)
[33] Majerowicz N, Kerbauy G B. Effects of nitrogen forms on dry matter partitioning and nitrogen metabolism in two contrasting genotypes of Catasetum fimbriatum (Orchidaceas). Environ Exp Bot, 2002, 47: 249-258.
doi: 10.1016/S0098-8472(01)00131-9
[34] 王旭东, 于振文, 石玉, 王小燕. 磷对小麦旗叶氮代谢有关酶活性和籽粒蛋白质含量的影响. 作物学报, 2006, 32: 339-344.
Wang X D, Yu Z W, Shi Y, Wang X Y. Effects of phosphorus on activities of enzymes related to nitrogen metabolism in flag leaves and protein contents in grains of wheat. Acta Agron Sin, 2006, 32: 339-344. (in Chinese with English abstract)
[35] 石桃雄, 王少思, 石磊, 梦金陵, 徐芳森. 不同氮、磷水平对“双高”油菜品种宁油7号和“双低”油菜品种Tapidor生长和品质的影响. 植物营养与肥料学报, 2010, 16: 959-964.
Shi T X, Wang S S, Shi L, Meng J L, Xu F S. Effects of different nitrogen and phosphorus levels on seed yield and quality parameters of double high and double low Brassica napus. Plant Nutr Fert Sci, 2010, 16: 959-964 (in Chinese with English abstract).
[36] 肖庆生, 夏志涛, 周灿金, 邹崇顺, 张学昆, 廖星. 氮磷钾肥对迟直播油菜产量和品质的影响. 中国油料作物学报, 2010, 32: 263-269.
Xiao Q S, Xia Z T, Zhou C J, Zou C S, Zhang X K, Liao X. Effects of N, P, K fertilization on yield and quality of delayed direct-seeding rapeseed (Brassica napus L.). Chin J Oil Crop Sci, 2010, 32: 263-269. (in Chinese with English abstract)
[37] 刘列钊, 李加纳. 利用甘蓝型油菜高密度SNP遗传图谱定位油酸、亚麻酸及芥酸含量QTL位点. 中国农业科学, 2014, 47: 24-32.
doi: 10.3864/j.issn.0578-1752.2014.01.003
Liu L Z, Li J N. QTL mapping of oleic acid, linolenic acid and erucic acid content in Vrassica napus by using the high density SNP genetic map. Sci Agric Sin, 2014, 47: 24-32. (in Chinese with English abstract)
[38] 蒙姜宇, 傅鹰, 贺亚军, 钱伟. 利用DH和IF2群体检测油菜籽粒油酸、亚油酸、亚麻酸含量QTL. 作物学报, 2019, 45: 1338-1348.
doi: 10.3724/SP.J.1006.2019.84172
Meng J Y, Fu Y, He Y J, Qian W. QTL mapping of oleic acid, linoleic acid and linolenic acid contents in Brassica napus L. using DH and IF2 populations. Acta Agron Sin, 2019, 45: 1338-1348. (in Chinese with English abstract)
[39] 毛龙. 甘蓝型油菜SNP遗传连锁图谱的构建及品质性状QTL定位. 华中农业大学硕士学位论文. 湖北武汉, 2013.
Mao L. Construction of a Genetic Linkage Map Using SNP Array and QTL Analysis of Quality Traits in Brassica napus. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2013. (in Chinese with English abstract)
[40] Hossain Z, Johnson E N, Wang L, Blackshaw R E, Gan Y T. Comparative analysis of oil and protein content and seed yield of five Brassicaceae oilseeds on the Canadian prairie. Ind Crop Prod, 2019, 136: 77-86.
doi: 10.1016/j.indcrop.2019.05.001
[41] Rathke G W, Christen O, Diepenbrock W. Effects of nitrogen source and rate on productivity and quality of winter oilseed rape (Brassica napus L.) grown in different crop rotations. Field Crops Res, 2005, 94: 103-113.
doi: 10.1016/j.fcr.2004.11.010
[42] 王华志, 王道波, 李秋霖, 王凤玲, 熊素敏. 油脂中脂肪酸成分与人体健康. 粮油加工, 2010, (6): 16-19.
Wang Z H, Wang D B, Li Q X, Wang F L, Xiong S M. Fatty acids in oils and fats and human health. Cereals Oils Proc, 2010, (6): 16-19. (in Chinese with English abstract)
[43] 王月, 朱宝, 蒋金金, 王幼平. 菜籽饼粕饲用价值及其品质改良的研究进展. 分子植物育种, 2015, 13: 929-936.
Wang Y, Zhu B, Jiang J J, Wang Y P. A review on feeding value and quality improvement of rapeseed meal. Mol Plant Breed, 2015, 13: 929-936. (in Chinese with English abstract)
[1] WEI Jin-Gui, GUO Yao, CHAI Qiang, YIN Wen, FAN Zhi-Long, HU Fa-Long. Yield and yield components of maize response to high plant density under reduced water and nitrogen supply [J]. Acta Agronomica Sinica, 2023, 49(7): 1919-1929.
[2] ZHANG Zhen, SHI Yu, ZHANG Yong-Li, YU Zhen-Wen, WANG Xi-Zhi. Effects of different soil water content on water consumption by wheat and analysis of senescence characteristics of root and flag leaf [J]. Acta Agronomica Sinica, 2023, 49(7): 1895-1905.
[3] ZHANG Lu-Lu, ZHANG Xue-Mei, MU Wen-Yan, HUANG Ning, GUO Zi-Kang, LUO Yi-Nuo, WEI Lei, SUN Li-Qian, WANG Xing-Shu, SHI Me, WANG Zhao-Hui. Grain Mn concentration of wheat in main wheat production regions of China: Effects of cultivars and soil factors [J]. Acta Agronomica Sinica, 2023, 49(7): 1906-1918.
[4] DONG Zhi-Qiang, LYU Li-Hua, YAO Yan-Rong, ZHANG Jing-Ting, ZHANG Li-Hua, YAO Hai-Po, SHEN Hai-Ping, JIA Xiu-Ling. Yield and quality of strong gluten wheat Shiluan 02-1 under water and nitrogen interaction [J]. Acta Agronomica Sinica, 2023, 49(7): 1942-1953.
[5] DENG Ai-Xing, LI Ge-Xing, LYU Yu-Ping, LIU You-Hong, MENG Ying, ZHANG Jun, ZHANG Wei-Jian. Effect of shading duration after heading on grain yield and quality of Japonica rice in Northwest China [J]. Acta Agronomica Sinica, 2023, 49(7): 1930-1941.
[6] SONG Yi, LI Jing, GU He-He, LU Zhi-Feng, LIAO Shi-Peng, LI Xiao-Kun, CONG Ri-Huan, REN Tao, LU Jian-Wei. Effects of application of nitrogen on seed yield and quality of winter oilseed rape (Brassica napus L.) [J]. Acta Agronomica Sinica, 2023, 49(7): 2002-2011.
[7] LI Rong, MIAN You-Ming, HOU Xian-Qing, LI Pei-Fu, WANG Xi-Na. Effects of nitrogen application on decomposition and nutrient release of returning straw, soil fertility, and maize yield [J]. Acta Agronomica Sinica, 2023, 49(7): 2012-2022.
[8] YU Xin-Ying, WANG Chun-Yun, LI Da-Shuang, WANG Zong-Kai, KUAI Jie, WANG Bo, WANG Jing, XU Zheng-Hua, ZHOU Guang-Sheng. Formation mechanism of yield stability in high-yielding rapeseed varieties [J]. Acta Agronomica Sinica, 2023, 49(6): 1601-1615.
[9] XU Ran, CHEN Song, XU Chun-Mei, LIU Yuan-Hui, ZHANG Xiu-Fu, WANG Dan-Ying, CHU Guang. Effects of nitrogen fertilizer rates on grain yield and nitrogen use efficiency of japonica-indica hybrid rice cultivar Yongyou 1540 and its physiological bases [J]. Acta Agronomica Sinica, 2023, 49(6): 1630-1642.
[10] ZHANG Zhen-Bo, JIA Chun-Lan, REN Bai-Zhao, LIU Peng, ZHAO Bin, ZHANG Ji-Wang. Effects of combined application of nitrogen and phosphorus on yield and leaf senescence physiological characteristics in summer maize [J]. Acta Agronomica Sinica, 2023, 49(6): 1616-1629.
[11] LEI Xin-Hui, LENG Jia-Jun, TAO Jin-Cai, WAN Chen-Xi, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, FENG Bai-Li, WANG Meng, GAO Jin-Feng. Effects of foliar spraying selenium on photosynthetic characteristics, yield, and selenium accumulation of common buckwheat (Fagopyrum esculentum M.) [J]. Acta Agronomica Sinica, 2023, 49(6): 1678-1689.
[12] TAO Yue-Yue, SHENG Xue-Wen, XU Jian, SHEN Yuan, WANG Hai-Hou, LU Chang-Ying, SHEN Ming-Xing. Characteristics of heat and solar resources allocation and utilization in rice- oilseed rape double cropping systems in the Yangtze River Delta [J]. Acta Agronomica Sinica, 2023, 49(5): 1327-1338.
[13] WEI Hai-Min, TAO Wei-Ke, ZHOU Yan, YAN Fei-Yu, LI Wei-Wei, DING Yan-Feng, LIU Zheng-Hui, LI Gang-Hua. Panicle silicon fertilizer optimizes the absorption and distribution of mineral elements in rice (Oryza sativa L.) in coastal saline-alkali soil to improve salt tolerance [J]. Acta Agronomica Sinica, 2023, 49(5): 1339-1349.
[14] LI Hui, WANG Xu-Min, LIU Miao, LIU Peng-Zhao, LI Qiao-Li, WANG Xiao-Li, WANG Rui, LI Jun. Water and nitrogen reduction scheme optimization based on yield and nitrogen utilization of summer maize [J]. Acta Agronomica Sinica, 2023, 49(5): 1292-1304.
[15] ZHANG Xiao, LU Cheng-Bin, JIANG Wei, ZHANG Yong, LYU Guo-Feng, WU Hong-Ya, WANG Chao-Shun, LI Man, WU Su-Lan, GAO De-Rong. Quality selection indices and parent combination principle of weak-gluten wheat [J]. Acta Agronomica Sinica, 2023, 49(5): 1282-1291.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .