Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (9): 2505-2516.doi: 10.3724/SP.J.1006.2023.24217

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of increased nitrogen on Bt protein expression and nitrogen metabolism in the leaf subtending to cotton boll

LI Yi-Yang(), LI Yuan, ZHAO Zi-Xu, ZHANG Ding-Shun, DU Jia-Ning, WU Shu-Juan, SUN Si-Qi, CHEN Yuan, ZHANG Xiang, CHEN De-Hua(), LIU Zhen-Yu()   

  1. Jiangsu Key Laboratory of Crop Genetics and Physiology / Co-Innovation Center for Modern Production Technology of Grain Crops / Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2022-09-30 Accepted:2023-02-10 Online:2023-09-12 Published:2023-02-23
  • Supported by:
    National Natural Science Foundation of China(31901462);National Natural Science Foundation of China(31671613);Natural Science Foundation of Jiangsu Province(BK20191439);Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD);Higher School in Jiangsu Province College Students’ Innovation and Entrepreneurship Training Programs(202111117074Y)

Abstract:

The objective of this study is to explore the effect of soil nitrogen increase on the expression of insecticidal proteins in the leaf subtending to cotton boll and the related physiological mechanism of nitrogen metabolism and to provide the theoretical and technical support for agronomic regulation of Bt cotton boll stage insect resistance. A split-plot experiment was conducted. The conventional cultivar Sikang 1 and hybrid cultivar Sikang 3 were used as the experimental materials. Enhanced nitrogen fertilizer rates of increased 25% to 100% nitrogen [300 (CK), 375, 450, 525, and 600 kg hm-2 as pure nitrogen] were designed to study the effect on Bt protein content and nitrogen metabolic physiological in the leaf subtending to cotton boll. The results showed that the content of Bt protein in the leaf subtending to cotton boll of two types of cultivars showed a constant increase with the increase of nitrogen application rate. Compared with the control (300 kg hm-2), Bt protein content in the leaf subtending to cotton boll increased by 6.1%-96.9% with the increase of 25%-100% nitrogen application. The physiological mechanism of nitrogen metabolism showed that the trend of soluble protein (SP), free amino acid (AA), and key enzymes of protein synthesis [Glutamic Oxalacetic Transaminase (GOT) and Glutamine Synthetase (GS)] in the leaf subtending to cotton boll were consistent with those of Bt protein. The activities of key enzymes of protein decomposition (protease and peptidase) decreased with the increase of nitrogen application. The leaf area index (LAI) increased with the increase of nitrogen application, while the yield increased first and then decreased with the increase of soil nitrogen. The optimum LAI and the maximum yield were both 1.25 times (375 kg hm-2) that of conventional nitrogen application. In conclusion, on the basis of conventional nitrogen application, an appropriate amount of nitrogen fertilizer was beneficial to the synthesis of Bt protein, the formation of the optimal LAI, and the increase of yield in the counter-position leaves of cotton boll, which was conductive to the synergistic expression of high yield and insect resistance of Bt cotton.

Key words: Bt cotton, the enhanced nitrogen application, the insecticidal protein, nitrogen metabolism, yield

Table 1

Effects of increased nitrogen application on Bt protein contents in the leaf subtending to cotton boll (ng g-1 FW)"

品种
Cultivar
处理
Treatment
2017年花后天数Days after flowering in 2017 2018年花后天数Days after flowering in 2018
15 d 20 d 25 d 15 d 20 d 25 d
SK-1 CK 169.54±5.96 c 117.61±5.59 g 133.67±2.91 e 136.30±2.70 ef 138.88±1.36 e 135.93±1.09 d
N1 184.31±4.54 c 162.29±5.79 ef 151.92±0.40 d 156.53±3.78 c 158.37±2.86 d 145.17±2.79 bcd
N2 257.71±2.31 b 179.08±0.68 e 174.42±0.44 c 163.06±1.30 bc 171.06±1.31 bc 152.36±4.02 bc
N3 277.43±21.15 ab 201.19±11.67 d 197.97±11.41 b 172.19±2.84 b 175.14±2.28 b 155.25±1.23 b
N4 317.85±12.69 a 231.54±17.47 bc 202.76±5.72 b 192.62±2.28 a 198.64±5.12 a 174.89±1.56 a
SK-3 CK 171.21±5.89 c 151.66±5.44 f 128.29±5.80 e 125.30±3.58 f 134.86±2.53 e 133.76±2.41 d
N1 265.59±3.91 b 162.09±5.84 ef 137.19±2.96 e 141.18±2.72 de 155.79±1.77 d 141.86±3.41 cd
N2 272.65±30.34 ab 215.44±3.01 cd 153.26±0.58 d 151.48±3.47 cd 157.99±2.99 d 144.76±0.64 bcd
N3 288.06±19.46 ab 250.09±5.92 ab 183.66±2.82 c 161.54±4.20 bc 163.77±2.23 cd 151.22±2.10 bc
N4 315.68±29.14 a 263.03±0.15 a 232.21±5.81 a 187.59±1.92 a 192.42±5.03 a 170.83±2.64 a
方差分析ANOVA
品种Variety NS NS NS NS * NS
处理Treatment ** ** ** ** ** **
品种×处理Variety×treatment NS ** NS NS NS NS

Table 2

Effects of increased nitrogen application on soluble protein contents in the leaf subtending to cotton boll (mg g-1 FW)"

品种
Cultivar
处理
Treatment
2017年花后天数Days after flowering in 2017 2018年花后天数Days after flowering in 2018
15 d 20 d 25 d 15 d 20 d 25 d
SK-1 CK 0.46±0.06 d 0.43±0.01 d 0.40±0.01 e 0.42±0.00 f 0.39±0.08 e 0.44±0.07 e
N1 0.58±0.12 cd 0.65±0.24 d 0.60±0.01 de 0.49±0.04 ef 0.45±0.07 e 0.54±0.03 de
N2 0.76±0.18 bc 0.93±0.04 c 0.72±0.01 cd 0.65±0.03 ef 0.75±0.26 cd 0.69±0.10 cd
N3 0.94±0.01 ab 1.03±0.07 bc 0.89±0.01 bc 1.27±0.16 b 0.79±0.17 cd 0.68±0.24 cd
N4 1.14±0.00 a 1.27±0.04 b 1.01±0.02 ab 1.41±0.04 b 0.91±0.21 c 1.10±0.13 ab
SK-3 CK 0.44±0.00 d 0.56±0.03 d 0.38±0.01 e 0.51±0.03 ef 0.44±0.21 e 0.55±0.11 de
N1 0.58±0.03 cd 0.93±0.01 c 0.67±0.06 cd 0.74±0.01 de 0.66±0.15 d 0.72±0.20 c
N2 0.74±0.09 bc 1.13±0.18 bc 0.80±0.06 bcd 0.97±0.01 cd 1.13±0.19 b 0.79±0.14 c
N3 0.78±0.09 bc 1.19±0.01 b 1.01±0.12 ab 1.18±0.13 bc 0.93±0.16 bc 0.98±0.25 b
N4 1.03±0.00 a 1.59±0.07 a 1.19±0.07 a 1.75±0.09 a 2.00±0.09 a 1.18±0.21 a
方差分析ANOVA
品种 Variety NS NS NS NS NS NS
处理 Treatment ** ** ** ** ** **
品种×处理 Variety×treatment NS NS NS * NS NS

Table 3

Effects of increased nitrogen application on free amino acid contents in the leaf subtending to cot ton boll (mg g-1 FW)"

品种
Cultivar
处理
Treatment
2017年花后天数 Days after flowering in 2017 2018年花后天数Days after flowering in 2018
15 d 20 d 25 d 15 d 20 d 25 d
SK-1 CK 1.27±0.02 g 1.13±0.02 g 1.23±0.02 g 1.32±0.02 d 1.66±0.02 c 1.64±0.02 f
N1 1.43±0.02 e 1.18±0.02 fg 1.35±0.04 de 1.33±0.02 d 1.90±0.02 b 1.86±0.04 e
N2 1.53±0.05 cd 1.25±0.03 ef 1.38±0.04 cd 1.66±0.05 c 1.67±0.03 c 2.21±0.04 c
N3 1.65±0.03 b 1.34±0.02 d 1.39±0.02 c 1.80±0.03 b 1.76±0.02 bc 2.44±0.02 b
N4 1.75±0.03 a 1.44±0.07 b 1.48±0.04 b 1.94±0.03 a 1.94±0.07 ab 2.59±0.04 a
SK-3 CK 1.27±0.02 g 1.28±0.02 de 1.26±0.02 g 0.79±0.02 e 1.30±0.02 d 1.51±0.02 g
N1 1.34±0.02 f 1.35±0.02 cd 1.31±0.02 f 1.23±0.02 d 1.83±0.02 bc 1.72±0.02 f
N2 1.51±0.03 d 1.42±0.09 bc 1.32±0.04 ef 1.69±0.03 c 1.77±0.09 bc 1.99±0.04 d
N3 1.58±0.07 c 1.49±0.04 b 1.38±0.06 cd 1.79±0.07 b 1.87±0.04 b 2.27±0.06 c
N4 1.73±0.04 a 1.66±0.03 a 1.53±0.03 a 1.95±0.04 a 2.12±0.03 a 2.37±0.03 b
方差分析ANOVA
品种 Variety NS NS NS NS NS NS
处理 Treatment ** ** ** ** ** **
品种×处理 Variety×treatment NS NS NS NS NS NS

Table 4

Effects of increased nitrogen application on GPT activities in the leaf subtending to cotton boll (μmol g-1 h-1)"

品种
Cultivar
处理
Treatment
2017年花后天数 Days after flowering in 2017 2018年花后天数Days after flowering in 2018
15 d 20 d 25 d 15 d 20 d 25 d
SK-1 CK 4.63±0.56 f 4.43±0.56 e 4.90±0.50 f 5.45±0.03 cd 6.27±0.96 b 3.02±0.30 f
N1 6.02±0.57 de 5.67±0.57 de 5.96±0.34 e 5.52±0.33 cd 6.27±0.82 b 4.71±0.22 de
N2 7.05±1.10 bcd 7.21±0.58 bc 8.19±0.42 c 6.13±0.54 bcd 6.74±0.84 b 4.99±0.54 cde
N3 8.18±0.59 b 7.14±0.76 bc 8.94±0.43 b 7.64±0.78 bc 7.99±0.31 ab 6.47±0.23 bc
N4 9.96±0.59 a 8.17±0.59 ab 9.53±0.37 ab 8.08±1.04 b 9.07±0.11 ab 8.85±0.93 a
SK-3 CK 5.50±0.57 ef 4.84±0.56 de 4.79±0.33 f 5.49±0.45 d 6.45±0.33 b 3.76±0.53 ef
N1 6.64±0.75 cde 6.08±0.57 cd 6.34±0.35 e 5.01±0.08 cd 6.48±0.12 b 4.39±0.53 ef
N2 7.41±0.58 bc 7.28±0.18 bc 7.37±0.18 d 6.61±0.37 bcd 6.55±0.03 b 6.26±0.17 bcd
N3 9.54±0.15 a 7.99±0.16 ab 9.43±0.20 ab 8.25±0.75 b 6.98±0.03 b 7.42±0.25 ab
N4 9.58±0.07 a 8.92±0.12 a 9.89±0.95 a 9.14±0.84 a 9.89±0.88 a 8.15±0.71 a
方差分析ANOVA
品种 Variety NS NS * NS NS NS
处理 Treatment ** ** ** ** ** **
品种×处理 Variety×treatment NS NS NS ** NS NS

Table 5

Effects of increased nitrogen application on GS activities in the leaf subtending to cotton boll (U g-1 FW min-1)"

品种
Cultivar
处理
Treatment
2017年花后天数 Days after flowering in 2017 2018年花后天数Days after flowering in 2018
15 d 20 d 25 d 15 d 20 d 25 d
SK-1 CK 0.66±0.06 f 0.66±0.01 d 0.72±0.01 c 0.48±0.05 e 0.82±0.05 cd 0.96±0.07 cd
N1 0.90±0.12 e 0.90±0.24 cd 0.84±0.01 bc 0.57±0.03 de 1.07±0.09 bc 1.38±0.01 b
N2 1.08±0.01 cd 0.96±0.01 bc 0.90±0.01 b 0.69±0.04 cde 1.08±0.06 bc 1.42±0.17 ab
N3 1.14±0.02 bcd 1.14±0.01 abc 1.26±0.07 a 0.93±0.06 bcd 1.13±0.09 b 1.63±0.13 ab
N4 1.26±0.03 ab 1.20±0.13 ab 1.26±0.07 a 1.37±0.26 a 1.46±0.07 a 1.82±0.05 a
SK-3 CK 0.54±0.03 f 0.66±0.03 d 0.72±0.01 c 0.63±0.01 de 0.59±0.07 d 0.90±0.07 d
N1 0.90±0.09 e 0.90±0.01 cd 0.90±0.07 b 0.73±0.06 cde 1.03±0.1 bc 1.35±0.08 bc
N2 1.02±0.02 de 0.90±0.07 cd 0.96±0.07 b 0.76±0.08 cde 1.05±0.07 bc 1.36±0.04 bc
N3 1.20±0.01 abc 1.20±0.18 ab 1.26±0.03 a 1.03±0.05 abc 1.16±0.07 b 1.41±0.16 ab
N4 1.32±0.00 a 1.26±0.13 a 1.32±0.13 a 1.26±0.02 ab 1.21±0.06 b 1.64±0.05 ab
方差分析ANOVA
品种 Variety NS NS NS NS NS NS
处理 Treatment ** ** ** ** ** **
品种×处理 Variety×treatment NS NS NS NS NS NS

Table 6

Effects of increased nitrogen application on protease activities in the leaf subtending to cotton boll (μg g-1 min-1)"

品种
Cultivar
处理
Treatment
2017年花后天数 Days after flowering in 2017 2018年花后天数Days after flowering in 2018
15 d 20 d 25 d 15 d 20 d 25 d
SK-1 CK 15.04±0.71 ab 15.74±1.35 a 15.13±1.86 a 16.08±0.31 bc 19.22±1.37 a 16.53±1.27 b
N1 13.49±1.27 bc 14.20±0.65 bc 11.87±1.55 b 13.84±0.71 cd 16.11±0.43 bc 13.05±1.41 c
N2 12.32±1.11 c 12.89±1.21 cd 8.84±1.00 de 13.15±0.17 d 13.52±0.83 de 11.92±0.09 cd
N3 10.07±0.38 d 11.99±0.23 d 9.47±1.01 cd 8.27±0.54 ef 12.97±0.97 ef 10.84±0.16 cde
N4 7.88±0.58 e 8.34±0.36 e 7.51±0.36 e 6.31±0.22 f 8.46±0.39 g 10.19±0.51 de
SK-3 CK 15.66±1.29 a 15.10±1.23 ab 13.73±0.99 a 21.58±0.26 a 17.60±0.15 ab 19.94±0.90 a
N1 14.17±0.99 ab 12.09±0.91 d 12.16±0.97 b 17.42±0.77 b 15.76±0.30 bcd 16.06±0.85 b
N2 11.99±1.55 c 11.67±1.37 d 10.98±1.37 bc 16.54±0.22 b 14.03±0.59 cde 13.22±0.57 c
N3 9.84±0.78 d 9.64±0.75 e 9.86±1.93 cd 15.71±1.67 bc 11.69±1.08 ef 10.32±0.30 de
N4 7.98±1.05 e 8.99±0.12 e 8.65±0.37 de 8.84±0.28 e 10.87±0.37 f 8.72±0.28 e
方差分析ANOVA
品种 Variety NS * ** ** NS NS
处理 Treatment ** ** ** ** ** **
品种×处理 Variety×treatment NS NS NS * NS *

Table 7

Effects of increased nitrogen application on peptidase activities in the leaf subtending to cotton boll (U g-1 FW h-1)"

品种
Cultivar
处理
Treatment
2017年花后天数 Days after flowering in 2017 2018年花后天数Days after flowering in 2018
15 d 20 d 25 d 15 d 20 d 25 d
SK-1 CK 7.22±0.24 abc 7.04±0.12 ab 8.14±0.65 b 7.88±0.22 ab 10.89±0.93 a 5.19±0.47 a
N1 6.53±0.52 abcd 5.43±0.57 bc 8.09±1.51 b 7.31±0.98 ab 8.51±0.86 ab 4.48±0.72 abc
N2 5.37±0.76 cde 4.80±0.56 cde 6.49±0.52 bc 6.71±0.33 ab 7.83±0.02 b 3.99±0.26 abc
N3 5.03±0.22 de 3.48±0.15 de 3.99±0.38 d 6.58±0.48 ab 7.12±0.36 b 3.73±0.38 abc
N4 3.37±0.29 e 3.07±0.32 e 3.20±0.32 d 5.46±0.53 b 4.13±0.37 c 3.02±0.09 c
SK-3 CK 8.41±1.40 a 7.24±0.58 a 7.47±0.64 bc 8.61±1.28 a 9.39±0.61 ab 4.76±0.47 ab
N1 7.58±1.11 ab 5.59±0.86 abc 10.51±0.38 a 7.66±0.50 ab 9.03±0.44 ab 4.49±0.41 abc
N2 7.65±0.82 ab 5.09±1.31 cd 3.77±0.15 d 6.72±0.15 ab 8.45±0.89 ab 4.17±0.48 abc
N3 6.02±0.23 bcd 4.60±0.70 cde 3.50±0.15 d 6.58±1.11 ab 7.41±0.47 b 3.55±0.02 bc
N4 5.28±0.76 cde 3.37±0.06 de 5.97±0.34 c 5.81±0.32 ab 4.11±0.49 c 3.14±0.34 c
方差分析ANOVA
品种 Variety NS NS NS NS NS NS
处理 Treatment ** ** ** ** ** **
品种×处理 Variety×treatment NS NS NS NS NS NS

Table 8

Effects of increased nitrogen application on LAI in cotton"

品种
Cultivar
处理
Treatment
2017年花后天数 Days after flowering in 2017 2018年花后天数Days after flowering in 2018
15 d 20 d 25 d 15 d 20 d 25 d
SK-1 CK 3.4±0.1 e 3.7±0.1 e 3.9±0.1 f 3.6±0 g 3.8±0.1 f 4.1±0.1 e
N1 3.7±0 d 4.0±0.3 cde 4.2±0 e 3.9±0.1 f 4.2±0 def 4.4±0.1 d
N2 4.2±0.1 c 4.3±0.1 bc 4.6±0.1 d 4.3±0.1 d 4.5±0.1 bcd 4.7±0 c
N3 4.4±0.1 bc 4.5±0.1 ab 4.9±0 c 4.5±0.1 bc 4.7±0.1 abc 4.9±0.1 c
N4 4.5±0 ab 4.7±0.3 a 5.1±0 bc 4.7±0 a 4.8±0 ab 5.2±0.1 b
SK-3 CK 3.6±0.2 de 3.8±0.1 de 4.1±0.2 ef 3.7±0 g 3.9±0 ef 4.2±0 e
N1 3.8±0 d 4.1±0 cd 4.5±0 d 4.1±0.1 e 4.3±0 cde 4.5±0 d
N2 4.5±0 ab 4.6±0 ab 4.9±0 c 4.4±0 cd 4.7±0 abc 4.8±0 c
N3 4.6±0 ab 4.8±0 a 5.2±0 ab 4.6±0.1 ab 5.0±0.4 a 5.3±0.1 b
N4 4.7±0 a 4.9±0 a 5.3±0.1 a 4.7±0 a 5.1±0.1 a 5.5±0 a
方差分析ANOVA
品种 Variety ** ** ** * NS *
处理 Treatment ** ** ** ** ** **
品种×处理 Variety×treatment NS NS NS NS NS **
[1] 陈晨. 中国六省转基因抗虫棉对棉花害虫的影响及社会经济效益研究. 中央民族大学硕士学位论文, 北京, 2013.
Chen C. Study on the Impact of Transgenic Insect Resistant Cotton on Cotton Pests and Its Social and Economic Benefits in Six Provinces of China. MS Thesis of Minzu University of China, Beijing, China, 2013. (in Chinese with English abstract)
[2] Zhang X, Zhou M Y, Li Y B, Liu Z Y, Chen Y, Chen D H. Nitrogen spraying affected seed Bt toxin concentration and yield in Bt cotton. J Integr Agric, 2021, 20: 1229-1238.
doi: 10.1016/S2095-3119(20)63243-9
[3] Frankenhuyzen K V. Insecticidal activity of bacillus thuringiensis crystal proteins. J Invertebr Pathol, 2009, 101: 9.
[4] Liu Z Y, Abidallha E H M A, Wu H M, Wu H M, Zhou M Y, Zhang X, Chen Y, Chen D H. Bt insecticidal efficacy variation and agronomic regulation in Bt cotton. J Cotton Res, 2019, 2: 23.
doi: 10.1186/s42397-019-0042-1
[5] 郭旺珍, 孙敬, 郭玉芳, 张天真. 转基因抗虫棉Bt基因不同剂量的聚合与抗虫性表现. 遗传学报, 2001, 28: 668-676.
Guo W Z, Sun J, Guo Y F, Zhang T Z. Investigation of different dosage of inserted Bt genes and their insect-resistance in transgenic Bt cotton. Acta Genet Sin, 2001, 28: 668-676. (in Chinese with English abstract)
[6] Kranthi K R, Naidu S, Dhawad C S, Tatwawadi A, Mate K, Patil E, Bharose A A, Behere G T, Wadaskar R M, Kranthi S. Temporal and intraplant variability of Cry1Ac expression in Bt-cotton and its influence on the survival of the cotton bollworm, Helicoverpa armigera. Curr Sci, 2005, 89: 291-298.
[7] 王冬梅, 李海强, 丁瑞丰, 汪飞, 李号宾, 徐遥, 阿克旦·吾外士, 刘建. 新疆北部地区转Bt基因棉外源杀虫蛋白表达时空动态研究. 棉花学报, 2012, 24: 18-26.
Wang D M, Li H Q, Ding R F, Wang F, Li H B, Xu Y, Akedan W W S, Liu J. Spatio-temporal expression of foreign Bt insecticidal protein in transgenic Bt cotton varieties in northern Xinjiang province, China. Cotton Sci, 2012, 24: 18-26. (in Chinese with English abstract)
[8] Chen Y, Li Y B, Zhou M Y, Cai Z Z, Tambel L I M, Zhang X, Chen Y, Chen D H. Nitrogen deficit decreases seed Cry1Ac endotoxin expression in Bt transgenic cotton. Plant Physiol Bio chem, 2019, 141: 114-121.
[9] 孙伟, 曹玉洪. 转Bt基因抗虫棉Bt毒蛋白表达量的时空变化. 安徽农业科学, 2005, 33(2): 202-203.
Sun W, Cao Y H. Study on the temporal and spatial expressions of Bt toxin protein of Bt transgenic cotton. J Anhui Agric Sci, 2005, 33(2): 202-203. (in Chinese with English abstract)
[10] Olsen K M, Daly J C, Holt H E. Season-long variation in expression of Cry1Ac gene and efficacy of Bacillus thuringiensis toxin in transgenic cotton against Helicoverpa armigera (Lepidoptera: Noctuidae). J Econ Entomol, 2005, 98: 1007-1017.
doi: 10.1603/0022-0493-98.3.1007 pmid: 16022333
[11] 李汝忠, 沈法富, 王宗文, 王景会, 刘承运, 申贵芳. 转Bt基因抗虫棉Bt基因表达的时空动态. 山东农业科学, 2002, (2): 7-9.
Li R Z, Shen F F, Wang Z W, Wang J H, Liu C Y, Shen G F. Temporal and spatial dynamics of Bt gene expression in Bt transgenic cotton. Shandong Agric Sci, 2002, (2): 7-9. (in Chinese with English abstract)
[12] Pettigrew W T, Adamczyk J J. Nitrogen fertility and planting date effects on lint yield and Cry1Ac (Bt) endotoxin production. Agron J, 2006, 98: 691-697.
doi: 10.2134/agronj2005.0327
[13] Chen Y, Li Y B, Zhou M Y, Rui Q Z, Cai Z Z, Zhang X, Chen D H. Nitrogen (N) application gradually enhances boll development and decreases boll shell insecticidal protein content in N-deficient cotton. Front Plant Sci, 2018, 9: 51.
doi: 10.3389/fpls.2018.00051 pmid: 29441082
[14] 李鹏程, 董合林, 刘爱忠, 刘敬然, 李如义, 孙淼, 李亚兵, 毛树春. 施氮量对棉花功能叶片生理特性、氮素利用效率及产量的影响. 植物营养与肥料学报, 2015, 21: 81-91.
Li P C, Dong H L, Liu A Z, Liu J R, Li R Y, Sun M, Li Y B, Mao S C. Effects of nitrogen application rates on physiological characteristics of functional leaves, nitrogen use efficiency and yield of cotton. J Plant Nutr Fert, 2015, 21: 81-91. (in Chinese with English abstract)
[15] 李鹏程, 董合林, 刘爱忠, 刘敬然, 孙淼, 王国平, 刘绍东, 赵新华, 李亚兵. 种植密度氮肥互作对棉花产量及氮素利用效率的影响. 农业工程学报, 2015, 31(23): 122-130.
Li P C, Dong H L, Liu A Z, Liu J R, Sun M, Wang G P, Liu S D, Zhao X H, Li Y B. Effect of interplay of planting density and nitrogen fertilizer on cotton yield and nitrogen use efficiency. Trans CSAE, 2015, 31(23): 122-130. (in Chinese with English abstract)
[16] Chen Y, Liu Z Y, Tambel L I M, Zhang X, Chen Y, Chen D H. Reduced square Bacillus thuringiensis insecticidal protein content of transgenic cotton under N deficit. J Integr Agric, 2021, 20: 100-108.
doi: 10.1016/S2095-3119(20)63190-2
[17] 李涵佳, 李远, 刘震宇, 张晨霞, 徐泽, 吴天凡, 陈媛, 张祥, 陈源, 陈德华. 土壤增施氮肥对棉蕾Bt杀虫蛋白表达量影响及氮代谢机制. 作物学报, 2022, 48: 2567-2574.
doi: 10.3724/SP.J.1006.2022.14205
Li H J, Li Y, Liu Z Y, Zhang C X, Xu Z, Wu T F, Chen Y, Zhang X, Chen Y, Chen D H. Effects of increased nitrogen fertilizer on square Bt protein expression and nitrogen metabolism in cotton. Acta Agron Sin, 2022, 48: 2567-2574. (in Chinese with English abstract)
[18] 陈立昶, 吉守银, 孙宝林, 王卫军. 泗抗1号棉花新品种. 中国棉花, 2006, (8): 24-25.
Chen L X, Ji S Y, Sun B L, Wang W J. New cotton variety Sikang 1. China Cotton, 2006, (8): 24-25. (in Chinese)
[19] 陈立昶, 吉守银, 孙宝林, 王卫军, 崔小萍. 杂交棉新品种泗抗3号. 中国棉花, 2004, (10): 22.
Chen L X, Ji S Y, Sun B L, Wang W J, Cui X P. New hybrid cotton variety Sikang 3. China Cotton, 2004, (10): 22. (in Chinese)
[20] 陈松, 吴敬音, 何小兰, 黄骏麒, 周宝良, 张荣铣. 转基因抗虫棉组织中Bt毒蛋白表达量的ELISA测定. 江苏农业学报, 1997, 13(3): 27-29.
Chen S, Wu J Y, He X L, Huang J L, Zhou B L, Zhang R X. Quantification using ELISA of Bacillus thuringiensis insecticidal protein expressed in the tissue of transgenic insect resistant cotton. Jiangsu J Agric Sci, 1997, 13(3): 27-29. (in Chinese with English abstract)
[21] 扬州大学农学院. 作物栽培生理研究法实验讲义. 扬州: 扬州大学出版社, 2007. pp 3-6.
Agricultural College, Yangzhou University. Crop Cultivation Physiological Study Lab Handouts. Yangzhou: Yangzhou University Press, 2007. pp 3-6. (in Chinese)
[22] 邵金良, 黎其万, 董宝生, 刘宏程, 束继红. 茚三酮比色法测定茶叶中游离氨基酸总量. 中国食品添加剂, 2008, (2): 162-165.
Shao J L, Li Q W, Dong B S, Liu H C, Shu J H. Determination of total free-amino acid in tea by Nihydrin colorimetry. China Food Add, 2008, (2): 162-165. (in Chinese with English abstract)
[23] 吴良欢, 蒋式洪, 陶勤南. 植物转氨酶(GOT和GPT)活度比色测定方法及其应用. 土壤通报, 1998, 29(3): 41-43.
Wu L H, Jiang S H, Tao Q N. Plant aminotransferase (GOT and GPT) determination method and its application of activity colorimetric. China J Soil Sci, 1998, 29(3): 41-43. (in Chinese with English abstract)
[24] Mifin B J, Lea P J. The Biochemistry of Plants. New York: Academic Press, 1980. pp 169-202.
[25] 邹琦. 植物生理学实验指导. 北京: 中国农业出版社, 2003. pp 129-131.
Zou Q. Experimental Guide of Plant Physiology. Beijing: China Agriculture Press, 2003. pp 129-131. (in Chinese)
[26] 廖士尧. 棉花叶面积快速测定法. 中国棉花, 1983, (3): 40.
Liao S Y. Rapid determination of cotton leaf area. China Cotton, 1983, (3): 40. (in Chinese)
[27] Zhou M Y, Liu Z Y, Li L N, Chen Y, Zhang X, Chen D H. Effect of urea spray on boll shell insecticidal protein content in Bt cotton. Front Plant Sci, 2021, 12: 623504.
doi: 10.3389/fpls.2021.623504
[28] Maike S, Joseph M, Jan K. Review article: the silence of genes in transgenic plants. Ann Bot, 1997, 79: 3-12.
[29] Fitt G, Finnegan E, Llewellyn D. What is happening to the expression of the insect protection in field-grown INGARD cotton? In: The Ninth Australian Cotton Conference Proceedings, Australian: CRDC, 1998. pp 291-297.
[30] Liu Z Y, Wang G X, Zhang Z N, Zhang C X, Li H J, Wu T F, Zhang X, Chen D H. Recovery characteristics of Cry1Ac endotoxin expression and related physiological mechanisms in Bt transgenic cotton squares after high-temperature stress termination. Agronomy, 2022, 12: 668.
doi: 10.3390/agronomy12030668
[31] Chen Y, Liu Z Y, Heng L, Tambel L I M, Chen D H. High plant density increases seed Bt endotoxin content in Bt transgenic cotton. J Integr Agric, 2021, 20: 1796-1806.
doi: 10.1016/S2095-3119(20)63232-4
[32] 陈媛, 刘震宇, 周明园, 张晨霞, 田巧凤, 张中宁, 张祥, 陈德华. 种植密度对转Bt棉纤维杀虫蛋白表达量及氮代谢的影响. 中国农业科技导报, 2021, 23(7): 45-53.
Chen Y, Liu Z Y, Zhou M Y, Zhang C X, Tian Q F, Zhang Z N, Zhang X, Chen D H. Effect of planting density on the expression of insecticidal protein and nitrogen metabolism in the fiber of Bt transgenic cotton. J Agric Sci Technol, 2021, 23(7): 45-53. (in Chinese with English abstract)
[33] 刘震宇, 王桂霞, 李丽楠, 蔡泽洲, 梁潘潘, 吴莘玲, 张祥, 陈德华. 高温胁迫终止后Bt棉蕾杀虫蛋白的恢复特征及相关生理机制. 作物学报, 2020, 46: 440-447.
doi: 10.3724/SP.J.1006.2020.94080
Liu Z Y, Wang G X, Li L N, Cai Z Z, Liang P P, Wu X L, Zhang X, Chen D H. Recovery characteristics of Bt insecticidal protein and relative physiological mechanisms after high temperature stress termination in square of Bt cotton. Acta Agron Sin, 2020, 46: 440-447. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.94080
[34] 王子胜, 徐敏, 刘瑞显, 吴晓东, 朱鹤, 陈兵林, 周治国. 施氮量对不同熟期棉花品种的生物量和氮素累积的影响. 棉花学报, 2011, 23: 537-544.
Wang Z S, Xu M, Liu R X, Wu X D, Zhu H, Chen B L, Zhou Z G. Effects of nitrogen rates on biomass and nitrogen accumulation of cotton with different varieties in growth duration. Cotton Sci, 2011, 23: 537-544. (in Chinese with English abstract)
[1] HU Yan-Juan, XUE Dan, GENG Di, ZHU Mo, WANG Tian-Qiong, WANG Xiao-Xue. Mutation effects of OsCDF1 gene and its genomic variations in rice [J]. Acta Agronomica Sinica, 2023, 49(9): 2362-2372.
[2] FANG Meng-Ying, REN Liang, LU Lin, DONG Xue-Rui, WU Zhi-Hai, YAN Peng, DONG Zhi-Qiang. Effect of ethylene-chlormequat-potassium on root morphological structure and grain yield in sorghum [J]. Acta Agronomica Sinica, 2023, 49(9): 2528-2538.
[3] ZHANG Li-Hua, ZHANG Jing-Ting, DONG Zhi-Qiang, HOU Wan-Bin, ZHAI Li-Chao, YAO Yan-Rong, LYU Li-Hua, ZHAO Yi-An, JIA Xiu-Ling. Effect of water management on yield and its components of winter wheat in different precipitation years [J]. Acta Agronomica Sinica, 2023, 49(9): 2539-2551.
[4] ZHANG Diao-Liang, YANG Zhao, HU Fa-Long, YIN Wen, CHAI Qiang, FAN Zhi-Long. Effects of multiple cropping green manure on grain quality and yield of wheat with different irrigation levels [J]. Acta Agronomica Sinica, 2023, 49(9): 2572-2581.
[5] YANG Yi, HE Zhi-Qiang, LIN Jia-Hui, LI Yang, CHEN Fei, LYU Chang-Wen, TANG Dao-Bin, ZHOU Quan-Lu, WANG Ji-Chun. Effects of coconut bran application rate on soil physicochemical properties and sweet-potato yield [J]. Acta Agronomica Sinica, 2023, 49(9): 2517-2527.
[6] CAO Yu-Jun, LIU Zhi-Ming, LAN Tian-Jiao, LIU Xiao-Dan, WEI Wen-Wen, YAO Fan-Yun, LYU Yan-Jie, WANG Li-Chun, WANG Yong-Jun. Responses of photosynthetic physiological characteristics of maize varieties released in different decades to nitrogen application rate in Jilin province [J]. Acta Agronomica Sinica, 2023, 49(8): 2183-2195.
[7] YANG Xiao-Hui, WANG Bi-Sheng, SUN Xiao-Lu, HOU Jin-Jin, XU Meng-Jie, WANG Zhi-Jun, FANG Quan-Xiao. Modeling the response of winter wheat to deficit drip irrigation for optimizing irrigation schedule [J]. Acta Agronomica Sinica, 2023, 49(8): 2196-2209.
[8] LI Yu-Xing, MA Liang-Liang, ZHANG Yue, QIN Bo-Ya, ZHANG Wen-Jing, MA Shang-Yu, HUANG Zheng-Lai, FAN Yong-Hui. Effects of exogenous trehalose on physiological characteristics and yield of wheat flag leaves under high temperature stress at grain filling stage [J]. Acta Agronomica Sinica, 2023, 49(8): 2210-2224.
[9] LIU Shi-Jie, YANG Xi-Wen, MA Geng, FENG Hao-Xiang, HAN Zhi-Dong, HAN Xiao-Jie, ZHANG Xiao-Yan, HE De-Xian, MA Dong-Yun, XIE Ying-Xin, WANG Li-Fang, WANG Chen-Yang. Effects of water and nitrogen application on root characteristics and nitrogen utilization in winter wheat [J]. Acta Agronomica Sinica, 2023, 49(8): 2296-2307.
[10] WEI Jin-Gui, GUO Yao, CHAI Qiang, YIN Wen, FAN Zhi-Long, HU Fa-Long. Yield and yield components of maize response to high plant density under reduced water and nitrogen supply [J]. Acta Agronomica Sinica, 2023, 49(7): 1919-1929.
[11] ZHANG Zhen, SHI Yu, ZHANG Yong-Li, YU Zhen-Wen, WANG Xi-Zhi. Effects of different soil water content on water consumption by wheat and analysis of senescence characteristics of root and flag leaf [J]. Acta Agronomica Sinica, 2023, 49(7): 1895-1905.
[12] ZHANG Lu-Lu, ZHANG Xue-Mei, MU Wen-Yan, HUANG Ning, GUO Zi-Kang, LUO Yi-Nuo, WEI Lei, SUN Li-Qian, WANG Xing-Shu, SHI Mei, WANG Zhao-Hui. Grain Mn concentration of wheat in main wheat production regions of China: Effects of cultivars and soil factors [J]. Acta Agronomica Sinica, 2023, 49(7): 1906-1918.
[13] DONG Zhi-Qiang, LYU Li-Hua, YAO Yan-Rong, ZHANG Jing-Ting, ZHANG Li-Hua, YAO Hai-Po, SHEN Hai-Ping, JIA Xiu-Ling. Yield and quality of strong gluten wheat Shiluan 02-1 under water and nitrogen interaction [J]. Acta Agronomica Sinica, 2023, 49(7): 1942-1953.
[14] DENG Ai-Xing, LI Ge-Xing, LYU Yu-Ping, LIU You-Hong, MENG Ying, ZHANG Jun, ZHANG Wei-Jian. Effect of shading duration after heading on grain yield and quality of japonica rice in northwest China [J]. Acta Agronomica Sinica, 2023, 49(7): 1930-1941.
[15] SONG Yi, LI Jing, GU He-He, LU Zhi-Feng, LIAO Shi-Peng, LI Xiao-Kun, CONG Ri-Huan, REN Tao, LU Jian-Wei. Effects of application of nitrogen on seed yield and quality of winter oilseed rape (Brassica napus L.) [J]. Acta Agronomica Sinica, 2023, 49(7): 2002-2011.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[2] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[3] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[4] Wang Yiqun. Infection of Rhizobia to Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 32 -35 .
[5] KE Li-Ping;ZHENG Tao;WU Xue-Long;HE Hai-Yan;CHEN Jin-Qing. Analysis of Self-Incompatibility Locus Gene in Brassica napus[J]. Acta Agron Sin, 2008, 34(05): 764 -769 .
[6] CUI Xiu-Hui. Male Sterility Induced by Chemical Hybridizing Agent SQ-1 in Common Millet[J]. Acta Agron Sin, 2008, 34(01): 106 -110 .
[7] A JIA La-Tie;ZENG Long-Jun;XUE Da-Wei;HU Jiang;ZENG Da-Li;GAO Zhen-Yu;GUO Long-Biao;LI Shi-Gui;QIAN Qian
. QTL Analysis for Chlorophyll Content in Four Grain-Filling Stage in Rice[J]. Acta Agron Sin, 2008, 34(01): 61 -66 .
[8] YANG Wen-Xiong;YANG Fang-Ping;LIANG Dan;HE Zhong-Hu;SHANG Xun-Wu;XIA Xian-Chun. Molecular Characterization of Slow-Rusting Genes Lr34/Yr18 in Chinese Wheat Cultivars[J]. Acta Agron Sin, 2008, 34(07): 1109 -1113 .
[9] WANG Ying;WU Cun-Xiang;ZHANG Xue-Ming;WANG Yun-Peng;HAN Tian-Fu. Effects of Soybean Major Maturity Genes under Different Photoperiods[J]. Acta Agron Sin, 2008, 34(07): 1160 -1168 .
[10] WANG Guo-Li;GUO Zhen-Fei. Effects of Phosphorus Nutrient on the Photosynthetic Characteristics in Rice Cultivars with Different Cold-Sensitivity[J]. Acta Agron Sin, 2007, 33(08): 1385 -1389 .