Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (8): 2210-2224.doi: 10.3724/SP.J.1006.2023.21057

• TILLAGE & CULTIVATION · PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of exogenous trehalose on physiological characteristics and yield of wheat flag leaves under high temperature stress at grain filling stage

LI Yu-Xing(), MA Liang-Liang, ZHANG Yue, QIN Bo-Ya, ZHANG Wen-Jing, MA Shang-Yu, HUANG Zheng-Lai(), FAN Yong-Hui()   

  1. College of Agriculture, Anhui Agricultural University / Key Laboratory of Wheat Biology and Genetic Breeding in the South of Huanghe-Huaihe Rivers, Ministry of Agriculture and Rural Affairs, Hefei 230036, Anhui, China
  • Received:2022-08-28 Accepted:2023-02-10 Online:2023-08-12 Published:2023-02-27
  • Contact: HUANG Zheng-Lai,FAN Yong-Hui E-mail:18702289708@163.com;xdnyyjs@163.com;yonghuifan@ahau.edu.cn
  • Supported by:
    This study was supported by the Major Science and Technology Projects of Anhui Province(202003a06020014);Natural Science Foundation of Anhui Province(2008085QC118);Joint Fund Project of the National Natural Science Foundation of China(U19A2021);Scientific Research Project for Stabilizing and Introducing Talents of Anhui Agricultural University(YJ2018-38);Key Project of the Youth Fund of Anhui Agricultural University(03087060)

Abstract:

In order to investigate the effect of exogenous trehalose (TRE) on the physiological characteristics and yield of flag leaves of wheat varieties with different tolerance under high temperature stress during grain filling period, the experiments were conducted in the high-tech agricultural park of Anhui Agricultural University from 2020 to 2022. The sensitive wheat varieties Fanmai 5 (FM5) and heat-resistant wheat varieties Huaimai 33 (HM33) with significant difference in heat resistance were selected as the experimental materials, there were five treatments of spraying water + non high temperature (CK1), water + high temperature stress (CK2), 10 mmol L-1 trehalose + high temperature stress (T10H), 15 mmol L-1 trehalose + high temperature stress (T15H), and 20 mmol L-1 trehalose + high temperature stress (T20H) on the leaf surface. The results showed that under high temperature stress conditions, compared to non-high temperature adversity, the green leaf area, chlorophyll relative content (SPAD), and dry matter accumulation were significantly decreased, wheat yield was significantly reduced, spike number, and spike grain number did not change significantly, and 1000-grain weight was the dominant factor in yield reduction. Compared to water spraying, the yield after spraying trehalose was higher than that under high temperature stress, the accumulation of dry matter in various organs was increased, the content of malondialdehyde (MDA) was decreased, the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) were increased, and the range of change was different among varieties. The decrease of SPAD value of heat-resistant varieties was smaller than that of malondialdehyde, but the increase of CAT activity was larger, indicating the production reduction was small. Further analysis showed that the net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), SPAD, SOD, and POD had an extremely significant positive correlation with 1000-grain weight, while MDA had an extremely significant negative correlation with yield. These results suggested that high temperature stress inhibited photosynthesis in wheat by reducing Pn, Gs, and Tr, decreasing photosynthetic product production and causing eventual yield reduction. Spraying TRE, Pn, Gs, Tr, SPAD, and CAT were the main indicators to reduce the injury caused by high temperature stress, and the mitigation effect of sensitive varieties was obvious. In addition, the effect of spraying 15 mmol L-1 trehalose at flowering stage was the best. The results could provide a theoretical basis for the mechanism of wheat photosynthetic response difference and wheat antioxidant metabolism under high temperature stress during trehalose filling stage.

Key words: wheat, high temperature stress, trehalose, flag leaf, yield

Table 1

Nutrient content of 0-20 cm soil in the test field before sowing"

年度
Year
全氮
Total N
(g kg-1)
有机质
Organic matter
(g kg-1)
有效磷
Available phosphorous
(mg kg-1)
碱解氮
Alkali hydrolyzed
nitrogen (mg kg-1)
速效钾
Rapidly available potassium (mg kg-1)
2020-2021 0.89 14.21 21.51 77.15 238.11
2021-2022 1.03 13.07 18.25 64.41 203.51

Fig. 1

Average temperature inside/outside the shed (A, B) and dynamic diagram of temperature change inside/outside the shed (C, D) in 2021 and 2022"

Fig. 2

Effects of exogenous trehalose on wheat yield and its components under high temperature stress at grain filling stage CK1: spray equal amount of clean water on the leaf surface + not high temperature; CK2: spray equal amount of clean water + high temperature; T10H: spray 10 mmol L-1 trehalose + high temperature stress during filling; T15H: spray 15 mmol L-1 trehalose + high temperature stress during filling; T20H: spray 20 mmol L-1 trehalose + high temperature stress during filling. Different lowercase letters represent significant difference among different treatments in the same period (P < 0.05). FM5: Fanmai 5; HM33: Huaimai 33."

Table 2

Variance analysis of exogenous trehalose on wheat yield and yield components under high temperature stress at grain filling stage"

变异来源
Source of variation
自由度
Degrees of freedom
产量
Yield
穗粒数
Kernels per ear
千粒重
1000-kernel weight
穗数
Harvest ear number
年份 Year (Y) 1 ** ** ns ns
品种 Hybrid (H) 1 ** ** ** ns
处理 Treatment (T) 4 ** ns ** ns
Y×H 1 ** ** ns ns
Y×T 4 ** ns ns ns
H×T 4 ** ns ** ns

Table 3

Effects of exogenous trehalose on dry matter accumulation in wheat at maturity under high temperature stress at filling stage in 2021 (×103 kg hm-2)"

品种
Hybrid
处理
Treatment
旗叶
Flag leaf
余叶
Remaining leaf

Stem

Spike
HM33 CK1 0.48±0.01 a 1.55±0.05 a 8.03±0.10 a 19.15±0.37 a
CK2 0.44±0.02 a 1.22±0.02 d 6.71±0.07 d 13.21±0.14 e
T10H 0.45±0.01 a 1.35±0.01 bc 7.20±0.14 bc 15.78±0.29 c
T15H 0.46±0.01 a 1.44±0.04 b 7.51±0.13 b 16.89±0.44 b
T20H 0.45±0.01 a 1.29±0.01 cd 7.04±0.06 cd 14.51±0.09 d
FM5 CK1 0.42±0.01 a 1.05±0.02 a 7.01±0.24 ab 14.92±0.32 a
CK2 0.37±0.01 a 0.72±0.01 d 5.11±0.27 c 11.95±0.12 c
T10H 0.31±0.03 b 0.89±0.01 c 7.27±0.10 ab 12.39±0.08 bc
T15H 0.41±0.01 a 0.99±0.02 b 6.45±0.27 b 13.12±0.30 b
T20H 0.38±0.01 a 0.85±0.02 c 7.41±0.31 a 12.14±0.16 c

Table 4

Effects of exogenous trehalose on dry matter accumulation in wheat at maturity under high temperature stress at filling stage in 2021 (×103 kg hm-2)"

品种
Hybrid
处理
Treatment
旗叶
Flag leaf
倒二叶
Inverted second leaf
倒三叶
Inverted
clover
余叶
Remaining leaves
倒一节
Backward
section
余节
Residual stem

Spike
HM33 CK1 0.45±0.01 ab 0.56±0.01 ab 0.52±0.01 a 0.49±0.01 a 2.68±0.08 a 5.15±0.18 a 17.90±0.63 a
CK2 0.45±0.00 ab 0.54±0.01 b 0.45±0.02 b 0.23±0.01 c 2.42±0.03 b 4.73±0.13 ab 13.05±0.25 b
T10H 0.47±0.01 a 0.58±0.02 a 0.55±0.01 a 0.27±0.02 c 2.66±0.02 a 4.24±0.24 bc 16.56±0.51 a
T15H 0.47±0.01 a 0.48±0.02 c 0.52±0.01 a 0.36±0.01 b 2.66±0.07 a 4.62±0.22 abc 16.93±0.75 a
T20H 0.43±0.00 b 0.44±0.00 c 0.54±0.01 a 0.35±0.02 b 2.42±0.01 b 4.10±0.11 c 14.57±0.15 b
FM5 CK1 0.40±0.00 a 0.45±0.05 ab 0.31±0.01 a 0.21±0.01 a 2.34±0.08 a 5.48±0.42 a 14.10±0.55 a
CK2 0.35±0.02 a 0.46±0.01 a 0.20±0.01 b 0.02±0.00 c 2.03±0.05 b 4.06±0.46 a 11.67±0.20 b
T10H 0.39±0.05 a 0.38±0.00 bc 0.32±0.01 a 0.24±0.02 a 2.23±0.14 ab 4.81±0.17 a 11.77±0.14 b
T15H 0.43±0.02 a 0.45±0.01 ab 0.33±0.02 a 0.13±0.01 b 2.21±0.01 ab 4.53±0.39 a 12.65±0.52 b
T20H 0.39±0.02 a 0.34±0.01 c 0.30±0.06 a 0.11±0.01 b 2.02±0.12 b 4.77±0.48 a 11.74±0.28 b

Table 5

Exogenous trehalose decreased the change rate of dry matter accumulation in various organs of wheat under high temperature stress at filling stage in 2021 (%)"

品种
Hybrid
处理
Treatment
全株总叶片
Total leaves of the whole plant
旗叶
Flag leaf
余叶
Remaining leaf

Stem

Spike
HM33 CK2 -18.04±2.86 a -7.84±2.07 a -21.12±3.35 a -16.45±1.43 a -19.84±2.36 a
T10H -11.13±1.88 bc -5.53±2.84 a -12.71±3.08 b -10.33±2.87 bc -16.94±1.20 a
T15H -6.43±1.74 c -4.12±3.78 a -7.05±1.68 c -6.58±0.98 c -11.91±3.67 b
T20H -14.67±1.87 ab -6.43±4.22 a -17.07±2.67 ab -12.38±1.60 ab -18.59±1.48 a
FM5 CK2 -26.02±1.15 a -17.57±4.80 a -31.23±1.41 a -27.19±1.32 a -31.00±0.99 a
T10H -18.53±1.56 b -12.80±3.25 ab -14.97±2.06 b -6.01±6.48 b -24.18±1.32 b
T15H -5.02±1.44 c -2.92±5.50 b -5.68±2.65 c -4.02±4.45 b -11.85±0.64 d
T20H -16.15±1.61 b -9.21±5.56 b -18.72±3.20 b -7.53±6.88 b -17.59±1.62 c

Table 6

Exogenous trehalose decreased the change rate of dry matter accumulation in various organs of wheat under high temperature stress at filling stage in 2022 (%)"

品种
Hybrid
处理
Treatment
全株总叶片
Total leaves of the whole plant
上三叶
Upper clover
旗叶
Flag leaf
倒二叶
Inverted second leaf
倒三叶
Inverted clover
余叶
Remaining leaves

Stem
倒一节
Backward section
余节
Residual stem

Spike
HM33 CK2 ‒17.43±0.63 a ‒6.07±0.27 a ‒7.29±1.39 a ‒21.71±9.14 a ‒13.46±1.81 a ‒23.10±2.31 a ‒16.76±1.23 a ‒9.58±2.53 a ‒8.03±4.84 a ‒16.90±4.27 a
T10H ‒7.51±1.44 c ‒4.65±2.10 a ‒4.97±1.07 a ‒4.31±0.01 b ‒4.24±3.70 b ‒15.77±2.21 b ‒8.69±3.19 ab ‒0.77±0.26 b ‒17.87±3.21 a ‒16.33±2.81 a
T15H ‒9.75±0.86 bc ‒4.24±1.31 a ‒3.30±3.34 b ‒3.86±3.35 b ‒2.78±0.40 b ‒6.99±1.81 c ‒7.05±2.10 b ‒0.51±2.77 b ‒10.33±3.21 a ‒9.84±6.30 a
T20H ‒13.11±1.46 b ‒7.91±1.64 a ‒4.15±1.86 ab ‒14.82±3.18 ab ‒5.19±2.63 b ‒19.36±4.55 ab ‒12.01±2.11 ab ‒9.48±2.82 a ‒20.37±1.48 a ‒16.63±2.16 a
FM5 CK2 ‒24.40±0.54 a ‒12.85±1.59 a ‒14.85±5.11 a ‒22.03±1.95 a ‒16.09±4.89 a ‒28.27±1.36 a ‒22.31±2.44 a ‒13.95±3.18 a ‒26.33±3.06 a ‒26.99±2.21 a
T10H ‒13.28±3.72 bc ‒6.55±2.68 a ‒4.10±5.00 b ‒4.64±9.18 c ‒3.99±1.79 b ‒15.06±5.53 b ‒12.38±9.59 a ‒5.38±2.88 b ‒10.95±9.78 a ‒17.17±5.38 a
T15H ‒6.18±2.18 c ‒5.36±7.45 a ‒3.92±2.42 b ‒3.59±11.27 c ‒2.10±2.53 b ‒6.65±6.17 c ‒9.47±6.66 a ‒5.02±2.95 b ‒10.91±15.25 a ‒5.26±4.99 b
T20H ‒16.19±2.73 ab ‒11.01±3.08 ab ‒5.48±6.57 b ‒13.93±8.23 b ‒9.25±3.07 a ‒15.65±10.31 b ‒13.60±4.57 a ‒13.10±2.55 a ‒17.20±5.31 a ‒18.38±3.22 a

Fig. 3

Effects of exogenous trehalose on green leaf area (A, B) and relative chlorophyll content (C, D) of wheat flag leaves under high temperature stress at grain filling stage Treatments are the same as those given in Figure 2. Different lowercase letters represent significant levels among different treatments in the same period (P < 0.05). FM5: Fanmai 5; HM33: Huaimai 33."

Fig. 4

Effects of exogenous trehalose on net photosynthetic rate (A, B), stomatal conductance (C, D), and transpiration rate (E, F) of wheat flag leaves under high temperature stress at grain filling stage Treatments are the same as those given in Fig. 2. Different lowercase letters represent significant difference among the different treatments in the same period (P < 0.05). FM5: Fanmai 5; HM33: Huaimai 33."

Table 7

Variance analysis of exogenous trehalose on photosynthetic parameters of wheat under high temperature stress at grain filling stage"

变异来源
Source of variation
自由度
Degrees of freedom
净光合速率
Net photosynthetic rate
气孔导度
Stomatal
conductance
蒸腾速率
Transpiration
rate
绿叶面积
Green leaf area
叶绿素相对含量
Relative chlorophyll content
花后天数
Days after anthesis (D)
1 ** ** ** ** **
品种Hybrid (H) 1 ** ns ** ** **
处理Treatment (T) 4 ** ** ** ** **
D×H 1 ** * ** ** **
D×T 4 * ns ** ** **
H×T 4 ns ns ns * ns
D×H×T 4 ns ns ns ** ns

Fig. 5

Effect of exogenous trehalose on malondialdehyde content in flag leaves of wheat under high temperature stress at grain filling stage Treatments are the same as those given in Fig. 2. Different lowercase letters represent significant difference among the different treatments in the same period (P < 0.05). FM5: Fanmai 5; HM33: Huaimai 33."

Fig. 6

Effects of exogenous trehalose on activities of SOD (A, B), POD (C, D), and CAT (E, F) in flag leaves of wheat under high temperature stress at grain filling stage Treatments are the same as those given in Fig. 2. Different lowercase letters represent significant difference among the different treatments in the same period (P < 0.05). FM5: Fanmai 5; HM33: Huaimai 33."

Table 8

Correlation analysis of yield and its components, photosynthetic parameters, and antioxidant characteristic factors"

生理指标
Physiological index
产量
Yield
穗粒数
Kernels per ear
千粒重
1000-kernel weight
穗数
Harvest ear number
净光合速率(Pn) 0.75** 0.18 0.91** -0.44
气孔导度(Gs) 0.82** 0.25 0.97** -0.51
蒸腾速率(Tr) 0.93** 0.47 0.92** -0.61
绿叶面积 Green leaf area 0.11* -0.56 0.69* 0.19
叶绿素相对含量(SPAD) SPAD value 0.93** 0.44 0.94** -0.64
丙二醛(MDA)含量MDA content -1.00** -0.70 -0.79** 0.77
超氧化物歧化酶(SOD)活性 SOD activity 0.89** 0.34 0.97** -0.55
过氧化物酶(POD)活性 POD activity 0.82** 0.23 0.97** -0.43
过氧化氢酶(CAT)活性 CAT activity 0.99** 0.76 0.73* -0.74
[1] 张玉. 浅析小麦种植技术推广意义及有效途径. 种子科技, 2018, 36(5): 1.
Zhang Y. Analysis on the significance and effective way of popularizing wheat planting technology. Seed Sci Tech, 2018, 36(5): 1. (in Chinese)
doi: 10.15258/sst
[2] 缪文卿. 确保口粮绝对安全的思考. 当代农村财经, 2021, (5): 41-42.
Miu W Q. Thoughts on ensuring the absolute safety of rations. Contemporary Rur Finance Eeon, 2021, (5): 41-42. (in Chinese)
[3] Chen Z, Galli M, Gallavotti A. Mechanisms of temperature regulated growth and thermotolerance in crop species. Curr Opin Plant Biol, 2022, 65: 102-134.
[4] 曹彩云, 党红凯, 郑春莲, 郭丽, 李科江, 马俊永. 灌浆期高温胁迫对小麦灌浆的影响及叶面喷剂的缓解作用. 中国生态农业学报, 2016, 24: 1103-1113.
Cao C Y, Dang H K, Zheng C L, Guo L, Li K J, Ma J Y. Impact of high temperature stress on grain-filling and the relief effect of foliage sprays during grain-filling stage of wheat. Chin J Eco-Agric, 2016, 24: 1103-1113. (in Chinese with English abstract)
[5] 李世平. 冬小麦耐热性及相关性状数量位点遗传剖析. 西北农林科技大学博士学位论文, 陕西西安, 2013.
Li S P. Genetic Dissection of Quantitative Traits Loci Fir Heat Tolerance Index and Traits Associated with Heat Tolerance in Winter Wheat (Triticum aestivum L.). PhD Dissertation of Northwest A&F University, Xi’an, Shaanxi, China, 2013. (in Chinese with English abstract)
[6] 滕中华, 智丽, 宗学凤, 王三根, 何光华. 高温胁迫对水稻灌浆结实期叶绿素荧光,抗活性氧活力和稻米品质的影响. 作物学报, 2008, 34: 1662-1666.
doi: 10.3724/SP.J.1006.2008.01662
Teng Z H, Zhi L, Zong X F, Wang S G, He G H. Effects of high temperature on chlorophyll fluorescence, active oxygen resistance activity, and grain quality in grain-filling periods in rice plants. Acta Agron Sin, 2008, 34: 1662-1666. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2008.01662
[7] 岳鹏莉. 花后高温干旱胁迫对冬小麦淀粉合成特性的影响. 河南农业大学硕士学位论文, 河南郑州, 2017.
Yue P L. Effect of High Temperature and Drought Stress on Starch Synthesis Characteristics after Flowering of Winter Wheat. MS Thesis of Henan Agricultural University, Zhengzhou, Henan, China, 2017. (in Chinese with English abstract)
[8] 石晓丽, 史文娇. 极端高温对黄淮海平原冬小麦产量的影响. 生态与农村环境学报, 2016, 32: 259-269.
Shi X L, Shi W J. Impacts of extreme high temperature on winter wheat yield in the Huang-Huai-Hai plain. J Ecol Rur Environ, 2016, 32: 259-269. (in Chinese with English abstract)
[9] 严菊芳. 干旱条件下冷型小麦的农田热量平衡及小气候特征. 西北农林科技大学硕士学位论文, 陕西西安, 2009.
Yan J F. Heat balance of cold type wheat under drought conditions and microclimate characteristics. MS Thesis of Northwest A&F University, Xi’an, Shaanxi, China, 2009. (in Chinese with English abstract)
[10] Müller J, Aeschbacher R A, Sprenger N, Wiemken B A. Disaccharide- mediated regulation of sucrose: fructan-6-fructosyltransferase, a key enzyme of fructan synthesis in barley leaves. Plant Physiol, 2000, 123(1): 265-273.
pmid: 10806243
[11] Guido V, Oliver F, Louis J R D B, Thomas B, Andres W, Aeschbacher R A, Astrid W. Trehalose metabolism in Arabidopsis: occurrence of trehalose and molecular cloning and characterization of trehalose-6-phosphate synthase homologues. J Exp Bot, 2001, 52: 1817-1826.
pmid: 11520870
[12] Garg A K. Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci USA, 2003, 99: 15898-15903.
doi: 10.1073/pnas.252637799
[13] Schluepmann H, Dijken A V, Aghdasi M, Wobbes B, Smeekens P S. Trehalose mediated growth inhibition of Arabidopsis seedlings is due to trehalose-6-phosphate accumulation. Plant Physiol, 2004, 135: 879-890.
doi: 10.1104/pp.104.039503 pmid: 15181209
[14] Abdallah M S, Abdelgawad Z A, El-Bassiouny H. Alleviation of the adverse effects of salinity stress using trehalose in two rice varieties. S Afr J Bot, 2016, 103: 275-282.
doi: 10.1016/j.sajb.2015.09.019
[15] 周林, 郭尚, 杨臻, 杨杰, 王华, 南晓洁. 外源海藻糖对高温胁迫下双孢蘑菇菌株生长的促进效应与耐高温株系筛选. 西南农业学报, 2019, 32(1): 154-160.
Zhou L, Guo S, Yang Z, Yang J, Wang H, Nan X J. Effect of exogenous trehalose on growth of Agaricus bisporus strain under high temperature stress and screening of high temperature resistant strains. Southwest China J Agric Sci, 2019, 32(1): 154-160. (in Chinese with English abstract)
[16] 庞椿朋, 叶亮, 马健, 路涛, 杨宗艺, 齐明芳. 海藻糖对高温下番茄幼苗叶片光合作用的调控作用. 江苏农业科学, 2022, 45(21): 143-146.
Pang C P, Ye L, Ma J, Lu T, Yang Z Y, Qi M F. Effects of trehalose on photosynthesis of tomato seedling leaves under high temperature. Jiangsu Agric Sci, 2022, 45(21): 143-146. (in Chinese)
[17] 樊永惠, 李宇星, 马亮亮, 吕钊彦, 武倩倩, 张文静, 马尚宇, 黄正来. 灌浆期高温胁迫下外源水杨酸对小麦旗叶抗氧化生理特性的影响. 核农学报, 2022, 36: 1878-1886.
doi: 10.11869/j.issn.100-8551.2022.09.1878
Fan Y H, Li Y X, Ma L L, Lyu Z Y, Wu Q Q, Zhang W J, Ma S Y, Huang Z L. Effects of exogenous salicylic acid on antioxidant physiological characteristics of wheat flag leaves under high temperature stress at grain filling stage. Acta Agric Nucl Sin, 2022, 36: 1878-1886. (in Chinese with English abstract)
[18] 唐秀巧, 王静静, 龙媛媛, 翁颖, 陈浩然, 李金才, 宋有洪, 李金鹏. 花后喷施KH2PO4对灌浆期高温胁迫下小麦根系生理特性及产量的影响. 核农学报, 2022, 36: 1685-1691.
doi: 10.11869/j.issn.100-8551.2022.08.1685
Tang X Q, Wang J J, Long Y Y, Weng Y, Chen H R, Li J C, Song Y H, Li J P. Effect of spraying KH2PO4 after anthesis on root physiological characteristics and yield of wheat under high temperature stress at grain filling stage. Acta Agric Nucl Sin, 2022, 36: 1685-1691. (in Chinese with English abstract)
[19] 杨璞, 高彩红. 外源一氧化氮对逆境胁迫下小麦的保护效应. 天津农业科学, 2020, 26(5): 27-31.
Yang P, Gao C H. Protective effect of exogenous nitric oxide on wheat under adversity stress. J Tianjin Agric Sci, 2020, 26(5): 27-31. (in Chinese with English abstract)
[20] 陈静, 姜敬贤, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控. 作物学报, 2022, 48: 1502-1515.
doi: 10.3724/SP.J.1006.2022.13021
Chen J, Jiang J X, Ren B C, Liu B, Liu P, Zhang J W. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates. Acta Agron Sin, 2022, 48: 1502-1515. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.13021
[21] 杨东清, 王振林, 倪英丽, 尹燕枰, 蔡铁, 杨卫兵, 彭佃亮, 崔正勇, 江文文. 高温和外源ABA对不同持绿型小麦品种籽粒发育及内源激素含量的影响. 中国农业科学, 2014, 47: 2109-2125.
doi: 10.3864/j.issn.0578-1752.2014.11.005
Yang D Q, Wang Z L, Ni Y L, Yin Y P, Cai T, Yang W B, Peng D L, Cui Z Y, Jiang W W. Effect of high temperature stress and spraying exogenous ABA post-anthesis on grain filling and grain yield in different types of stay-green wheat. Sci Agric Sin, 2014, 47: 2109-2125. (in Chinese with English abstract)
[22] Lalit S, Chander S S. Tween-20 modified acacia nelotica and Oryza sativa biomass for enhanced biosorption of Cr(VI) in aqueous environment. Tenside Surfact Det, 2015, 52: 41-53.
[23] Zheljazkov V D, Astatkie T, Jeliazkova E. Effect of foliar application of methyl jasmonate and extracts of juniper and sagebrush on essential oil yield and composition of ‘native’ spearmint. Hortscience Pub Am Soc Horti Sci, 2013, 48(4): 462-465.
[24] 王潭刚, 孙婷, 王冀川, 李慧琴, 高振, 石元强. 播期和密度对滴灌冬小麦群体结构与抗倒特性的影响. 浙江农业学报, 2021, 33: 193-202.
doi: 10.3969/j.issn.1004-1524.2021.02.02
Wang T G, Sun T, Wang J C, Li H Q, Gao Z, Shi Y Q. Effects of sowing date and density on population structure and lodging resistance of winter wheat under drip irrigation. Acta Agric Zhejiangensis, 2021, 33: 193-202. (in Chinese with English abstract)
doi: 10.3969/j.issn.1004-1524.2021.02.02
[25] Xu M Z, Liu X, Yu L Q, Liu S Q, Zeng L M. Physiological analysis on mechanisms of cold-tolerance of Dongxiang wild rice (I). Agric Sci Technol, 2010, 38: 5012-5014. (in Chinese with English abstract)
[26] Giannopolitis C N, Ries S K.Superoxide dismutase: I. Occurrence in higher plants. Plant Physiol, 1972, 59: 309-314.
doi: 10.1104/pp.59.2.309
[27] 王伟玲, 王展, 王晶英. 植物过氧化物酶活性测定方法优化. 实验室研究与探索, 2010, 29(4): 21-23.
Wang W L, Wang Z, Wang J Y. Optimization of determination method of peroxidase activity in plant. Res Explor Lab, 2010, 29(4): 21-23. (in Chinese with English abstract)
[28] Hammerschmidt R, Nuckles E M, Ku J. Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrichum lagenarium. Physiol Plant Path, 1982, 20: 73-76.
doi: 10.1016/0048-4059(82)90025-X
[29] 岳鹏莉, 王晨阳, 卢红芳, 刘卫星, 马耕, 王强, 胡阳阳. 灌浆期高温干旱胁迫对小麦籽粒淀粉积累的影响. 麦类作物学报, 2016, 36: 1489-1496.
Yue P L, Wang C Y, Lu H F, Liu W X, Ma G, Wang Q, Hu Y Y. Effect of heat and drought stress on starch accumulation during grain filling stage. J Triticeae Crops, 2016, 36: 1489-1496. (in Chinese with English abstract)
[30] 曹彩云, 党红凯, 郑春莲, 李科江, 马俊永. 阶段高温对不同小麦品种产量的影响及其耐热性差异研究. 麦类作物学报, 2020, 40: 351-364.
Cao C Y, Dang H K, Zheng C L, Li K J, Ma J Y. Impacts of high temperature in different periods on yield and evaluation of heat tolerance in wheat varieties. J Triticeae Crops, 2020, 40: 351-364. (in Chinese with English abstract)
[31] 吴翠平, 贺明荣, 张宾, 张洪华, 刘永环. 氮肥基追比与灌浆中期高温胁迫对小麦产量和品质的影响. 西北植物学报, 2007, 27: 4734-4739.
Wu C P, He M R, Zhang B, Zhang H H, Liu Y H. Effects of nitrogen dressing ratios and heat stress during the middle period of grain filling on wheat grain yield and quality. Acta Bot Boreali-Occident Sin, 2007, 27: 4734-4739. (in Chinese with English abstract)
[32] 郭艳艳, 段巍巍. 不同冬小麦品种籽粒胚乳增殖和灌浆对粒重的影响. 麦类作物学报, 2018, 38(1): 84-89.
Guo Y Y, Duan W W. Studies on endosperm development and grain filling characteristics in different winter wheat varieties. J Triticeae Crops, 2018, 38(1): 84-89. (in Chinese with English abstract)
[33] 刘书仁, 郭世荣, 程玉静, 刘超杰, 王丽萍, 束胜. 外源脯氨酸对高温胁迫下黄瓜幼苗叶片AsA-GSH循环和光合荧光特性的影响. 西北植物学报, 2010, 30: 309-316.
Liu S R, Guo S R, Cheng Y J, Liu C J, Wang L P, Shu S. Effects of exogenous proline on the ascorbat-glutahione cycle and photosynthetic fluorescence characteristics in leaves of cucumber seedlings under high temperature stress. Acta Bot Boreali-Occident Sin, 2010, 30: 309-316. (in Chinese with English abstract)
[34] 李哲, 姜沣益, 代梦雪, 李宇星, 张文静, 马尚宇, 黄正来, 樊永惠. 外源海藻糖对高温胁迫小麦干物质积累和籽粒灌浆的影响. 麦类作物学报, 2022, 42: 614-622.
Li Z, Jiang F Y, Dai M X, Li Y X, Zhang W J, Ma S Y, Huang Z L, Fan Y H. Effect of exogenous trehalose on dry matter accumulation and grain filling of wheat under heat stress. J Triticeae Crops, 2022, 42: 614-622. (in Chinese with English abstract)
[35] 罗宏海, 李俊华, 张宏芝, 何在菊, 勾玲, 张旺锋. 源库调节对新疆高产棉花产量形成期光合产物生产与分配的影响. 棉花学报, 2009, 21: 371-377.
Luo H H, Li J H, Zhang H Z, He Z J, Gou L, Zhang W F. Effects of source and sink manipulation on transportation and allocation of leaf photosynthetic products during flowering and boll-setting stage in high-yield cotton of Xinjiang. Cotton Sci, 2009, 21: 371-377. (in Chinese with English abstract)
[36] 何丽香, 傅兆麟, 宫晶, 孙常玉. 小麦灌浆期上三叶叶绿素含量与产量和品质的关系. 中国农学通报, 2014, 30(15): 183-187.
He L X, Fu Z L, Gong J, Sun C Y. Relationship between chlorophyll contention of top-three leaves at different times of grain filling stage and grain yield and quality traits in wheat. Chin Agric Sci Bull, 2014, 30(15): 183-187. (in Chinese with English abstract)
[37] 王磊. 硫化氢信号对干旱胁迫下十字花科植物光合作用的调节. 山西大学硕士学位论文, 山西太原, 2020.
Wang L. Regulation of Hydrogen Sulfide Signal on Photosynthesis of Brassicaceae Plants under Drought Stress. MS Thesis of Shanxi University, Taiyuan, Shanxi, China, 2020. (in Chinese with English abstract)
[38] 胡凡波, 刘玲, 隆小华, 刘兆普. 外源NO对NaCl胁迫下长春花幼苗生物量和叶绿素荧光的影响. 生态学杂志, 2011, 30: 1620-1626.
Hu F B, Liu L, Long X H, Liu Z P. Effects of exogenous nitric oxide on biomass and chlorophyll fluorescence of catharanthus roseus seedlings under NaCl stress. Chin J Ecol, 2011, 30: 1620-1626. (in Chinese with English abstract)
[39] 姜磊, 李焕勇, 张芹, 张会龙, 乔艳辉, 张华新, 杨秀艳. AM真菌对盐碱胁迫下杜梨幼苗生长与生理代谢的影响. 南京林业大学学报: 自然科学版, 2020, 44(6): 152-160.
Jiang L, Li H Y, Zhang Q, Zhang H L, Qiao Y H, Zhang H X, Yang X Y. Effects of arbuscular mycorrhiza fungi on the growth and physiological metabolism of Pyrus betulaefolia Bunge seedlings under saline-alkaline stress. J Nanjing For Univ (Nat Sci Edn), 2020, 44(6): 152-160. (in Chinese with English abstract)
[40] 李金花, 张春艳, 刘浩, 李永春. 海藻糖的特性及其在植物抗逆中的应用. 江西农业学报, 2011, 23(6): 25-27.
Li J H, Zhang C Y, Liu H, Li Y C. Characteristics of trehalose and its application in improving stress tolerance of plants. Acta Agric Jiangxi, 2011, 23(6): 25-27. (in Chinese with English abstract)
[41] 赵文静. 高低温胁迫对紫花苜蓿幼苗光合作用和光保护机制的影响. 新疆农业大学硕士学位论文, 新疆乌鲁木齐, 2021.
Zhao W J. Effects of High and Low Temperature Stress on Photosynthesis and Photoprotection Mechanism of Medicago sativa at seedings period. MS Thesis of Xinjiang Agricultural University, Urumqi, Xinjiang, China, 2021. (in Chinese with English abstract)
[42] 尹赜鹏, 鹿嘉智, 高振华, 齐明芳, 孟思达, 李天来. 番茄幼苗叶片光合作用、PSII电子传递及活性氧对短期高温胁迫的响应. 北方园艺, 2019, (5): 1-11.
Yin Z P, Lu J Z, Gao Z H, Qi M F, Meng S D, Li T L. Effects of Photosynthetic, PSII electron transport and reactive oxygen species on short-term high temperature stress in tomato seedlings. North Hortic, 2019, (5): 1-11. (in Chinese with English abstract)
[43] 张桂莲, 陈立云, 张顺堂, 肖应辉, 贺治洲, 雷东阳. 高温胁迫对水稻剑叶保护酶活性和膜透性的影响. 作物学报, 2006, 32: 1306-1310.
Zhang G L, Chen L Y, Zhang S T, Xiao Y H, He Z Z, Lei D Y. Effect of high temperature stress on protective enzyme activities and membrane permeability of flag leaf in rice. Acta Agron Sin, 2006, 32: 1306-1310. (in Chinese with English abstract)
[44] 罗音. 外源海藻糖提高小麦耐热性的生理机制研究. 山东农业大学博士学位论文, 山东泰安, 2007.
Luo Y. Studies on the Physiological Mechanisms of Heat Tolerance in Wheat Improved by Exogenous Trehalose. PhD Dissertation of Shandong Agricultural University, Tai’an, Shandong, China, 2007. (in Chinese with English abstract)
[45] 柳福智, 张迎芳, 陈垣. 外源海藻糖对NaHCO3胁迫下甘草幼苗生长调节及总黄酮含量的影响. 草业学报, 2021, 30(7): 148-156.
doi: 10.11686/cyxb2020269
Liu F Z, Zhang Y F, Chen Y. Effect of exogenous trehalose on growth regulation and total flavonoid content of Glycyrrhiza uralensis seedlings under NaHCO3 stress. Acta Prat Sin, 2021, 30(7): 148-156. (in Chinese with English abstract)
[1] HU Yan-Juan, XUE Dan, GENG Di, ZHU Mo, WANG Tian-Qiong, WANG Xiao-Xue. Mutation effects of OsCDF1 gene and its genomic variations in rice [J]. Acta Agronomica Sinica, 2023, 49(9): 2362-2372.
[2] FANG Meng-Ying, REN Liang, LU Lin, DONG Xue-Rui, WU Zhi-Hai, YAN Peng, DONG Zhi-Qiang. Effect of ethylene-chlormequat-potassium on root morphological structure and grain yield in sorghum [J]. Acta Agronomica Sinica, 2023, 49(9): 2528-2538.
[3] LI Yi-Yang, LI Yuan, ZHAO Zi-Xu, ZHANG Ding-Shun, DU Jia-Ning, WU Shu-Juan, SUN Si-Qi, CHEN Yuan, ZHANG Xiang, CHEN De-Hua, LIU Zhen-Yu. Effects of increased nitrogen on Bt protein expression and nitrogen metabolism in the leaf subtending to cotton boll [J]. Acta Agronomica Sinica, 2023, 49(9): 2505-2516.
[4] ZHANG Li-Hua, ZHANG Jing-Ting, DONG Zhi-Qiang, HOU Wan-Bin, ZHAI Li-Chao, YAO Yan-Rong, LYU Li-Hua, ZHAO Yi-An, JIA Xiu-Ling. Effect of water management on yield and its components of winter wheat in different precipitation years [J]. Acta Agronomica Sinica, 2023, 49(9): 2539-2551.
[5] ZHANG Diao-Liang, YANG Zhao, HU Fa-Long, YIN Wen, CHAI Qiang, FAN Zhi-Long. Effects of multiple cropping green manure on grain quality and yield of wheat with different irrigation levels [J]. Acta Agronomica Sinica, 2023, 49(9): 2572-2581.
[6] YANG Yi, HE Zhi-Qiang, LIN Jia-Hui, LI Yang, CHEN Fei, LYU Chang-Wen, TANG Dao-Bin, ZHOU Quan-Lu, WANG Ji-Chun. Effects of coconut bran application rate on soil physicochemical properties and sweet-potato yield [J]. Acta Agronomica Sinica, 2023, 49(9): 2517-2527.
[7] SU Zai-Xing, HUANG Zhong-Qin, GAO Run-Fei, ZHU Xue-Cheng, WANG Bo, CHANG Yong, LI Xiao-Shan, DING Zhen-Qian, YI Yuan. Identification of wheat dwarf mutant Xu1801 and analysis of its dwarfing effect [J]. Acta Agronomica Sinica, 2023, 49(8): 2133-2143.
[8] CAO Yu-Jun, LIU Zhi-Ming, LAN Tian-Jiao, LIU Xiao-Dan, WEI Wen-Wen, YAO Fan-Yun, LYU Yan-Jie, WANG Li-Chun, WANG Yong-Jun. Responses of photosynthetic physiological characteristics of maize varieties released in different decades to nitrogen application rate in Jilin province [J]. Acta Agronomica Sinica, 2023, 49(8): 2183-2195.
[9] YANG Xiao-Hui, WANG Bi-Sheng, SUN Xiao-Lu, HOU Jin-Jin, XU Meng-Jie, WANG Zhi-Jun, FANG Quan-Xiao. Modeling the response of winter wheat to deficit drip irrigation for optimizing irrigation schedule [J]. Acta Agronomica Sinica, 2023, 49(8): 2196-2209.
[10] LIU Qiong, YANG Hong-Kun, CHEN Yan-Qi, WU Dong-Ming, HUANG Xiu-Lan, FAN Gao-Qiong. Effect of nitrogen application rate on grain quality, wine quality and volatile flavor compounds of waxy and no-waxy wheat [J]. Acta Agronomica Sinica, 2023, 49(8): 2240-2258.
[11] LIN Fen-Fang, CHEN Xing-Yu, ZHOU Wei-Xun, WANG Qian, ZHANG Dong-Yan. Hyperspectral remote sensing detection of Fusarium head blight in wheat based on the stacked sparse auto-encoder algorithm [J]. Acta Agronomica Sinica, 2023, 49(8): 2275-2287.
[12] LIU Shi-Jie, YANG Xi-Wen, MA Geng, FENG Hao-Xiang, HAN Zhi-Dong, HAN Xiao-Jie, ZHANG Xiao-Yan, HE De-Xian, MA Dong-Yun, XIE Ying-Xin, WANG Li-Fang, WANG Chen-Yang. Effects of water and nitrogen application on root characteristics and nitrogen utilization in winter wheat [J]. Acta Agronomica Sinica, 2023, 49(8): 2296-2307.
[13] WEI Jin-Gui, GUO Yao, CHAI Qiang, YIN Wen, FAN Zhi-Long, HU Fa-Long. Yield and yield components of maize response to high plant density under reduced water and nitrogen supply [J]. Acta Agronomica Sinica, 2023, 49(7): 1919-1929.
[14] ZHANG Zhen, SHI Yu, ZHANG Yong-Li, YU Zhen-Wen, WANG Xi-Zhi. Effects of different soil water content on water consumption by wheat and analysis of senescence characteristics of root and flag leaf [J]. Acta Agronomica Sinica, 2023, 49(7): 1895-1905.
[15] ZHANG Lu-Lu, ZHANG Xue-Mei, MU Wen-Yan, HUANG Ning, GUO Zi-Kang, LUO Yi-Nuo, WEI Lei, SUN Li-Qian, WANG Xing-Shu, SHI Mei, WANG Zhao-Hui. Grain Mn concentration of wheat in main wheat production regions of China: Effects of cultivars and soil factors [J]. Acta Agronomica Sinica, 2023, 49(7): 1906-1918.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .