Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (8): 2240-2258.doi: 10.3724/SP.J.1006.2023.21038

• TILLAGE & CULTIVATION · PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effect of nitrogen application rate on grain quality, wine quality and volatile flavor compounds of waxy and no-waxy wheat

LIU Qiong1,2,3(), YANG Hong-Kun1,2, CHEN Yan-Qi1,2, WU Dong-Ming1,2, HUANG Xiu-Lan1,2, FAN Gao-Qiong1,2,*()   

  1. 1 State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Ministry of Science and Technology, Chengdu, 611130 Sichuan, China
    2 Southwest Key Laboratory of Crop Physiological Ecology and Tillage, Ministry of Agriculture and Rural Affairs, Chengdu 611130, Sichuan, China
    3 Longmen Town People’s Government Agricultural Comprehensive Service Center, Shizhong District, Neijiang City, Sichuan Province, Neijiang 641000, Sichuan, China
  • Received:2022-05-30 Accepted:2023-02-10 Online:2023-08-12 Published:2023-02-27
  • Contact: FAN Gao-Qiong E-mail:1362241703@qq.com;fangao20056@126.com
  • Supported by:
    14th Five-Year Key Research and Development Program of Sichuan Province(2021YFYZ0002);Sichuan Province Science and Technology Support Program(2021YJ0504)

Abstract:

In order to study the effects of different nitrogen application rates on the quality of waxy and non-waxy wheat and brewing quality, the suitable nitrogen application rate for high yield and high-quality production of wheat for brewing was determined. Mianmai 902 (non-waxy) and Zhongkezinuomai 168 (waxy) were used as the experimental materials in Dayi County, Chengdu City, Sichuan Province, in 2019 and 2020. Six nitrogen application rates (0, 45, 90, 135, 180, and 225 kg hm-2) were set to analyze their effects on the quality of wheat raw grain, brewing quality, and volatile flavor compounds. The results showed that the yield, flour quality rate, and ash content of Mianmai 902 were higher. Zhongkezinuomai 168 had higher hardness, bulk density, protein, and fat content, higher total starch and amylopectin content, lower straight branch ratio, and lower RVA characteristic parameters except that breakdown value was higher than that of Mianmai 902. Increasing nitrogen application rate significantly increased wheat yield, and the yield of both varieties reached the maximum at 225 kg hm-2. Silty rate and bulk density decreased with the increase of nitrogen application rate, while hardness index and protein content increased. Fat and ash content were higher in 135 kg hm-2, the total starch and amylopectin content were higher in 90-135 kg hm-2, peak viscosity and trough viscosity decreased significantly after 135 kg hm-2. The wine yield of the two varieties was higher in the range of 90-135 kg hm-2 nitrogen application, but the inter-annual difference was different. The wine yield of Mianmai 902 was significantly higher than that of Zhongkezinuomai 168 in 2019, and the opposite was true in 2020. We speculated that it was related to the more rain at filling stage in 2020, the decrease of grain hardness index and the increase of silty rate of Zhongkezinuomai 168. The content of total acid and total ester in liquor brewed by Mianmai 902 was not high, and the content of fusel oil was relatively low. Zhongkezinuomai 168 was the opposite, but the fusel content was still in the safe range (≤ 0.2 g 100 mL-1). The total acid content of liquor produced by Mianmai 902 was the highest under the treatment of 90 kg hm-2 in the two years, and the total acid content of Zhongkezinuomai 168 was the highest under the treatment of 135 kg hm-2 in 2020. In terms of total ester and fusel oil, the total ester content of the two varieties was relatively low under 135 kg hm-2 treatment, and the fusel oil content was the lowest under 90 kg hm-2 treatment. Compared with 2019, the contents of total acid and total ester of the two varieties decreased significantly in 2020, which may be related to more precipitation at grain filling stage and the decrease of total starch and amylopectin contents. Zhongkezinuomai 168 had more kinds and quantities of volatile flavor substances, and its overall brewing characteristics were better than that of Mianmai 902. The number of volatile flavor compounds of Mianmai 902 was the highest at 90 kg hm-2, and the comprehensive score was the highest. The number of volatile flavor compounds of Zhongke Zinuomai 168 was the highest at 225 kg hm-2, and the comprehensive score was the highest. Correlation analysis and path analysis showed that total starch content and amylopectin content were significantly positively correlated with the total acid and total ester content. Most starch physicochemical indexes played a positive indirect role in the formation of the total ester through amylose and gelatinization temperature. The results showed that the wine yield of wheat was affected by interannual factors and flour quality rate. Starch content, composition, and gelatinization characteristics had important effects on the formation of total acid and total ester, esters were the main components of volatile flavor substances, greatly affected by variety factors. Under the nitrogen application rate of 90-135 kg hm-2, waxy and non-waxy wheat had better starch content, composition and pasting properties, and more volatile flavor substances in liquor-making, which was suitable for high yield and high quality of liquor-making wheat.

Key words: nitrogen rate, waxy wheat, no-waxy wheat, grain quality, wine quality, volatile flavor compounds

Table 1

Soil basic fertility of experimental field (0-20 cm)"

年份
Year
pH 有机质
Organic matter
(g kg-1)
全氮
Total nitrogen
(g kg-1)
碱解氮
Alkaline hydrolysis nitrogen (mg kg-1)
速效磷
Available phosphorus
(mg kg-1)
速效钾
Available potassium
(mg kg-1)
2019 5.6 38.5 2.04 153.7 23.5 221.3
2020 6.2 39.5 3.44 149.6 25.5 224.4

Fig. 1

Temperature and rainfall in wheat growth period"

Table 2

Effect of nitrogen application rate on starch content and components of waxy and no-waxy wheat"

年份
Year
品种
Variety
施氮量
Nitrogen application rate
总淀粉
Total starch (%)
直链淀粉
Amylose (%)
支链淀粉
Amylopectin (%)
直支比
Amylose/Amylopectin
2019 M902 N0 60.7 a 11.63 bcd 49.07 ab 0.24 de
N45 60.6 a 10.87 d 49.70 a 0.22 e
N90 59.9 ab 12.37 ab 47.57 bc 0.26 bc
N135 58.4 bc 11.54 cd 46.85 cd 0.25 cd
N180 57.7 c 13.01 a 44.72 e 0.29 a
N225 57.5 c 12.26 abc 45.22 de 0.27 ab
平均Mean 59.1 11.95 47.19 0.254
Z168 N0 68.0 b 2.22 a 65.80 b 0.03 a
N45 71.7 a 2.82 a 68.90 a 0.04 a
N90 72.8 a 2.57 a 70.22 a 0.04 a
N135 69.3 b 2.38 a 66.92 b 0.04 a
N180 68.9 b 2.30 a 66.56 b 0.03 a
N225 67.6 b 2.12 a 65.50 b 0.03 a
平均Mean 69.7 2.40 67.30 0.036
F-value 小麦品种V 1645.08** 779.22 ** 1274.35** 885.79**
施氮量N 13.59** 2.91 * 12.86** 5.26**
V×N 4.82** 5.71 ** 5.30** 7.10**
2020 M902 N0 55.6 a 10.89 bc 44.75 a 0.24 c
N45 55.2 a 10.62 c 44.59 a 0.24 d
N90 56.0 a 11.31 a 44.67 a 0.25 a
N135 55.5 a 11.19 ab 44.30 a 0.25 a
N180 54.9 a 11.01 ab 43.85 a 0.25 ab
N225 55.1 a 10.94 b 44.15 a 0.25 b
平均Mean 55.4 11.00 44.38 0.248
Z168 N0 61.7 b 1.93 b 59.77 b 0.03 a
N45 62.6 ab 2.09 ab 60.52 ab 0.03 a
N90 62.8 ab 2.09 ab 60.65 ab 0.03 a
N135 63.7 a 2.25 a 61.48 a 0.04 a
N180 62.8 ab 2.13 ab 60.62 ab 0.04 a
N225 61.9 b 2.00 ab 59.90 b 0.03 a
平均Mean 62.6 2.1 60.49 0.034
F-value 小麦品种V 1133.35** 10,205.66** 16,249.72** 26,417.45**
施氮量N 1.62 4.19** 1.36 9.30**
V×N 1.43 2.19 1.94 5.73**

Table 3

Effect of nitrogen application rate on RVA characteristic parameters of waxy and no-waxy wheat starch"

年份
Year
品种
Variety
施氮量
Nitrogen
application rate
RVA谱特征参数RVA profile characteristics
峰值黏度
Peak
viscosity
低谷黏度
Low valley viscosity
稀澥值
Breakdown value
最终黏度
Final
viscosity
回生值
Setback
value
峰值时间
Peak
time
糊化温度
Pasting
temperature
2019 M902 N0 2127 c 1515 c 646 b 2818 c 1312 c 5.95 ab 87.5 ab
N45 2312 ab 1676 a 636 b 3031 a 1413 a 6.11 a 88.5 a
N90 2312 ab 1538 bc 774 a 2835 c 1297 c 6.05 ab 87.9 ab
N135 2346 a 1581 b 765 a 2913 b 1366 b 6.00 ab 88.0 ab
N180 2359 a 1560 bc 799 a 2975 ab 1415 a 5.95 ab 88.0 ab
N225 2231 b 1428 d 817 a 2700 d 1277 c 5.87 b 87.2 b
平均Mean 2281 1550 739 2879 1347 5.99 87.9
Z168 N0 1357 d 449 d 951 c 627 d 175 b 3.42 b 68.6 a
N45 1386 d 497 d 946 c 676 d 179 b 3.67 a 67.0 b
N90 1875 b 803 b 1052 ab 1099 b 297 a 3.75 a 67.1 b
N135 2005 a 927 a 1078 ab 1219 a 292 a 3.85 a 66.9 b
N180 1746 c 720 c 1026 b 985 c 287 a 3.73 a 66.9 b
N225 1887 b 795 b 1092 a 1086 b 290 a 3.78 a 66.8 b
平均Mean 1709 699 1024 949 254 3.70 67.2
F-value 小麦品种V 273.34** 1374.23** 1532.09** 50227.06** 13484.20** 3843.87** 3264.82**
施氮量N 51.07** 48.75** 21.29** 62.63** 12.14** 3.55* 1.21
V×N 27.44** 75.43** 1.17 98.23** 18.94** 3.50* 2.49
2020 M902 N0 2138 abc 1645 a 544 b 2696 a 1135 bc 6.07 a 88.5 a
N45 2130 abc 1534 ab 543 b 2704 a 1168 abc 5.91 ab 88.0 a
N90 2252 ab 1343 c 630 ab 2432 b 1118 c 5.78 b 86.4 b
N135 2315 a 1372 bc 609 ab 2484 b 1200 ab 5.91 ab 88.1 a
N180 2004 c 1217 c 685 a 2078 c 1119 c 5.84 b 87.8 a
N225 2058 bc 1324 c 644 a 2449 b 1221 a 5.93 ab 88.7 a
平均Mean 2150 1406 609 2474 1160 5.91 87.9
Z168 N0 1487 c 521 b 1017 b 629 d 288 bc 3.60 a 66.9 a
N45 1637 bc 709 a 897 c 1004 bc 295 bc 3.67 a 67.2 a
N90 1706 ab 678 ab 612 d 936 c 284 c 3.40 b 66.8 a
N135 1847 a 789 a 1105 ab 1154 ab 339 abc 3.64 a 66.9 a
N180 1833 ab 779 a 1112 a 1220 a 413 a 3.62 a 66.6 a
N225 1746 ab 829 a 1032 ab 1215 a 363 ab 3.64 a 66.9 a
平均Mean 1709 717 962 1026 331 3.60 66.9
F-value 小麦品种V 490.99** 1040.41** 68.72* 1904.97** 826.34** 5139.77** 47,656.07**
施氮量N 3.77* 1.35 22.17** 5.96** 3.65* 3.35* 3.40*
V×N 3.32* 9.62** 19.16** 28.59** 2.70 1.04 2.91*

Fig. 2

Effect of nitrogen application rate on quality of waxy and no-waxy wheat yield and other raw grains Abbreviations and treatments in the diagram are the same as those given in Table 2. Different lowercase letters on the same variety column indicated that there were significant differences among different nitrogen levels at P < 0.05. * and ** indicate significant differences at P < 0.05 and P < 0.01, respectively."

Fig. 3

Effect of nitrogen application rate on yield, total acid, total ester and fusel oil content of waxy and no-waxy wheat Abbreviations and treatments in the diagram are the same as those given in Table 2. Different lowercase letters on the same variety column indicated that there were significant differences among different nitrogen levels at P < 0.05. * and ** indicate significant differences at P < 0.05 and P < 0.01, respectively."

Fig. 4

Effect of nitrogen application rate on volatile flavor compounds of waxy and no-waxy wheat"

Table 4

Main volatile flavor components and post-rotation factor loading coefficient of liquor"

挥发性风味
物质种类
Types of
volatile flavor compounds
M902 旋转后因子载荷系数
Factor load coefficient after rotation
Z168 旋转后因子
载荷系数
Factor load coefficient after rotation
酯类
Ester
9-十六酸乙酯
Ethyl-9-hexadecanoate
0.980 (Z, Z, Z)-9,12,15-十八碳三烯酸乙酯
(Z, Z, Z)-9,12,15-octadecatrienoic acid ethyl ester
0.961
十四酸乙酯(肉豆蔻酸乙酯)
Ethyl myristate (ethyl myristate)
0.964 十八酸乙酯
Ethyl octadecanoate
0.949
乙酸2-苯基乙酯
2-phenylethyl acetate
0.946 正癸酸异丁酯
Isobutyl decanoate
0.941
(Z)-十五碳-9-烯酸乙酯
(Z)-ethyl pentadec-9-enoate
0.923 (E)-9-十八烯酸乙酯
Ethyl(E)-9-octadecenoate
0.928
癸二酸乙酯
Ethyl sebacate
0.920 2,2,4-三甲基-1,3-戊二醇二异丁酸酯
2,2,4-trimethyl-1,3-pentanediol diisobutyrate
0.892
月桂酸异丁酯
Isobutyl laurate
0.914 油酸乙酯
Ethyl oleate
0.875
十五烷酸乙酯
Ethyl pentadecanoate
0.909 十四酸苯乙酯
Phenethyl myristate
0.875
十六酸乙酯(棕榈酸乙酯)
Ethyl hexadecanoate (ethyl palmitate)
−0.887 9,12-十六二烯酸乙酯
Ethyl-9,12-hexadecadienoate
0.843
(E)-9-十八烯酸乙酯
Ethyl-9-octadecenoate
0.865 十七酸乙酯
Ethyl heptadecanoate
0.819
十五酸3-甲基丁酯
3-methylbutyl pentadecanoate
0.739 亚油酸乙酯
Ethyl linoleate
−0.799
醇类
Alcohols
癸醇
Decyl alcohol
0.950 (E)-3,7,11-三甲基-1,6,10-十二碳三烯-3-醇
(E)-3,7,11-trimethyl-1,6,10-dodecatrien-3-ol
0.837
十四醇
Tetradecyl alcohol
0.894 癸醇
Decyl alcohol
0.740
十六醇
Ethal
0.786 十六醇
Ethal
0.734
苯乙醇
Phenylethyl alcohol
0.709 三聚糖-2-醇
Trisaccharide-2-ol
0.715
2-(2-乙氧基)-乙醇
2-(2-ethoxy)-ethanol
−0.637 乙酸正十六醇
Hexadecanol acetate
0.687
1-丁醇
1-butanol
−0.449 1-辛醇
1-octanol
0.549
2-甲基-3-丁烯-1-醇
2-ethyl-3-butene-1-ol
−0.426 正己醇
N-hexanol
0.465
二甲基-硅丙二醇
Dimethyl-silicon propylene glycol
−0.358 十四醇
Tetradecyl alcohol
0.381
1-辛醇
1-octanol
−0.350 3-甲基-1-丁醇
5-methyl-1-butanol
0.323
酸类
Acid
乙酸
Acetic acid
0.351 辛酸
Caprylic acid
0.640
正十六酸
N-hexadecanoic
−0.586
乙酸
Acetic acid
0.313
酮类
Ketone
2-十五酮
2-pentadecanone
0.951 6,10,14-三甲基-2-十五酮
6,10,14-trimethyl-2-pentadecanone
0.957
2-十七烷酮
2-methylmercuric iodide pentadecyl ketone
0.926 2-十七烷酮
2-methylmercuric iodide pentadecyl ketone
0.914
6,10,14-三甲基-2-十五酮
6,10,14-trimethyl-2-pentadecanone
0.917 2-十五酮
2-pentadecanone
0.876
十三酮
Triacontenone
0.496
醛类
Aldehydes
糠醛
Furfural
0.952 苯甲醛
Benzaldehyde
−0.979
(E,E)-2,4-癸二烯醛
(E,E-2,4-decadienal
0.899 (E)-2-庚醛
(E)-2-heptaldehyde
0.506
壬醛
Nonanal
0.508 (E,E)-2,4-癸二烯醛
(E,E)-2,4-decadienal
0.372

Table 5

Principal component factor analysis eigenvalue and rotation load square sum"

基因型
Genotype
成分Component 总方差解释Total variance explanation
初始特征值
Initial eigenvalue
提取载荷平方和
Extraction of square sum of loads
旋转载荷平方和
Square sum of rotation load
总计
Total
方差Variance (%) 累积Cumulative (%) 总计
Total
方差
Variance
(%)
累积Cumulative (%) 总计
Total
方差Variance (%) 累积Cumulative
(%)
M902 1 20.0 43.5 43.5 20.0 43.5 43.5 19.4 42.2 42.2
2 14.2 31.0 74.5 14.2 31.0 74.5 13.2 28.8 71.0
3 5.5 12.0 86.4 5.5 12.0 86.4 5.8 12.7 83.7
4 4.6 10.1 96.5 4.6 10.1 96.5 5.6 12.1 95.8
5 1.6 3.5 100.0 1.6 3.5 100.0 1.9 4.2 100.0
Z168 1 33.9 45.9 45.9 33.9 45.9 45.9 23.7 32.1 32.1
2 16.3 22.0 67.9 16.3 22.0 67.9 19.4 26.2 58.2
3 10.7 14.5 82.4 10.7 14.5 82.4 12.7 17.2 75.4
4 6.9 9.4 91.7 6.9 9.4 91.7 10.8 14.6 90.0
5 6.1 8.3 100.0 6.1 8.3 100.0 7.4 10.0 100.0

Table 6

Principal component score and comprehensive score of volatile flavor compounds"

样品编号
Sample number
PC1 PC2 PC3 PC4 PC5 综合得分
Comprehensive score
排名
Rank
902N90 1.87 -0.27 0.62 0.02 -0.45 0.78 1
902N225 -0.08 1.61 -0.80 -0.73 -0.62 0.21 2
902N180 -0.23 0.15 -0.53 1.94 0.18 0.12 3
902N135 -0.85 0.42 1.75 -0.13 0.45 -0.01 4
902N0 0.12 -0.58 -0.75 -0.73 1.65 -0.23 5
902N45 -0.83 -1.34 -0.28 -0.39 -1.21 -0.87 6
168N225 1.31 0.09 1.30 0.81 -0.30 0.76 1
168N135 -0.95 1.36 0.47 -0.01 1.10 0.24 2
168N90 1.02 0.62 -1.65 -0.07 0.06 0.20 3
168N0 0.19 -0.81 0.40 -1.81 0.23 -0.33 4
168N45 -0.60 -1.44 -0.43 1.04 0.69 -0.42 5
168N180 -0.97 0.19 -0.10 0.03 -1.78 -0.45 6

Table 7

Correlation analysis of grain quality and wine quality in 2019 and 2020"

指标
Index
出酒率
Liquor yield
总酸
Total acid
总酯
Total ester
淀粉Total starch -0.112 0.525** 0.442**
直链淀粉Amylose -0.192 -0.081 -0.103
支链淀粉Amylopectin 0.029 0.340** 0.303**
直支比Amylose/Amylopectin -0.197 -0.113 -0.144
峰值黏度Peak viscosity -0.155 0.150 -0.201
低谷黏度Low valley viscosity -0.132 -0.029 -0.149
稀澥值Breakdown value -0.132 0.305** 0.164
最终黏度Final viscosity -0.124 -0.039 -0.115
回生值Setback value -0.123 -0.103 -0.111
峰值时间Peak time -0.173 -0.097 -0.117
糊化温度Pasting temperature -0.154 -0.137 -0.120
蛋白质Protein 0.084 -0.367** -0.046
脂肪Fat 0.422** -0.620** -0.553**
灰分Ash 0.211 -0.431** -0.537**
粉质率Farinaceous rate 0.166 -0.391** -0.343**
硬度指数Hardness index 0.126 0.167 0.202
容重Volumetric weight 0.043 0.267* 0.351**

Table 8

Path analysis of the effect of starch physicochemical indexes on the total ester content in 2019 and 2020"

淀粉理化指标
Physicochemical indexes of starch
与总酯的相关系数
Correlation coefficient with total esters
直接作用
Direct effect
间接作用Indirect effect 贡献率
Contribution rate
A1→C A2→C A3→C A4→C B1→C B2→C B3→C B4→C B5→C B6→C B7→C
A1 0.442** 0.657 ‒2.726 0.229 2.956 0.253 0.499 0.024 ‒0.494 ‒0.359 0.167 ‒0.680 0.290
A2 ‒0.103 3.515 ‒0.51 ‒0.224 ‒3.653 ‒0.341 ‒0.640 ‒0.030 0.633 0.445 ‒0.211 0.832 ‒0.352
A3 0.303** 0.241 0.625 ‒3.277 3.476 0.311 0.598 0.026 ‒0.591 ‒0.423 0.199 ‒0.796 0.073
A4 ‒0.144 ‒3.663 ‒0.53 3.505 ‒0.228 ‒0.338 ‒0.633 ‒0.030 0.627 0.443 ‒0.211 0.832 0.527
B1 ‒0.201 ‒0.412 ‒0.4 2.906 ‒0.182 ‒3.004 ‒0.633 ‒0.020 0.594 0.39 ‒0.181 0.680 0.083
B2 ‒0.149 ‒0.692 ‒0.47 3.248 ‒0.208 ‒3.352 ‒0.377 ‒0.020 0.648 0.432 ‒0.203 0.781 0.103
B3 0.164 0.033 0.482 ‒2.654 0.19 2.789 0.213 0.486 ‒0.468 ‒0.331 0.163 ‒0.673 0.005
B4 ‒0.115 0.660 ‒0.49 3.37 ‒0.216 ‒3.480 ‒0.371 ‒0.680 ‒0.020 0.446 ‒0.208 0.805 ‒0.076
B5 ‒0.111 0.455 ‒0.52 3.444 ‒0.224 ‒3.569 ‒0.353 ‒0.658 ‒0.020 0.648 ‒0.210 0.825 ‒0.051
B6 ‒0.117 ‒0.215 ‒0.51 3.463 ‒0.223 ‒3.597 ‒0.348 ‒0.655 ‒0.030 0.638 0.446 0.836 0.025
B7 ‒0.120 0.843 ‒0.53 3.472 ‒0.227 ‒3.617 ‒0.332 ‒0.641 ‒0.030 0.630 0.445 ‒0.213 ‒0.101
[1] 石谢新. 四川多项重磅措施推动白酒产业高质量发展. 中国食品工业, 2021, (11): 88-91.
Shi X X. Several measures to promote high quality development of liquor industry in Sichuan. China’s Food Ind, 2021, (11): 88-91. (in Chinese with English abstract)
[2] 曹新莉. 原料与酿酒. 酿酒科技, 2002, (4): 53-54.
Cao X L. Raw materials and brewing. Liquor-making Sci Technol, 2002, (4): 53-54. (in Chinese with English abstract)
[3] 信春晖, 邵先军, 胥伟宏, 许玲, 董乔娟. 酿酒原料对白酒风味的影响. 酿酒科技, 2013, (7): 68-74.
Xin C H, Shao X J, Xu W H, Xu L, Dong Q J. Effect of raw materials on liquor flavor. Liquor-making Sci Technol, 2013, (7): 68-74. (in Chinese with English abstract)
[4] 信春晖. 小麦蛋白质在酿酒中的功用. 酿酒科技, 2005, (12): 51-53.
Xin C H. Function of wheat protein in brewing. Liquor-making Sci Technol, 2005, (12): 51-53. (in Chinese with English abstract)
[5] 潘志芬, 邹弈星, 王春萍, 邓光兵, 龙海, 余懋群. 糯小麦与酿酒谷物黏度特性的比较. 麦类作物学报, 2011, 31: 870-874.
Pan Z F, Zou Y X, Wang C P, Deng G B, Long H, Yu M Q. Comparison of viscosity characteristics between waxy wheat and brewed grain. J Triticeae Crops, 2011, 31: 870-874. (in Chinese with English abstract)
[6] 赵国君, 徐智斌, 冯波, 王迅, 兰秋霞, 项超, 黄田钫, 王涛. 糯小麦的酿酒特性研究. 中国农业科学, 2013, 46: 1127-1135.
doi: 10.3864/j.issn.0578-1752.2013.06.005
Zhao G J, Xu Z B, Feng B, Wang X, Lan Q X, Xiang C, Huang T F, Wang T. Study on brewing characteristics of waxy wheat. Sci Agric Sin, 2013, 46: 1127-1135. (in Chinese with English abstract)
[7] 李斌, 徐智斌, 冯波, 王涛. 糯小麦与普通小麦的固态发酵特性比较. 麦类作物学报, 2012, 32: 949-954.
Li B, Xu Z B, Feng B, Wang T. Comparison of solid-state fermentation characteristics between waxy wheat and common wheat. J Triticeae Crops, 2012, 32: 949-954. (in Chinese with English abstract)
[8] 李斌, 徐智斌, 冯波, 王涛. 糯小麦与普通小麦糖化过程的比较. 中国农业科学, 2011, 44: 2760-2767.
doi: 10.3864/j.issn.0578-1752.2011.13.014
Li B, Xu Z B, Feng B, Wang T. Comparison of saccharification process between waxy wheat and common wheat. Sci Agric Sin, 2011, 44: 2760-2767. (in Chinese with English abstract)
[9] 赵国君, 李斌, 徐智斌, 冯波, 王涛. 添加糯小麦对普通小麦和粳高粱小曲酒酿造特性的影响. 麦类作物学报, 2013, 33: 942-945.
Zhao G J, Li B, Xu Z B, Feng B, Wang T. Effects of waxy wheat addition on the brewing characteristics of common wheat and japonica sorghum. J Triticeae Crops, 2013, 33: 942-945. (in Chinese with English abstract)
[10] Nakamura T, Yamamori M, Hirano H. Production of waxy (amylose-free) wheats. Mol Gener Genet, 1995, 248: 253-259.
[11] 仲婧宇, 陈智生. 毛细管柱气相色谱法同时测定白酒中的醇、酯. 化学分析计量, 2008, (3): 42-44.
Zhong J Y, Chen Z S. Simultaneous determination of alcohol and ester in liquor by capillary column gas chromatography. Measur Chem Anal, 2008, (3): 42-44. (in Chinese with English abstract)
[12] Fan W, Qian M C. Characterization of aroma compounds of Chinese Wuliangye and Jiannanchun liquors by aroma extract dilution analysis. J Agric Food Chem, 2006, 54: 2695-2704.
doi: 10.1021/jf052635t
[13] Fan W, Qian M C. Identification of aroma compounds in Chinese Yanghe Daqu liquor by normal phase chromatography fractionation followed by gas chromatography olfactometry. Flav Fragr J, 2006, 21: 333-342.
doi: 10.1002/(ISSN)1099-1026
[14] Pino J A. Characterization of rum using solid-phase microextraction with gas chromatography-mass spectrometry. Food Chem, 2007, 104: 421-428.
doi: 10.1016/j.foodchem.2006.09.031
[15] 国家质量技术监督局. 中华人民共和国国家标准.《地理标志产品五粮液酒》. GB/T22211- 2008, 2008.
Supervising Department of Quality and Technology of China. National Standard of the People’s Republic of China. Wuliangye Liquor, A Geographical Indication Product’. GB/T 22211-2008, 2008. (in Chinese)
[16] 贵州省质量技术监督局.贵州省地方标准.《贵州省酱香型白酒酿酒用小麦技术标准》. DB 52/T868-2014, 2014.
Supervising Department of Quality and Technology of Guizhou Province.Local Standard of Guizhou Province. Technical Standard of Wheat for Soy Flavor Liquor Brewing in Guizhou Province. DB 52/T868-2014, 2014. (in Chinese)
[17] 王金凤, 王壮壮, 谷丰序, 牟海萌, 王宇, 段剑钊, 冯伟, 王永华, 郭天财. 氮密调控对两个冬小麦品种碳氮代谢及产量的影响. 中国农业科学, 2021, 54: 4070-4083.
doi: 10.3864/j.issn.0578-1752.2021.19.004
Wang J F, Wang Z Z, Gu F X, Mou H M, Wang Y, Duan J Z, Feng W, Wang Y H, Guo T C. Effects of nitrogen density regulation on carbon and nitrogen metabolism and yield of two winter wheat varieties. Sci Agric Sin, 2021, 54: 4070-4083. (in Chinese with English abstract)
[18] 王公卿, 郑志松, 李萌. 氮素对小麦生长发育、产量和品质形成的影响. 河南农业, 2017, (16): 48-49.
Wang G Q, Zheng Z S, Li M. Effects of nitrogen on growth, yield and quality formation of wheat. Agric Henan, 2017, (16): 48-49. (in Chinese with English abstract)
[19] 蔡瑞国, 尹燕枰, 张敏, 戴忠民, 严美玲, 付国占, 贺明荣, 王振林. 氮素水平对藁城8901和山农1391籽粒品质的调控效应. 作物学报, 2007, 33: 304-310.
Cai R G, Yin Y P, Zhang M, Dai Z M, Yan M L, Fu G Z, He M R, Wang Z L.Regulation effect of nitrogen level on grain quality of Gaocheng 8901 and Shannong 1391. Acta Agron Sin, 2007, 33: 304-310. (in Chinese with English abstract)
[20] 李金才, 魏凤珍. 氮素营养对小麦产量和籽粒蛋白质及组分含量的影响. 中国粮油学报, 2001, (2): 6-8.
Li J C, Wei F Z. Effects of nitrogen nutrition on wheat yield and grain protein and component content. J Chin Cereals Oils Assoc, 2001, (2): 6-8. (in Chinese with English abstract)
[21] 刘朋召, 周栋, 郭星宇, 于琦, 张元红, 李昊昱, 张琦, 王旭敏, 王小利, 王瑞, 李军. 不同降雨年型旱地冬小麦水分利用及产量对施氮量的响应. 中国农业科学, 2021, 54: 3065-3076.
doi: 10.3864/j.issn.0578-1752.2021.14.012
Liu P Z, Zhou D, Guo X Y, Yu Q, Zhang Y H, Li H Y, Zhang Q, Wang X M, Wang X L, Wang R, Li J. Responses of water use and yield of winter wheat in dryland of different rainfall years to nitrogen application rate. Sci Agric Sin, 2021, 54: 3065-3076. (in Chinese with English abstract)
[22] 陈晓光, 石玉华, 王成雨, 尹燕枰, 宁堂原, 史春余, 李勇, 王振林. 氮肥和多效唑对小麦茎秆木质素合成的影响及其与抗倒伏性的关系. 中国农业科学, 2011, 44: 3529-3536.
doi: 10.3864/j.issn.0578-1752.2011.17.005
Chen X G, Shi Y H, Wang C Y, Yin Y P, Ning T Y, Shi C Y, Li Y, Wang Z L. Effects of nitrogen fertilizer and paclobutrazol on lignin synthesis and lodging resistance of wheat stem. Sci Agric Sin, 2011, 44: 3529-3536. (in Chinese with English abstract)
[23] 刘凯, 谢英荷, 李廷亮, 马红梅, 张奇茹, 姜丽伟, 曹静, 邵靖琳. 减氮覆膜对黄土旱原小麦产量及养分吸收利用的影响. 中国农业科学, 2021, 54: 2595-2607.
doi: 10.3864/j.issn.0578-1752.2021.12.010
Liu K, Xie Y H, Li T L, Ma H M, Zhang Q R, Jiang L W, Cao J, Shao J L. Effects of nitrogen-reducing coating film on wheat yield and nutrient absorption and utilization in dryland of loess. Sci Agric Sin, 2021, 54: 2595-2607. (in Chinese with English abstract)
[24] 高德荣, 宋归华, 张晓, 张伯桥, 李曼, 江伟, 吴素兰. 弱筋小麦扬麦13品质对氮肥响应的稳定性分析. 中国农业科学, 2017, 50: 4100-4106.
doi: 10.3864/j.issn.0578-1752.2017.21.004
Gao D R, Song G H, Zhang X, Zhang B Q, Li M, Jiang W, Wu S L. Stability analysis of response of weak gluten wheat Yangmai 13 quality to nitrogen fertilizer. Sci Agric Sin, 2017, 50: 4100-4106. (in Chinese with English abstract)
[25] 刘苹, 谭德水, 徐钰, 林海涛, 李彦, 宋效宗, 沈玉文, 刘兆辉. 施肥方法对小麦专用控释氮肥肥效的影响. 中国农业科学, 2018, 51: 3897-3908.
doi: 10.3864/j.issn.0578-1752.2018.20.008
Liu P, Tan D S, Xu Y, Lin H T, Li Y, Song X Z, Shen Y W, Liu Z H. Effects of fertilization methods on fertilizer efficiency of controlled-release nitrogen fertilizer for wheat. Sci Agric Sin, 2018, 51: 3897-3908. (in Chinese with English abstract)
[26] 惠晓丽, 王朝辉, 罗来超, 马清霞, 王森, 戴健, 靳静静. 长期施用氮磷肥对旱地冬小麦籽粒产量和锌含量的影响. 中国农业科学, 2017, 50: 3175-3185.
doi: 10.3864/j.issn.0578-1752.2017.16.012
Hui X L, Wang C H, Luo L C, Ma Q X, Wang S, Dai J, Jin J J. Effects of long-term application of nitrogen and phosphorus fertilizer on grain yield and zinc content of winter wheat in dryland. Sci Agric Sin, 2017, 50: 3175-3185. (in Chinese with English abstract)
[27] 高新楼, 刘钟栋, 史芹, 刘鹏, 秦中庆, 马巧云. 糯小麦淀粉糊化黏度特性的研究. 粮食与饲料工业, 2008, (6): 13-15.
Gao X L, Liu Z D, Shi Q, Liu P, Qin Z Q, Ma Q Y. Study on gelatinization viscosity characteristics of waxy wheat starch. Grain Feed Ind, 2008, (6): 13-15. (in Chinese with English abstract)
[28] 张敏, 赵城, 刘希伟, 宋霄君, 张玉春, 杨敏, 周齐齐, 蔡瑞国. 施氮量对糯小麦和非糯小麦籽粒淀粉组分与理化特性的影响. 麦类作物学报, 2017, 37: 786-793.
Zhang M, Zhao C, Liu X W, Song X J, Zhang Y C, Yang M, Zhou Q Q, Cai R G. Effect of nitrogen application rate on starch composition and physicochemical properties of waxy wheat and non-waxy wheat. J Triticeae Crops, 2017, 37: 786-793. (in Chinese with English abstract)
[29] 马冬云, 郭天财, 王晨阳, 宋晓, 冯辉, 韩巧霞. 施氮水平对小麦籽粒淀粉粒度分布及淀粉粒糊化特性的影响. 西北农业学报, 2010, 19(11): 43-47.
Ma D Y, Guo T C, Wang C Y, Song X, Feng H, Han Q X. Effects of nitrogen application level on starch particle size distribution and starch gelatinization characteristics of wheat grains. Northwest J Agric, 2010, 19(11): 43-47. (in Chinese with English abstract)
[30] 王正, 王石垒, 吴群, 徐岩. 谷物蛋白对白酒发酵过程中微生物群落及其代谢多样性的调控. 微生物学通报, 2021, 48: 4167-4177.
Wang Z, Wang S L, Wu Q, Xu Y. Regulation of cereal protein on microbial community and metabolic diversity during liquor fermentation. Microbiol Rep, 2021, 48: 4167-4177. (in Chinese with English abstract)
[31] 苟才明.粮酿兼用玉米种质评价、品种筛选及优化种植模式研究. 四川农业大学博士学位论文, 四川成都, 2015.
Gou C M.Germplasm Evaluation, Variety Screening and Optimization of Planting Patterns of Grain-stirring Maize. PhD Dissertation of Sichuan Agricultural University, Chengdu, Sichuan, China, 2015. (in Chinese with English abstract)
[32] 陆佳玲, 陈双, 徐岩. 清香型白酒降度过程中香气感知特征及风味组分挥发性变化规律. 食品与发酵工业, 2021, 47(15): 36-42.
Lu J L, Chen S, Xu Y. Aromatic perception characteristics and volatile variation of flavor components during degradation of fen-flavor liquor. Food Ferment Ind, 2021, 47(15): 36-42. (in Chinese with English abstract)
[33] 庄名扬. 中国白酒香味物质形成机理及酿酒工艺的调控. 酿酒, 2007, (2): 109-113.
Zhuang M Y. Formation mechanism of aroma substances in Chinese liquor and regulation of liquor-making process. Mak Win, 2007, (2): 109-113. (in Chinese with English abstract)
[34] 国家质量技术监督局. 中华人民共和国国家标准.《小麦、黑麦及其粉类和淀粉糊化特性测定快速黏度仪法》. GB/T24853-2010, 2010.
Supervising Department of Quality and Technology of China. National Standard of the People’s Republic of China. General Pasting Method for Wheat or Rye Flour or Starch-using the Rapid Visco Analyzer. GB/T 24853-2010, 2010. (in Chinese)
[35] Zhang T, Wang Z, Yin Y, Cai R, Yan S, Li W. Starch content and granule size distribution in grains of wheat in relation to post-anthesis water deficits. J Agron Crop Sci, 2010, 196: 1-8.
doi: 10.1111/jac.2009.196.issue-1
[36] 国家质量技术监督局.中华人民共和国国家标准.《水稻、玉米、谷子籽粒直链淀粉测定法》. GB/T7648-1987, 1987.
Supervising Department of Quality and Technology of China. National Standard of the People’s Republic of China.Determination of Amylose in Rice, Maize and Millet Grains. GB/T 7648-1987, 1987. (in Chinese)
[37] 姬玉梅. 三种小麦蛋白质测定方法比较. 农业科技通讯. 2011, (10): 47-49.
Ji Y M. Comparison of three wheat protein determination methods. Bull Agric Sci Technol, 2011, (10): 47-49. (in Chinese with English abstract)
[38] 国家质量技术监督局. 中华人民共和国国家标准.《食品中脂肪的测定》. GB 5009.6-2016, 2016.
Supervising Department of Quality and Technology of China.National Standard of the People’s Republic of China. Determination of Fat in Food. GB 5009.6-2016, 2016. (in Chinese)
[39] 国家质量技术监督局.中华人民共和国国家标准. 《食品中灰分的测定》. GB 5009. 4-2016, 2016.
Supervising Department of Quality and Technology of China. National Standard of the People’s Republic of China. Determination of Ash in Food. GB 5009. 4-2016, 2016. (in Chinese)
[40] 冯雨. 小麦软硬度对高温大曲的影响. 酿酒, 2019, 46(2): 88-89.
Feng Y. Effect of wheat hardness on high temperature Daqu. Mak Win, 2019, 46(2): 88-89. (in Chinese with English abstract)
[41] 国家质量技术监督局.中华人民共和国国家标准.《小麦硬度测定硬度指数法》. GB/T21304-2007, 2007.
Supervising Department of Quality and Technology of China. National Standard of the People’s Republic of China. Wheat Hardness Determination Hardness Index Method. GB/T 21304-2007, 2007. (in Chinese)
[42] 国家质量技术监督局. 中华人民共和国国家标准.《粮油检验容重测定》. GB/T5498-2013, 2013.
Supervising Department of Quality and Technology of China. National Standard of the People’s Republic of China. Determination of Bulk Density of Grain and Oil Test. GB/T 5498-2013, 2013. (in Chinese)
[43] 王福荣. 酿酒分析与检测, 第2版. 北京: 化学工业出版社, 2012. pp 35-36.
Wang F R.Brewing Analysis and Detection, 2nd edn. Beijing: Chemical Industry Press, 2012. pp 35-36. (in Chinese)
[44] 杜世超.收获期降雨对春小麦穗发芽和产量品质的影响. 黑龙江八一农垦大学博士学位论文, 黑龙江大庆, 2021.
Du S C.Effect of Rainfall on Preharvest Germination, Yield and Quality of Spring Wheat. PhD Dissertation of Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China, 2021. (in Chinese with English abstract)
[45] 姜东, 于振文, 李永庚, 余松烈. 施氮水平对鲁麦22籽粒淀粉合成的影响. 作物学报, 2003, 29: 462-467.
Jiang D, Yu Z W, Li Y G, Yu S L.Effect of nitrogen application level on starch synthesis of Lumai 22. Acta Agron Sin, 2003, 29: 462-467. (in Chinese with English abstract)
doi: 10.3724/SP.J.1095.2012.00260
[46] 李伯群, 余国东, 马强, 周凤云, 廖敦秀, 张丕辉, 杨明. 糯小麦与普通小麦品质性状差异比较研究. 西南农业学报, 2011, 24: 414-417.
Li B Q, Yu G D, Ma Q, Zhou F Y, Liao D X, Zhang P H, Yang M. Comparative study on quality characters of waxy wheat and common wheat. Southwest Agric J, 2011, 24: 414-417. (in Chinese with English abstract)
[47] 姚金保, 马鸿翔, 张平平, 张鹏, 杨学明, 周淼平. 施氮量和种植密度对弱筋小麦宁麦18籽粒产量和蛋白质含量的影响. 西南农业学报, 2017, 30: 1507-1510.
Yao J B, Ma H X, Zhang P P, Zhang P, Yang X M, Zhou N P.Effects of nitrogen application rate and planting density on grain yield and protein content of weak gluten wheat Ningmai 18. Southwest Agric J, 2017, 30: 1507-1510. (in Chinese with English abstract)
[48] 何中虎, 林作楫, 王龙俊, 肖志敏, 万富世, 庄巧生. 中国小麦品质区划的研究. 中国农业科学, 2002, 35: 359-364.
He Z H, Lin Z Y, Wang L J, Xiao Z M, Wan F S, Zhuang Q S. Study on wheat quality regionalization in China. Sci Agric Sin, 2002, 35: 359-364. (in Chinese with English abstract)
[49] 王晨阳, 扶定, 郭天财, 周国勤, 贺德先, 马冬云. 糯小麦与普通小麦配粉黏度参数的比较研究. 河南农业大学学报, 2006, 40: 578-583.
Wang C Y, Fu D, Guo T C, Zhou G Q, He D X, Ma D Y. Comparative study on viscosity parameters of waxy wheat and common wheat. Acta Agric Univ Henan, 2006, 40: 578-583. (in Chinese with English abstract)
[50] 梁荣奇, 张义荣, 唐朝晖. 糯性普通小麦的籽粒成分和淀粉品质研究. 中国粮油学报, 2002, (4): 14-16.
Liang R Q, Zhang Y R, Tang C H. Study on grain composition and starch quality of waxy common wheat. J Chin Cereals Oils Assoc, 2002, (4): 14-16. (in Chinese with English abstract)
[51] 张健, 高海燕, 赵镭, 尹京苑. 白酒理化指标及其与香气品质的关系. 食品科学, 2010, 31(10): 283-286.
doi: 10.7506/spkx1002-6630-201010062
Zhang J, Gao H Y, Zhao L, Yin J Y. Physical and chemical indexes of liquor and their relationship with aroma quality. Food Sci, 2010, 31(10): 283-286. (in Chinese with English abstract)
[52] 宋波. 白酒中各种成分对酒质的影响. 酿酒科技, 2011, (12): 65-67.
Song B. Effects of various components in liquor on liquor quality. Liquor-mak Sci Technol, 2011, (12): 65-67. (in Chinese with English abstract)
[53] 谢方安. 谈白酒香气成分和作用. 酿酒, 2006, (5): 52-55.
Xie F A. Aroma components and function of liquor. Mak Win, 2006, (5): 52-55. (in Chinese with English abstract)
[54] 肖世政.降低杂醇油提高酒精质量适应新标准. 酿酒, 2003, (6): 39-40.
Xiao S Z. Reducing fusel oil and improving alcohol quality meet the new standard. Making Wine, 2003, (6): 39-40. (in Chinese with English abstract)
[55] 代汉聪, 张宿义, 周军, 代宇, 赵小波, 蔡亮, 邵燕, 代小雪. 低度白酒贮存过程中风味质量变化研究. 酿酒科技, 2020, (7): 27-32.
Dai H C, Zhang S Y, Zhou J, Dai Y, Zhao X B, Cai L, Shao Y, Dai X X. Study on the change of flavor quality of low-alcohol liquor during storage. Liquor-Mak Sci Technol, 2020, (7): 27-32. (in Chinese with English abstract)
[56] 信春晖, 许玲, 于盼盼, 郑义, 赵纪文. 浅述粮谷原料在白酒酿造中的作用. 酿酒, 2016, 43(5): 44-48.
Xin C H, Xu L, Yu P P, Zheng Y, Zhao J W. The role of grain raw materials in liquor brewing. Mak Win, 2016, 43(5): 44-48. (in Chinese with English abstract)
[57] 宫俐莉, 李安军, 孙金沅, 李贺贺, 孙啸涛, 黄明泉, 郑福平, 孙宝国. 溶剂辅助风味蒸发法与顶空-固相微萃取法结合分析白酒酒醅中挥发性风味成分. 食品与发酵工业, 2016, 42(9): 169-177.
Gong L L, Li A J, Sun J Y, Li H H, Sun X T, Huang M Q, Zheng F P, Sun B G. Analysis of volatile flavor components in liquor fermented grains by solvent assisted flavor evaporation and headspace solid phase microextraction. Food Ferment Ind, 2016, 42(9): 169-177. (in Chinese with English abstract)
[58] 李娜, 陈兴杰, 范文来, 程伟, 陈双, 杨金玉, 张杰, 潘天全. 基于主成分分析的金种子馥香白酒可挥发性风味成分评价. 酿酒, 2021, 48(5): 93-100.
Li N, Chen X J, Fan W L, Cheng W, Chen S, Yang J Y, Zhang J, Pan T Q. Evaluation of volatile flavor components in golden seed fuxiang liquor based on principal component analysis. Mak Win, 2021, 48(5): 93-100. (in Chinese with English abstract)
[59] 陆伦维, 钟敏, 冯小兵, 程平言, 张健, 徐松. 基于主成分分析判别不同等级酱香型白酒的研究. 酿酒科技, 2020, (2): 17-21.
Lu L W, Zhong M, Feng X B, Cheng P Y, Zhang J, Xu S. Study on different grades of maotai-flavor liquor based on principal component analysis. Liquor-Mak Sci Technol, 2020, (2): 17-21. (in Chinese with English abstract)
[1] ZHANG Diao-Liang, YANG Zhao, HU Fa-Long, YIN Wen, CHAI Qiang, FAN Zhi-Long. Effects of multiple cropping green manure on grain quality and yield of wheat with different irrigation levels [J]. Acta Agronomica Sinica, 2023, 49(9): 2572-2581.
[2] FU Jing, WANG Ya, YANG Wen-Bo, WANG Yue-Tao, LI Ben-Yin, WANG Fu-Hua, WANG Sheng-Xuan, BAI Tao, YIN Hai-Qing. Effects of alternate wetting and drying irrigation and nitrogen coupling on grain filling physiology and root physiology in rice [J]. Acta Agronomica Sinica, 2023, 49(3): 808-820.
[3] CHEN Bing-Jie, ZHANG Fu-Liang, YANG Shuo, LI Xiao-Li, HE Tang-Qing, ZHANG Chen-Xi, TIAN Ming-Hui, WU Mei, HAO Xiao-Feng, ZHANG Xue-Lin. Effects of arbuscular mycorrhizae fungi on maize physiological characteristics during grain filling stage, yield, and grain quality under different nitrogen fertilizer forms [J]. Acta Agronomica Sinica, 2023, 49(1): 249-261.
[4] TAO Yu, YAO Yu, WANG Kun-Ting, XING Zhi-Peng, ZHAI Hai-Tao, FENG Yuan, LIU Qiu-Yuan, HU Ya-Jie, GUO Bao-Wei, WEI Hai-Yan, ZHANG Hong-Cheng. Combined effects of panicle nitrogen fertilizer amount and shading during grain filling period on grain quality of conventional japonica rice [J]. Acta Agronomica Sinica, 2022, 48(7): 1730-1745.
[5] LI Xin-Ge, GAO Yang, LIU Xiao-Jun, TIAN Yong-Chao, ZHU Yan, CAO Wei-Xing, CAO Qiang. Effects of sowing dates, sowing rates, and nitrogen rates on growth and spectral indices in winter wheat [J]. Acta Agronomica Sinica, 2022, 48(4): 975-987.
[6] CHEN Yun, LI Si-Yu, ZHU An, LIU Kun, ZHANG Ya-Jun, ZHANG Hao, GU Jun-Fei, ZHANG Wei-Yang, LIU Li-Jun, YANG Jian-Chang. Effects of seeding rates and panicle nitrogen fertilizer rates on grain yield and quality in good taste rice cultivars under direct sowing [J]. Acta Agronomica Sinica, 2022, 48(3): 656-666.
[7] LIU Yun-Jing, ZHENG Fei-Na, ZHANG Xiu, CHU Jin-Peng, YU Hai-Tao, DAI Xing-Long, HE Ming-Rong. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat [J]. Acta Agronomica Sinica, 2022, 48(3): 716-725.
[8] XIE Cheng-Hui, MA Hai-Zhao, XU Hong-Wei, XU Xi-Yang, RUAN Guo-Bing, GUO Zheng-Yan, NING Yong-Pei, FENG Yong-Zhong, YANG Gai-He, REN Guang-Xin. Effects of nitrogen rate on growth, grain yield, and nitrogen utilization of multiple cropping proso millet after spring-wheat in Irrigation Area of Ningxia [J]. Acta Agronomica Sinica, 2022, 48(2): 463-477.
[9] DING Yong-Gang, CHEN Li, DONG Jin-Xing, ZHU Min, LI Chun-Yan, ZHU Xin-Kai, DING Jin-Feng, GUO Wen-Shan. Characteristics of yield components, nitrogen accumulation and translocation, and grain quality of semi-winter cultivars with high-yield and high-efficiency [J]. Acta Agronomica Sinica, 2022, 48(12): 3144-3154.
[10] HAN Zhan-Yu,GUAN Xian-Yue,ZHAO Qian,WU Chun-Yan,HUANG Fu-Deng,PAN Gang,CHENG Fang-Min. Individual and combined effects of air temperature at filling stage and nitrogen application on storage protein accumulation and its different components in rice grains [J]. Acta Agronomica Sinica, 2020, 46(7): 1087-1098.
[11] Shi-Hong WANG,Zhong-Xu YANG,Jia-Liang SHI,Hai-Tao LI,Xian-Liang SONG,Xue-Zhen SUN. Effects of increasing planting density and decreasing nitrogen rate on dry matter, nitrogen accumulation and distribution, and yield of cotton [J]. Acta Agronomica Sinica, 2020, 46(3): 395-407.
[12] Lai-Chao LUO,Zhao-Hui WANG,Xiao-Li HUI,Xiang ZHANG,Qing-Xia MA,Ming BAO,Yue ZHAO,Ming HUANG,Sen WANG. Effects of Plastic Film Mulching on Grain Yield and Sulfur Concentration of Winter Wheat in Dryland of Loess Plateau [J]. Acta Agronomica Sinica, 2018, 44(6): 886-896.
[13] XING Zhi-Peng,ZHU Ming, WU Pei,QIAN Hai-Jun,CAO Wei-Wei,HU Ya-Jie,GUO Bao-Wei,WEI Hai-Yan,XU Ke,HUO Zhong-Yang,DAI Qi-Gen,ZHANG Hong-Cheng*. Effect of Mechanical Transplanting with Pothole Seedlings on Grain Quality of Different Types of Rice in Rice-Wheat Rotation System [J]. Acta Agron Sin, 2017, 43(04): 581-595.
[14] PENG Shao-Bing. Dilemma and Way-out of Hybrid Rice during the Transition Period in China [J]. Acta Agron Sin, 2016, 42(03): 313-319.
[15] XIE Xiao-Bing,ZHOU Xue-Feng,JIANG Peng,CHEN Jia-Na,ZHANG Rui-Chun,WU Dan-Dan,CAO Fang-Bo,SHAN Shuang-Lü,HUANG Min,ZOU Ying-Bin. Effect of Low Nitrogen Rate Combined with High Plant Density on Grain Yield and Nitrogen Use Efficiency in Super Rice [J]. Acta Agron Sin, 2015, 41(10): 1591-1602.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .