Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (7): 1930-1941.doi: 10.3724/SP.J.1006.2023.22037

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effect of shading duration after heading on grain yield and quality of japonica rice in northwest China

DENG Ai-Xing1(), LI Ge-Xing1,2(), LYU Yu-Ping3, LIU You-Hong4, MENG Ying4, ZHANG Jun1,*(), ZHANG Wei-Jian1   

  1. 1Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
    2College of Agronomy, Henan Agricultural University, Zhengzhou 450046, Henan, China
    3Research Institute of Grain Crops, Xinjiang Academy of Agricultural Science, Urumqi 830091, Xinjiang, China
    4Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, Heilongjiang, China
  • Received:2022-06-14 Accepted:2022-11-25 Online:2023-07-12 Published:2022-12-26
  • Contact: *E-mail: zhangjun@caas.cn E-mail:dengaixing@caas.cn;15993023318@163.com;zhangjun@caas.cn
  • About author:First author contact:**Contributed equally to this work
  • Supported by:
    The National Natural Science Foundation of China(32071950);The Science and Technology Support Program of Xinjiang(2021E02008);The National Key Research and Development Program of China(2016YFD0300501)

Abstract:

Light intensity at grain filling stage is an important ecological factor for high rice yield and quality. To investigate the effects of shading duration on yield and quality of two high yielding (Xindao 41, Jijing 88) and two good quality (Liangjing 10, Jijing 515) Japonica rice cultivars 10 days after heading (DAH10), 20 days after heading (DAH20), heading to maturity (DAHM), and no shading as the control (CK), this experiment was conducted in Urumqi, Xinjiang, China, in 2018 and 2019. The results showed that, shading after rice heading lengthened grain filling duration, and decreased the seed setting rate, 1000-grain weight, and rice yield. The decreasing amylose content and increasing protein content under shading after heading led to an increase in chalky grain rate, degree of chalkiness, and worsened significantly paste property and taste value. Compared to CK, mean seed setting rate and thousand grain weight of DAH10, DAH20 and DAHM decreased by 3.5%, 9.7%, 11.1% and 3.7%, 7.1%, 13.1% respectively, leading to significant decrease in yield during the two years period by 11.3%, 16.5%, and 31.7%, respectively. There was no obvious influence of first ten-day shading after heading on grain amylose content and taste value. The protein content of DAH20 and DAHM in the two years increased by 20.5% and 30.8%, respectively, while amylose content decreased by 3.6% and 4.6%, respectively. This resulted in the decreasing breakdown and taste values by 15.2%, 26.1%, and 3.9%, 7.7% respectively. The effects of shading duration after heading on chalky grain rate varied with the local background light intensity. The increase of 152.1% chalky grain rate occurred in the first ten-day after heading in 2018, while the increase of 345.5% was observed 20 days after heading in 2019. High yield rice cultivars had more sensitivity to shading duration after heading compared to good quality rice cultivars. Decreases of grain filling rate and 1000-grain weight of the high yield cultivars reduced grain yield, while it led to higher chalkiness rate. In conclusion, 20 days of shading after rice heading was the key period to affect the appearance quality in rice, and the shading duration depended on the background light intensity. The longer the shading time, the worse the cooking quality of rice. This study provides a scientific basis for japonica rice production in the future climate change.

Key words: rice, shading after heading, yield, quality, climate change

Fig. 1

Daily mean temperature, precipitation (A), and solar radiation (B) during the growth period in experimental sites"

Table 1

Effects of different shading duration on rice growth period in 2018 and 2019 (d)"

品种
Cultivar
处理
Treatment
2018 2019
播种-齐穗
Seeding-
Heading
齐穗-成熟
Heading-
Maturity
播种-成熟
Seeding-
Maturity
播种-齐穗
Seeding-
Heading
齐穗-成熟
Heading-
Maturity
播种-成熟
Seeding-
Maturity
新稻41 CK 125 42 167 119 47 166
Xindao 41 DAH10 125 55 180 119 48 167
DAH20 125 61 186 119 50 169
DAHM 125 77 202 119 54 173
吉粳88 CK 120 43 163 118 47 165
Jijing 88 DAH10 120 48 168 118 49 167
DAH20 120 56 176 118 50 168
DAHM 120 70 190 118 54 172
粮粳10号 CK 125 43 168 121 47 168
Liangjing 10 DAH10 125 56 181 121 49 170
DAH20 125 61 186 121 54 175
DAHM 125 78 203 121 58 179
吉粳515 CK 114 46 160 118 47 165
Jijing 515 DAH10 114 51 165 118 49 167
DAH20 114 56 170 118 51 169
DAHM 114 72 186 118 54 172

Table 2

Effects of different shading duration after heading on rice yield and its components"

年份
Year
品种
Cultivar name
处理
Treatment
有效穗
Effective panicles
(×104 hm-2)
穗粒数
Spikelet per panicle
结实率
Seed setting rate (%)
千粒重
1000-grain weight (g)
产量
Yield
(t hm-2)
2018 新稻41号 CK 516.2 a 79.7 b 87.2 a 26.0 a 9.4 a
Xindao 41 DAH10 508.0 a 83.2 ab 83.0 b 23.9 b 7.9 b
DAH20 486.6 a 84.1 ab 66.1 c 22.8 c 7.2 c
DAHM 512.9 a 95.1 a 59.6 d 21.3 d 5.1 d
吉粳88 CK 404.1 a 99.1 a 96.2 a 25.0 a 9.1 a
Jijing 88 DAH10 402.0 a 90.0 a 92.9 ab 24.3 b 7.3 b
DAH20 439.2 a 98.1 a 83.6 bc 23.5 c 7.1 b
DAHM 422.9 a 92.1 a 79.7 c 18.9 d 5.8 c
粮粳10号 CK 401.6 a 79.7 a 91.7 a 25.2 a 8.6 a
Liangjing 10 DAH10 408.2 a 79.4 a 92.2 a 24.6 ab 8.0 a
DAH20 427.1 a 79.5 a 87.7 b 24.0 b 7.3 b
DAHM 396.2 a 82.7 a 85.3 c 23.1 c 6.2 c
吉粳515 CK 342.9 a 90.7 a 96.3 a 25.4 a 8.3 a
Jijing 515 DAH10 364.9 a 88.2 a 93.9 a 25.1 a 7.8 b
DAH20 380.1 a 86.5 a 90.7 a 23.7 b 7.1 c
DAHM 366.3 a 85.5 a 73.2 b 22.9 c 6.7 d
2019 新稻41号 CK 477.5 98.8 a 97.1 a 24.3 a 9.1 a
Xindao 41 DAH10 452.8 a 107.4 a 92.6 b 23.2 ab 8.2 ab
DAH20 569.5 a 108.0 a 89.0 c 24.1 a 7.9 b
DAHM 557.1 a 95.4 a 92.5 b 21.2 b 5.3 c
吉粳88 CK 394.4 a 104.5 b 96.0 a 20.2 a 9.0 a
Jijing 88 DAH10 436.4 a 127.6 ab 92.6 b 20.1 a 7.4 b
DAH20 378.7 a 132.2 a 91.3 b 19.2 a 7.3 b
DAHM 408.9 a 127.6 ab 95.5 a 18.7 a 5.3 c
粮粳10号 CK 395.2 a 96.5 a 95.7 a 24.6 a 8.1 a
Liangjing 10 DAH10 382.6 a 99.9 a 92.8 a 24.6 a 7.9 ab
DAH20 334.8 a 100.1 a 85.5 b 22.0 a 7.4 ab
DAHM 413.2 a 89.8 a 92.8 a 22.0 a 7.0 b
吉粳515 CK 397.5 ab 112.1 a 95.5 a 22.6 a 8.5 a
Jijing 515 DAH10 409.5 a 103.3 a 89.0 b 20.3 b 7.7 b
DAH20 382.7 a 102.3 a 88.3 b 20.3 b 7.2 c
DAHM 397.9 a 100.8 a 93.0 a 19.8 b 6.5 d
方差分析ANOVA (P-value)
处理Treatment (T) 0.51 0.61 0.00** 0.00** 0.00**
品种Cultivar (C) 0.95 0.00** 0.00** 0.00** 0.29
年份Year (Y) 0.00** 0.00** 0.00** 0.00** 0.03*
处理×品种 T×C 0.55 0.10 0.00** 0.01** 0.11
处理×年份 T×Y 0.71 0.11 0.00** 0.05* 0.00**
品种×年份 C×Y 0.10 0.19 0.00** 0.00** 0.53
处理×品种×年份 T×C×Y 0.05* 0.08 0.00** 0.00** 0.14

Fig. 2

Effects of different shading duration after heading on protein content (A) and amylose content (B) of rice grains Abbreviations for the different treatments are the same as given in Table 1. Lowercase letters above the same set of data in the histogram indicate significant differences at the 0.05 probability level among the different treatments of the same rice variety in the same year."

Table 3

Effects of different shading duration after heading on appearance quality of rice (%)"

品种
Cultivar
处理
Treatment
2018 2019
垩白粒率
Chalky grain rate
垩白度
Chalkiness
垩白粒率
Chalky grain rate
垩白度
Chalkiness
新稻41号 CK 2.4 c 0.6 c 1.9 d 0.6 c
Xindao 41 DAH10 9.8 a 2.8 a 6.9 b 2.7 a
DAH20 5.9 b 1.3 b 8.8 a 2.6 a
DAHM 0.9 d 0.2 c 4.1 c 1.4 b
吉粳88 CK 4.1 a 1.3 b 3.9 d 1.6 d
Jijing 88 DAH10 6.2 a 2.4 a 13.7 b 5.8 b
DAH20 5.5 a 2.6 a 28.6 a 15.4 a
DAHM 4.6 a 1.9 ab 7.8 c 3.9 c
粮粳10号 CK 3.2 a 0.8 a 4.6 c 1.5 c
Liangjing 10 DAH10 3.4 a 1.0 a 8.4 b 3.0 b
DAH20 3.3 a 0.8 a 13.0 a 4.8 a
DAHM 0.6 b 0.3 b 6.0 c 2.1 c
吉粳515 CK 4.9 b 1.7 b 8.3 d 3.2 d
Jijing 515 DAH10 17.4 a 8.7 a 21.9 b 10.5 b
DAH20 5.3 b 2.2 b 32.9 a 19.7 a
DAHM 6.1 b 2.8 b 13.7 c 7.3 c
方差分析ANOVA (P-value)
处理Treatment (T) 0.00** 0.00**
品种Cultivar (C) 0.00** 0.00**
年份Year (Y) 0.00** 0.00**
处理×品种 T×C 0.00** 0.00**
处理×年份 T×Y 0.00** 0.00**
品种×年份 C×Y 0.00** 0.00**
处理×品种×年份 T×C×Y 0.00** 0.00**

Table 4

Effects of different shading duration after heading on RVA and taste value of rice grains"

品种
Cultivar
处理
Treatment
峰值黏度
Peak
viscosity
(cP)
热浆黏度
Hot viscosity
(cP)
崩解值
Breakdown
(cP)
最终黏度
Final
viscosity
(cP)
消减值
Setback
(cP)
起始糊化温度
Pasting
temperature
(℃)
食味值
Taste value
(%)
2018
新稻41号 CK 2636.7 a 1448.7 a 1188.0 a 2556.0 a -80.7 c 83.8 a 87.3 a
Xindao 41 DAH10 2387.7 b 1310.3 b 1077.3 a 2372.0 b -15.7 bc 88.3 a 86.7 a
DAH20 2114.3 c 1209.7 c 904.7 b 2230.3 c 116.0 ab 88.8 a 83.3 b
DAHM 2042.7 c 1134.3 d 908.3 b 2201.3 c 158.7 a 89.4 a 81.3 c
吉粳88 CK 2969.3 a 1560.7 a 1408.7 a 2823.3 a -146.0 c 73.1 b 87.0 a
Jijing 88 DAH10 2566.3 b 1381.7 b 1184.7 b 2515.7 b -50.7 b 82.2 a 84.7 b
DAH20 2476.3 b 1316.7 b 1159.7 b 2413.3 b -63.0 b 87.7 a 83.3 c
DAHM 2005.3 c 1101.3 c 904.0 c 2117.0 c 111.7 a 88.5 a 81.3 d
粮粳10号 CK 2421.7 a 1398.3 a 1023.3 a 2696.7 a 275.0 c 87.7 b 85.3 a
Liangjing 10 DAH10 2393.3 a 1338.7 a 1054.7 a 2601.3 a 208.0 d 88.0 b 86.3 a
DAH20 1955.0 b 1174.0 b 781.0 b 2346.0 b 391.0 b 89.9 a 83.0 b
DAHM 1558.7 c 994.7 c 574.3 c 2106.7 c 536.0 a 90.4 a 82.3 b
吉粳515 CK 2886.7 a 1654.0 a 1232.7 a 2888.0 a 1.3 b 73.1 b 86.3 a
Jijing 515 DAH10 2668.3 b 1549.0 b 1119.3 b 2677.7 b 9.3 b 77.9 ab 87.3 a
DAH20 2324.3 c 1338.7 c 985.7 c 2444.7 c 120.3 a 82.1 ab 82.0 b
DAHM 2140.3 d 1243.7 d 896.7 c 2301.3 d 161.0 a 88.6 a 80.7 b
2019
新稻41号 CK 3220.0 a 1783.5 a 1436.5 a 3117.7 a -102.3 c 88.9 a 87.3 a
Xindao 41 DAH10 3075.5 ab 1679.3 ab 1396.3 ab 3125.5 a 50.0 b 84.7 b 87.0 a
DAH20 2947.3 b 1653.3 b 1294.0 bc 3012.3 a 65.0 b 89.3 a 85.7 b
DAHM 2656.0 c 1449.0 c 1207.0 c 2959.3 a 303.3 a 90.4 a 81.3 c
吉粳88 CK 2991.0 a 1652.5 a 1338.5 a 3511.5 a 520.5 a 89.4 c 84.3 a
Jijing 88 DAH10 2906.0 a 1605.5 a 1300.5 a 3382.0 a 476.0 a 90.3 ab 85.0 a
DAH20 2625.7 b 1483.7 b 1142.0 b 3057.0 b 431.3 a 89.9 bc 80.3 b
DAHM 2236.0 c 1305.7 c 930.3 c 2666.3 c 430.3 a 90.7 a 75.0 c
粮粳10号 CK 3051.0 a 1798.3 a 1252.7 a 3502.0 a 451.0 a 89.0 b 86.3 a
Liangjing 10 DAH10 2891.7 ab 1734.0 a 1157.7 ab 3436.0 ab 544.3 a 89.6 b 85.7 a
DAH20 2767.0 b 1713.7 a 1053.3 bc 3362.5 b 595.5 a 89.5 b 83.0 b
DAHM 2320.0 c 1401.5 b 918.5 c 3001.2 c 681.2 a 91.1 a 75.7 c
吉粳515 CK 2674.0 a 1524.7 a 1149.3 ab 3187.3 a 513.3 a 89.5 a 86.0 a
Jijing 515 DAH10 2818.0 a 1605.0 a 1213.0 a 3129.0 a 311.0 b 79.0 b 84.7 b
DAH20 2720.0 a 1535.7 a 1184.3 ab 3080.0 a 360.0 ab 89.1 a 82.7 c
DAHM 2467.3 b 1396.0 b 1071.3 b 2739.7 b 272.3 b 88.3 a 79.0 d
方差分析ANOVA (P-value)
处理Treatment (T) 0.00** 0.00** 0.00** 0.00** 0.00** 0.00** 0**
品种Cultivar (C) 0.00** 0.00** 0.00** 0.00** 0.00** 0.00** 0**
年份Year (Y) 0.00** 0.00** 0.00** 0.00** 0.00** 0.00** 0**
处理×品种 T×C 0.00** 0.00** 0.00** 0.00** 0.00** 0.08 0**
处理×年份 T×Y 0.00** 0.00** 0.00** 0.00** 0.00** 0.00** 0.09
品种×年份 C×Y 0.00** 0.01** 0.00** 0.02* 0.00** 0.07 0**
处理×品种×年份 T×C×Y 0.00** 0.00** 0.00** 0.00** 0.00** 0.00** 0**

Table 5

Correlation coefficient between rice quality parameters"

指标
Index
食味值
Taste quality
蛋白质
Protein
直链淀粉
Amylose content
垩白粒率Chalky grain rate 垩白度
Chalkiness
峰值黏度
Peak
viscosity
热浆黏度
Hot
viscosity
崩解值
Breakdown
最终黏度
Final
viscosity
消减值
Setback
蛋白质
Protein
-0.932**
直链淀粉
Amylose content
0.475** -0.503**
垩白粒率
Chalky grain rate
-0.110 0.206* -0.591**
垩白度
Chalkiness
-0.160 0.262** -0.595** 0.983**
峰值黏度
Peak viscosity
0.521** -0.507** -0.338** 0.235* 0.188
热浆黏度
Hot viscosity
0.462** -0.442** -0.419** 0.263** 0.209* 0.954**
崩解值
Breakdown
0.533** -0.526** -0.216* 0.180 0.147 0.948** 0.810**
最终黏度
Final viscosity
0.223* -0.260* -0.632** 0.334** 0.288** 0.827** 0.899** 0.667**
消减值
Setback
-0.443** 0.357** -0.571** 0.212* 0.206* -0.147 0.052 -0.345** 0.434**
起始糊化温度
Pasting temperature
-0.368** 0.345** -0.267** -0.024 -0.018 -0.271** -0.214* -0.304** 0.032 0.492**
[1] 国家统计局. 2021中国统计年鉴. 北京: 中国统计出版社, 2021. pp 399-401.
National Bureau of Statistics of China. 2021 China statistical yearbook. Beijing: China Statistics Press, 2021. pp 399-401. (in Chinese)
[2] FAO. Crops and livestock products. [2021-12-23]. https://www.fao.org/faostat/zh/#data/QCL.
[3] Kong X L, Zhu P, Sui Z Q, Bao J S. Physicochemical properties of starches from diverse rice cultivars varying in apparent amylose content and gelatinisation temperature combinations. Food Chem, 2015, 172: 433-440.
doi: 10.1016/j.foodchem.2014.09.085 pmid: 25442575
[4] Bao J S. Toward understanding the genetic and molecular bases of the eating and cook king qualities of rice. Cereal Food World, 2012, 57: 148-156.
[5] 程方民, 钟连进. 不同气候生态条件下稻米品质性状的变异及主要影响因子分析. 中国水稻科学, 2001, 15: 187-191.
Cheng F M, Zhong L J. Variation of rice quality traits under different climate conditions and its main affected factors. Chin J Rice Sci, 2001, 15: 187-191. (in Chinese with English abstract)
[6] Seneviratne S I, Zhang X, Adnan M, Badi W, Dereczynski C, Di Luca A, Ghosh S, Iskandar I, Kossin J, Lewis S, Otto F, Pinto I, Satoh M, Vicente-Serrano S M, Wehner M, Zhou B. Weather and climate extreme events in a changing climate. In: Masson-Delmotte V, Zhai P, Pirani A, Connors S L, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis M I, Huang M, Leitzell K, Lonnoy E, Matthews J B R, Maycock T K, Waterfield T, Yelekçi O, Yu R, Zhou B, eds. IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2021. pp 2771-3142.
[7] 中国气象局气候变化中心. 中国气候变化蓝皮书2021. 北京: 科学出版社, 2021.
CMA Climate Change Centre. Blue Book on Climate Change in China (2021). Beijing: Science Press, 2021. (in Chinese)
[8] 凌霄霞, 张作林, 翟景秋, 叶树春, 黄见良. 气候变化对中国水稻生产的影响研究进展. 作物学报, 2019, 45: 323-334.
doi: 10.3724/SP.J.1006.2019.82044
Ling X X, Zhang Z L, Zhai J Q, Ye S C, Huang J L. A review for impacts of climate change on rice production in China. Acta Agron Sin, 2019, 45: 323-334. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2019.82044
[9] Wei X, Zhang Z, Shi P J, Wang P, Chen Y, Song X, Tao F L. Is yield increase sufficient to achieve food security in China? PLoS One, 2015, 10: e116430.
[10] Zhang T, Yang X, Wang H, Li Y, Ye Q. Climatic and technological ceilings for Chinese rice stagnation based on yield gaps and yield trend pattern analysis. Glob Change Biol, 2014, 20: 1289-1298.
doi: 10.1111/gcb.2014.20.issue-4
[11] Emmanuel G A, Mary D M. Effect of light intensity on growth and yield of a Nigerian local rice variety-ofada. Int J Prod Res, 2014, 4: 89-94.
[12] 罗亢, 曾勇军, 胡启星, 陈乐, 易艳红, 睢峰, 黎星. 不同时期弱光胁迫对晚稻不同耐弱光品种源库特征及叶片保护酶活性的影响. 中国水稻科学, 2018, 32: 581-590.
doi: 10.16819/j.1001-7216.2018.7146
Luo K, Zeng Y J, Hu Q X, Chen L, Yi Y H, Sui F, Li X. Effects of weak light stress at different stages on sink-source characteristics and protective enzyme activities in leaf of late rice varieties with different tolerance. Chin J Rice Sci, 2018, 32: 581-590. (in Chinese with English abstract)
doi: 10.16819/j.1001-7216.2018.7146
[13] 张巫军, 段秀建, 姚雄, 刘强明, 肖人鹏, 张现伟, 唐永群, 文明, 李经勇. 遮阴对重穗型杂交水稻茎秆形态特征和抗倒伏性的影响. 中国稻米, 2020, 26(2): 9-13.
doi: 10.3969/j.issn.1006-8082.2020.02.003
Zhang W J, Duan X J, Yao X, Liu Q M, Xiao R P, Zhang X W, Tang Y Q, Wen M, Li J Y. Effects of shading on stem morphological traits and lodging resistance in heavy type panicle of indica rice. China Rice, 2020, 26(2): 9-13. (in Chinese with English abstract)
[14] 任万军, 杨文钰, 徐精文, 樊高琼, 马周华. 弱光对水稻籽粒生长及品质的影响. 作物学报, 2003, 29: 785-790.
Ren W J, Yang W Y, Xu J W, Fan G Q, Ma Z H. Effect of low light on grains growth and quality in rice. Acta Agron Sin, 2003, 29: 785-790. (in Chinese with English abstract)
[15] 王成孜, 高丽敏, 孙玉明, 王博, 郭世伟. 弱光胁迫对分蘖期超级稻与常规稻叶片光合特性的影响. 南京农业大学学报, 2019, 42: 111-117.
Wang C Z, Gao L M, Sun Y M, Wang B, Guo S W. The effect of weak light stress on leaf photosynthetic characteristics in super hybrid rice and conventional rice at tillering stage. J Nanjing Agric Univ, 2019, 42: 111-117. (in Chinese with English abstract)
[16] 李睿, 宗晨, 娄运生, 张震, 马莉, 李君. 不同水分管理和遮阴下水稻株高及成熟期高光谱估算. 江苏农业科学, 2021, 49(3): 82-90.
Li R, Zong C, Lou Y S, Zhang Z, Ma L, Li J. Hyperspectral estimation of rice plant height and maturity period under different water management and shading. Jiangsu Agric Sci, 2021, 49(3): 82-90. (in Chinese with English abstract)
[17] 陈宇眺, 闫川, 洪晓富. 花前、花后遮阴对籼粳杂交稻产量形成特性的影响. 中国稻米, 2019, 25(5): 79-83.
doi: 10.3969/j.issn.1006-8082.2019.05.017
Chen Y T, Yan C, Hong X F. Effects of shading before and after flowering stage on yield formation characters of indica-japonica hybrid rice. China Rice, 2019, 25(5): 79-83. (in Chinese with English abstract)
doi: 10.3969/j.issn.1006-8082.2019.05.017
[18] Wei H Y, Zhu Y, Qiu S, Han C, Hu L, Xu D, Zhou N, Xing Z, Hu Y, Cui P, Dai Q, Zhang H. Combined effect of shading time and nitrogen level on grain filling and grain quality in japonica super rice. J Integr Agric, 2018, 17: 2405-2417.
doi: 10.1016/S2095-3119(18)62025-8
[19] Deng F, Li Q P, Chen H, Zeng Y L, Li B, Zhong X Y, Wang L, Ren W J. Relationship between chalkiness and the structural and thermal properties of rice starch after shading during grain-filling stage. Carbohydr Polym, 2021, 252: 117212.
doi: 10.1016/j.carbpol.2020.117212
[20] 杜彦修, 晏云, 季新, 李飞, 李丹阳, 孙红正, 张静, 李俊周, 彭廷, 赵全志. 沿黄稻区水稻灌浆期遮阴对产量和品质的影响及耐弱光粳稻品种筛选. 植物遗传资源学报, 2019, 20: 1160-1169.
Du Y X, Yan Y, Ji X, Li F, Li D Y, Sun H Z, Zhang J, Li J Z, Peng T, Zhao Q Z. Effects of shading on yield and quality of japonica rice varieties in rice-growing regions alongside the yellow river during grain-filling stage and screening of low-light tolerance. J Plant Genet Resour, 2019, 20: 1160-1169. (in Chinese with English abstract)
[21] 董明辉, 惠锋, 顾俊荣, 陈培峰, 杨代凤, 乔中英. 灌浆期不同光强对水稻不同粒位籽粒品质的影响. 中国生态农业学报, 2013, 21: 164-170.
Dong M H, Hui F, Gu J R, Chen P F, Yang D F, Qiao Z Y. Effect of light intensity on grain quality of rice at different spike positions during grain-filling stage. Chin J Eco-Agric, 2013, 21: 164-170 (in Chinese with English abstract.)
[22] Liu K, Yang R, Lu J, Wang X, Lu B, Tian X, Zhang Y. Radiation use efficiency and source-sink changes of super hybrid rice under shade stress during grain-filling stage. Agron J, 2019, 111: 1788-1798.
doi: 10.2134/agronj2018.10.0662
[23] 张诚信, 郭保卫, 唐健, 许方甫, 许轲, 胡雅杰, 邢志鹏, 张洪程, 戴其根, 霍中洋, 魏海燕, 黄丽芬, 陆阳, 唐闯, 戴琪星, 周苗, 孙君仪. 灌浆结实期低温弱光复合胁迫对稻米品质的影响. 作物学报, 2019, 45: 1208-1220.
doi: 10.3724/SP.J.1006.2019.82067
Zhang C X, Guo B W, Tang J, Xu F F, Xu K, Hu Y J, Xing Z P, Zhang H C, Dai Q G, Huo Z Y, Wei H Y, Huang L F, Lu Y, Tang C, Dai Q X, Zhou M, Sun J Y. Combined effects of low temperature and weak light at grain-filling stage on rice grain quality. Acta Agron Sin, 2019, 45: 1208-1220. (in Chinese with English abstract)
[24] 孙园园, 孙永健, 陈林, 徐徽, 马均. 不同播期和抽穗期弱光胁迫对杂交稻生理性状及产量的影响. 应用生态学报, 2012, 23: 2737-2744.
Sun Y Y, Sun Y J, Chen L, Xu H, Ma J. Effects of different sowing dates and low-light stress at heading stage on the physiological characteristics and grain yield of hybrid rice. Chin J Appl Ecol, 2012, 23: 2737-2744. (in Chinese with English abstract)
[25] 刘博, 韩勇, 解文孝, 李建国, 刘军, 高岐. 灌浆结实期弱光对水稻产量、生理及品质的影响. 中国稻米, 2008, (5): 36-40.
Liu B, Han Y, Xie W X, Li J G, Liu J, Gao Q. Effect of weak light on yield, physiology and quality of rice at grain filling stage. China Rice, 2008, (5): 36-40. (in Chinese with English abstract)
[26] 刘佳. 灌浆结实期弱光对水稻籽粒氮代谢关键酶活性及营养品质的影响. 四川农业大学硕士学位论文, 四川成都, 2010.
Liu J. Effects of Low Light on Key Enzymes Activities of Nitrogen Metabolism and Nutritional Quality in Rice during Grain-filling Stage. MS Thesis of Sichuan Agricultural University, Chengdu, Sichuan, China, 2010. (in Chinese with English abstract)
[27] Kobata T, Sugawara M, Takatu S. Shading during the early grain filling period does not affect potential grain dry matter increase in rice. Agron J, 2000, 92: 411-417.
doi: 10.2134/agronj2000.923411x
[28] 吕军, 王伯伦, 孟维韧, 赵凤艳. 不同穗型粳稻的光合作用与物质生产特性. 中国农业科学, 2007, 40: 902-908.
Lyu J, Wang B L, Meng W R, Zhao F Y. The characteristics of photosynthesis and dry matter production in japonica rice cultivars with different type panicles. Sci Agric Sin, 2007, 40: 902-908. (in Chinese with English abstract)
[29] 杜彦修, 季新, 张静, 李俊周, 孙红正, 赵全志. 弱光对水稻生长发育影响研究进展. 中国生态农业学报, 2013, 21: 1307-1317.
Du Y X, Ji X, Zhang J, Li J Z, Sun H Z, Zhao Q Z. Research progress on the impacts of low light intensity on rice growth and development. Chin J Eco-Agric, 2013, 21: 1307-1317. (in Chinese with English abstract)
doi: 10.3724/SP.J.1011.2013.01307
[30] Yoshinaga S, Takai T, Arai-Sanon S Y, Ishimaru T, Kondo M. Varietal differences in sink production and grain-filling ability in recently developed high-yielding rice (Oryza sativa L.) varieties in Japan. Field Crops Res, 2013, 150: 74-82.
doi: 10.1016/j.fcr.2013.06.004
[31] Li Q P, Deng F, Chen H, Zeng Y L, Li B, Zhong X Y, Wang L, Zhou W, Chen Y, Ren W J. Shading decreases rice yield by impeding grain-filling progress after heading. Agron J, 2020, 112: 4018-4030.
doi: 10.1002/agj2.v112.5
[32] 邓飞, 王丽, 姚雄, 王建军, 任万军, 杨文钰. 不同生育阶段遮阴对水稻籽粒充实和产量的影响. 四川农业大学学报, 2009, 27: 265-269.
Deng F, Wang L, Yao X, Wang J J, Ren W J, Yang W Y. Effects of different-growing-stage shading on rice grain-filling and yield. J Sichuan Agric Univ, 2009, 27: 265-269. (in Chinese with English abstract)
[33] 蔡昆争, 骆世明. 不同生育期遮光对水稻生长发育和产量形成的影响. 应用生态学报, 1999, 10: 193-196.
Cai K J, Luo S M. Effect of shading on growth, development and yield formation of rice. Chin J Appl Ecol, 1999, 10: 193-196. (in Chinese with English abstract)
[34] 曾研华. 低温诱导籼粳杂交稻灌浆结实障碍特性研究. 南京农业大学博士学位论文, 江苏南京, 2015.
Zeng Y H. Study on Mechanism of Grain Filling Obstacle Induced Low Temperature of Indica-japonica Hybrid Rice. PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2015. (in Chinese with English abstract)
[35] Deng F, Li B, Yuan Y J, He C Y, Zhou X, Li Q P, Zhu Y Y, Huang X F, He Y X, Ai X F, Tao Y F, Zhou W, Wang L, Cheng H, Chen Y, Wang M T. Ren W J. Increasing the number of seedlings per hill with reduced number of hills improves rice grain quality by optimizing canopy structure and light utilization under shading stress. Field Crops Res, 2022, 287: 108668.
doi: 10.1016/j.fcr.2022.108668
[36] Chen H, Li Q P, Zeng Y L, Deng F, Ren W J. Effect of different shading materials on grain yield and quality of rice. Sci Rep, 2019, 9: 9992.
doi: 10.1038/s41598-019-46437-9 pmid: 31292505
[37] 贺浩华, 彭小松, 刘宜柏. 环境条件对稻米品质的影响. 江西农业学报, 1997, 9(4): 66-72.
He H H, Peng X S, Liu Y B. Effects of environmental conditions on rice quality. Acta Agric Jiangxi, 1997, 9(4): 66-72. (in Chinese with English abstract)
[38] 胡培松, 翟虎渠, 唐绍清, 万建民. 利用RVA快速鉴定稻米蒸煮及食味品质的研究. 作物学报, 2004, 30: 519-524.
Hu P S, Zhai H Q, Tang S Q, Wan J M. Rapid evaluation of rice cooking and palatability quality by RVA profile. Acta Agron Sin, 2004, 30: 519-524. (in Chinese with English abstract)
[39] 隋炯明, 李欣, 严松, 严长杰, 张蓉. 稻米淀粉RVA谱特征与品质性状相关性研究. 中国农业科学, 2005, 38: 657-663.
Sui J M, Li X, Yan S, Yan C J, Zhang R. Studies on the Rice RVA Profile Characteristics and Its Correlation with the Quality. Sci Agric Sin, 2005, 38: 657-663. (in Chinese with English abstract)
[40] 李冲, 王学春, 杨国涛, 陈虹, 赵祥, 王汝丹, 黄苗, 彭友林, 陈永军, 胡运高. 杂交水稻产量及稻米品质对弱光胁迫的响应. 应用与环境生物学报, 2022, 28: 1415-1421.
Li C, Wang X C, Yang G T, Chen H, Zhao X, Wang R D, Huang M, Peng Y L, Chen Y J, Hu Y G. Response of the grain yield and its quality of hybrid rice to weak light stress. Chin J Appl Environ Biol, 2022, 2022, 28: 1415-1421. (in Chinese with English abstract)
[41] 姜楠. 遮光对北方粳稻产量和品质的形成及其生理机制的研究. 沈阳农业大学博士学位论文, 辽宁沈阳, 2013.
Jiang N. Study on Development of Yield and Quality and Its Physiological Mechanism of Japanica Rice under Shading in Northern China. PhD Dissertation of Shenyang Agricultural University, Shenyang, Liaoning, China, 2013. (in Chinese with English abstract)
[1] TANG Jie, LONG Tuan, WU Chun-Yu, LI Xin-Peng, ZENG Xiang, WU Yong-Zhong, HUANG Pei-Jin. Identification of OsGMS2 and construction of seed production system for genic male sterile line in rice [J]. Acta Agronomica Sinica, 2023, 49(8): 2025-2038.
[2] WEI Xin-Yu, ZENG Yue-Hui, YANG Wang-Xing, XIAO Chang-Chun, HOU Xin-Po, HUANG Jian-Hong, ZOU Wen-Guang, XU Xu-Ming. Development of high-quality fragrant indica CMS line by editing Badh2 gene using CRISPR-Cas9 technology in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2023, 49(8): 2144-2159.
[3] CAO Yu-Jun, LIU Zhi-Ming, LAN Tian-Jiao, LIU Xiao-Dan, WEI Wen-Wen, YAO Fan-Yun, LYU Yan-Jie, WANG Li-Chun, WANG Yong-Jun. Responses of photosynthetic physiological characteristics of maize varieties released in different decades to nitrogen application rate in Jilin province [J]. Acta Agronomica Sinica, 2023, 49(8): 2183-2195.
[4] YANG Xiao-Hui, WANG Bi-Sheng, SUN Xiao-Lu, HOU Jin-Jin, XU Meng-Jie, WANG Zhi-Jun, FANG Quan-Xiao. Modeling the response of winter wheat to deficit drip irrigation for optimizing irrigation schedule [J]. Acta Agronomica Sinica, 2023, 49(8): 2196-2209.
[5] LI Yu-Xing, MA Liang-Liang, ZHANG Yue, QIN Bo-Ya, ZHANG Wen-Jing, MA Shang-Yu, HUANG Zheng-Lai, FAN Yong-Hui. Effects of exogenous trehalose on physiological characteristics and yield of wheat flag leaves under high temperature stress at grain filling stage [J]. Acta Agronomica Sinica, 2023, 49(8): 2210-2224.
[6] CHEN Ting, JIAO Yan-Yang, ZHOU Xin-Ye, WU Lin-Kun, ZHANG Zhong-Yi, LIN Yu, LIN Sheng, LIN Wen-Xiong. Effects of different soil intensification treatments on growth and development of Radix pseudostellariae in continuous cropping system [J]. Acta Agronomica Sinica, 2023, 49(8): 2225-2239.
[7] LIU Qiong , YANG Hong-Kun, CHEN Yan-Qi, WU Dong-Ming, HUANG Xiu-Lan, FAN Gao-Qiong. Effect of nitrogen application rate on grain quality, wine quality and volatile flavor compounds of waxy and no-waxy wheat [J]. Acta Agronomica Sinica, 2023, 49(8): 2240-2258.
[8] LIU Shi-Jie, YANG Xi-Wen, MA Geng, FENG Hao-Xiang, HAN Zhi-Dong, HAN Xiao-Jie, ZHANG Xiao-Yan, HE De-Xian, MA Dong-Yun, XIE Ying-Xin, WANG Chen-Yang, WANG Li-Fang. Effects of water and nitrogen application on root characteristics and nitrogen utilization in winter wheat [J]. Acta Agronomica Sinica, 2023, 49(8): 2296-2307.
[9] JIA Lu-Qi, SUN You, TIAN Ran, ZHANG Xue-Fei, DAI Yong-Dong, CUI Zhi-Bo, LI Yang-Yang, FENG Xin-Yu, SANG Xian-Chun, WANG Xiao-Wen. Identification of the rgs1 mutant with rapid germination of seed and isolation of the regulated gene in rice [J]. Acta Agronomica Sinica, 2023, 49(8): 2288-2295.
[10] LI Rong, MIAN You-Ming, HOU Xian-Qing, LI Pei-Fu, WANG Xi-Na. Effects of nitrogen application on decomposition and nutrient release of returning straw, soil fertility, and maize yield [J]. Acta Agronomica Sinica, 2023, 49(7): 2012-2022.
[11] XU Na, XU Quan, XU Zheng-Jin, CHEN Wen-Fu. Research progress on physiological ecology and genetic basis of rice plant architecture [J]. Acta Agronomica Sinica, 2023, 49(7): 1735-1746.
[12] WEI Jin-Gui, GUO Yao, CHAI Qiang, YIN Wen, FAN Zhi-Long, HU Fa-Long. Yield and yield components of maize response to high plant density under reduced water and nitrogen supply [J]. Acta Agronomica Sinica, 2023, 49(7): 1919-1929.
[13] ZHANG Zhen, SHI Yu, ZHANG Yong-Li, YU Zhen-Wen, WANG Xi-Zhi. Effects of different soil water content on water consumption by wheat and analysis of senescence characteristics of root and flag leaf [J]. Acta Agronomica Sinica, 2023, 49(7): 1895-1905.
[14] ZHANG Lu-Lu, ZHANG Xue-Mei, MU Wen-Yan, HUANG Ning, GUO Zi-Kang, LUO Yi-Nuo, WEI Lei, SUN Li-Qian, WANG Xing-Shu, SHI Mei, WANG Zhao-Hui. Grain Mn concentration of wheat in main wheat production regions of China: Effects of cultivars and soil factors [J]. Acta Agronomica Sinica, 2023, 49(7): 1906-1918.
[15] DONG Zhi-Qiang, LYU Li-Hua, YAO Yan-Rong, ZHANG Jing-Ting, ZHANG Li-Hua, YAO Hai-Po, SHEN Hai-Ping, JIA Xiu-Ling. Yield and quality of strong gluten wheat Shiluan 02-1 under water and nitrogen interaction [J]. Acta Agronomica Sinica, 2023, 49(7): 1942-1953.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .