Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (9): 2362-2372.doi: 10.3724/SP.J.1006.2023.22062

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Mutation effects of OsCDF1 gene and its genomic variations in rice

HU Yan-Juan(), XUE Dan, GENG Di, ZHU Mo, WANG Tian-Qiong, WANG Xiao-Xue()   

  1. Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
  • Received:2022-10-28 Accepted:2023-02-21 Online:2023-09-12 Published:2023-03-16
  • Supported by:
    National Key Research and Development Program of China(2017YFD0300107);National Natural Science Foundation of China(32070642)

Abstract:

Flowering time (heading date) affects yield, quality, and regional adaptability of rice. The Cycling DOF Factor 1 (CDF1) protein is a transcriptional repressor of CONSTANS (CO) and negatively regulates flowering time in Arabidopsis. However, the biological functions of OsCDF1 in rice is not quite clear. To explore the biological functions of OsCDF1 and its effects on flowering time control in rice, we constructed two binary vectors carrying guide RNAs targeting OsCDF1 gene via CRISPR/Cas9 system. The resultant plasmids were transferred into SN9816 which was the variety widely cultivated in northern China by using an Agrobacterium-mediated transformation, and the mutations of OsCDF1 was firstly generated in SN9816. The flowering time and yield related traits of SN9816 and oscdf1 mutants were investigated in the paddy field. The main results were as follows: Two homozygous oscdf1 lines were identified, including a five bp deletion at 16th bp of the first exon and a single base pair A insertion at 338th bp of the second exon. Sequence alignment analysis revealed that the two types of mutations resulted in frame-shift and premature translation termination. Mutations of OsCDF1 delayed flowering time, but increased yield under natural long day conditions in rice. Analysis of OsCDF1 genetic variations and haplotype networks revealed that the rice accessions had evolved high genomic diversity in OsCDF1 locus. The knockout mutants of OsCDF1 created by CRISPR/Cas9 provided the theoretical basis to further study the role of OsCDF1 gene in rice and the potential gene and germplasm resources for genetic improvement in rice.

Key words: rice, CRISPR/Cas9, OsCDF1, flowering time, yield related traits, haplotype

Table 1

Primers used in this study"

引物名称
Primer name
正向引物
Forward sequence (5'-3')
反向引物
Reverse sequence (5'-3')
OsCDF1gR1 ggcaGGGGAGTGCAAGGTGGGAGG aaacCCTCCCACCTTGCACTCCCC
OsCDF1gR2 ggcaGTGCCCCCGGTGTAGCAGCA aaacTGCTGCTACACCGGGGGCAC
gR ATTTCGTAGTGGGCCATGAA TAGTCCGTTTTTAGCGCGTG
Hyg GTGCTTGACATTGGGGAGTT GATGTTGGCGACCTCGTATT
JCDF1 gR1 TCGTCTCCGGGAGGAGTAGT GATGTGGCGATCGGAATTAG
JCDF1 gR2 GACACCGAGGACTCTTCAGC CTCCTCTCTATGCCCCAGTG
OsACT1 CTATGTTCCCTGGCATTGCT GGCGATAACAGCTCCTCTTG
OsCDF1re AACTACAACATCAACCAGCCG TGAGAACGGTGCCATTAGTCT

Fig. 1

Schematic diagram of OsCDF1 gRNA target sites and screening for positive clones containing the gRNAs of OsCDF1 A: OsCDF1 target site in schematic diagram. The grey, blue rectangles, and black lines represent 5' or 3' UTRs, exons and introns, respectively. Bar: 200 bp. PAM: protospacer adjacent motif. The sequences underlined indicate PAM sequences. B: the amplification of the fragments containing gRNAs in pRGEB32 vector by PCR. M: DNA marker III; 1-2: PCR products. C: the sequencing results of the positive clones containing gRNAs of OsCDF1."

Fig. 2

Screening and analysis of oscdf1 homozygous mutants without T-DNA A: PCR amplification of Hyg fragments. M: DNA marker III; 1-48: PCR products; 1: template is ddH2O. B: mutation type analysis in T1 generation. C: the mutation type analysis in T2 generation. Red arrows show the mutation sites. D: the change of the target sites. The grey, blue rectangles, and black lines represent 5' or 3' UTRs, exons, and introns, respectively. PAM: protospacer adjacent motif. The sequences underlined represent PAM. Bar: 200 bp."

Fig. 3

Schematic representations of amino acid sequence change and tertiary structure analysis of OsCDF1 mutant proteins A: the amino acid change of the target sites. Bar: 50 aa. B: the blast analysis of the mutant proteins. C: the tertiary structure."

Fig. 4

Flowering time phenotype of oscdf1 mutants A: phenotype of oscdf1 mutants. Bar: 10 cm in white line. B: flowering time of oscdf1 mutants (n ≥ 15). *: P < 0.05."

Fig. 5

Comparison of agronomic traits between oscdf1 mutants and wild-type grown in paddy field A: the morphology of panicle between WT and oscdf1 mutant; B: the morphology of branch between WT and oscdf1 mutant; C: panicle number; D: panicle length; E: primary branch number; F: secondary branch number; G: grain length. H: grain width; I: grain length; J: grain width; K: grain thickness; L: the filled grain number per panicle; M: seed-setting rate; N: 1000-grain weight; O: yield weight per plant. Data in C-F and I-J are means ± SDs (n ≥ 15). *: P < 0.05; **: P < 0.01; n.s.: no significant difference."

Fig. 6

Expression pattern of the OsCDF1 gene A: tissue-specific analysis of OsCDF1. B: the relative expression level of OsCDF1 different developmental stages. Data in A and B are means ± SDs."

Fig. 7

Genetic variation and haplotype network analysis of OsCDF1 A: OsCDF1 gene structure and location of the six genomic variations. Black rectangles represent the two exons; Grey rectangles represent the five' untranslated region (5' UTR) and 3' UTR; Black lines represent the intron. B: RFT1 protein structure and location of the six genomic variations. Triangles in different colors indicate the locations of the genetic variations. C: the haplotype network of the six genomic variations. The red lines represent the number of mutations between two haplotypes."

[1] 徐春春, 纪龙, 陈中督, 方福平. 2021年我国水稻产业形势分析及2022年展望. 中国稻米, 2022, 28(2): 16-19.
doi: 10.3969/j.issn.1006-8082.2022.02.003
Xu C C, Ji L, Chen Z D, Fang F P. Situation analysis of China’s rice industry in 2021 and its outlook in 2022. China Rice, 2022, 28(2):16-19. (in Chinese)
[2] 万建民. 中国水稻分子育种现状与展望. 中国农业科技导报, 2007, (2): 1-9.
Wan J M. Current situation and prospect of rice molecular breeding in China. China Agric Sci Technol Rev, 2007, (2): 1-9. (in Chinese with English abstract)
[3] 张海淼, 李洋, 刘海峰, 孔令广, 丁新华. 水稻重要农艺性状调控基因及其育种利用研究进展. 生物技术通报, 2020, 36(12): 155-169.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0537
Zhang H M, Li Y, Liu H F, Kong L G, Ding X H. Research progress on regulatory genes of important agronomic traits and breeding utilization in rice. Biotech Bull, 2020, 36(12): 155-169. (in Chinese with English abstract)
[4] 郭韬, 余泓, 邱杰, 李家洋, 韩斌, 林鸿宣. 中国水稻遗传学研究进展与分子设计育种. 中国科学: 生命科学, 2019, 49: 1185-1212.
Guo T, Yu H, Qiu J, Li J Y, Han B, Lin H X. Advances in rice genetics and breeding by molecular design in China. Sci China- Life Sci, 2019, 49: 1185-1212. (in Chinese with English abstract)
[5] Izawa T, Oikawa T, Sugiyama N, Tanisaka T, Yano M, Shimamoto K. Phytochrome mediates the external light signal to repress FT orthologs in photoperiodic flowering of rice. Genes Dev, 2002, 16: 2006-2020.
doi: 10.1101/gad.999202
[6] Mouradov A, Cremer F, Coupland G. Control of flowering time: interacting pathways as a basis for diversity. Plant Cell, 2002, 14: 111-130.
[7] Yanovsky M J, Kay S A. Molecular basis of seasonal time measurement in Arabidopsis. Nature, 2002, 419: 308-312.
doi: 10.1038/nature00996
[8] Ryosuke H, Shuji Y, Shojiro T, Masahiro Y, Ko S. Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature, 2003, 422: 719-722
doi: 10.1038/nature01549
[9] Kardailsky I, Shukla V K, Ahn J H, Dagenais N, Christensen S K, Nguyen J T, Chory J, Harrison M J, Weigel D. Activation tagging of the floral inducer FT. Science, 1999, 286: 1962-1965.
doi: 10.1126/science.286.5446.1962 pmid: 10583961
[10] Kobayashi Y, Kaya H, Goto K, Iwabuchi M, Araki T. A pair of related genes with antagonistic roles in mediating flowering signals. Science, 1999, 286: 1960-1962.
doi: 10.1126/science.286.5446.1960 pmid: 10583960
[11] Samach A, Onouchi H, Gold S E, Ditta G S, Schwarz-Sommer Z, Yanofsky M F, Coupland G. Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science, 2000, 288: 1613-1616.
doi: 10.1126/science.288.5471.1613 pmid: 10834834
[12] Robson F, Costa M M, Hepworth S R, Vizir I, Piñeiro M, Reeves P H, Putterill J, Coupland G. Functional importance of conserved domains in the flowering-time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants. Plant J Cell Mol Biol, 2001, 28: 619-631.
doi: 10.1046/j.1365-313x.2001.01163.x
[13] Yasushi K, Detlef W. Move on up, it’s time for change: mobile signals controlling photoperiod-dependent flowering. Genes Dev, 2007, 21: 2371-2384.
doi: 10.1101/gad.1589007
[14] Imaizumi T, Schultz T F, Harmon F G, Ho L A, Kay S A. FKF1 F-Box protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis. Science, 2005, 309: 293-297.
doi: 10.1126/science.1110586 pmid: 16002617
[15] Sawa M, Nusinow D A, Kay S A, Imaizumi T. FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis. Science, 2007, 318: 261-265.
doi: 10.1126/science.1146994
[16] Fornara F, Panigrahi K C S, Gissot L, Sauerbrunn N, Rühl M, Jarillo J A, Coupland G. Arabidopsis DOF transcription factors act redundantly to reduce CONSTANS expression and are essential for a photoperiodic flowering response. Dev Cell, 2009, 17: 75-86.
doi: 10.1016/j.devcel.2009.06.015 pmid: 19619493
[17] Goralogia G S, Liu T K, Zhao L, Panipinto P M, Groover E D, Bains Y S, Imaizumi T. CYCLING DOF FACTOR 1 represses transcription through the TOPLESS co-repressor to control photoperiodic flowering in Arabidopsis. Plant J, 2017, 92: 244-262.
doi: 10.1111/tpj.2017.92.issue-2
[18] Imaizumi T, Schultz T F, Harmon F G, Ho L A, Kay S A. FKF1 F-box protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis. Science, 2005, 309: 293-297.
doi: 10.1126/science.1110586 pmid: 16002617
[19] Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell, 2000, 12: 2473-2484.
doi: 10.1105/tpc.12.12.2473 pmid: 11148291
[20] Izawa T, Takahashi Y, Yano M. Comparative biology comes into bloom: genomic and genetic comparison of flowering pathways in rice and Arabidopsis. Curr Opinion Plant Biol, 2003, 6: 113-120.
doi: 10.1016/S1369-5266(03)00014-1
[21] Kazuyuki D, Takeshi I, Takuichi F, Utako Y, Takahiko K, Zenpei S, Masahiro Y, Atsushi Y. Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Dev, 2004, 18: 926-936.
doi: 10.1101/gad.1189604
[22] Li D J, Yang C H, Li X B, Gan Q, Zhao X F, Zhu L H. Functional characterization of rice OsDof12. Planta, 2009, 229: 1159-1169.
doi: 10.1007/s00425-009-0893-7
[23] Wu Q, Li D Y, Li D J, Liu X, Zhao X F, Li X B, Li S G, Zhu L H. Overexpression of OsDof12 affects plant architecture in rice (Oryza sativa L.). Front Plant Sci, 2015, 6: 833.
[24] 单奇伟, 高彩霞. 植物基因组编辑及衍生技术最新研究进展. 遗传, 2015, 37: 953-973.
Dan Q W, Gao C X. Research progress of genome editing and derivative technologies in plants. Hereditas, 2015, 37: 953-973. (in Chinese with English abstract)
[25] Xie K B, Minkenberg B, Yang Y N: Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc Natl Acad Sci USA, 2015, 112: 3570-3575.
doi: 10.1073/pnas.1420294112 pmid: 25733849
[26] Li D, Xu H, Sun X X, Cui Z B, Zhang Y, Bai Y G, Wang X X, Chen W F. Differential transformation efficiency of japonica rice varieties developed in northern China. Crop Breed Appl Biotechnol, 2015, 15: 162-168.
doi: 10.1590/1984-70332015v15n3a28
[27] Zhu M, Hu Y J, Tong A Z, Yan B W, Lyu Y P, Wang S Y, Ma W H, Cui Z B, Wang X X. LAZY1 controls tiller angle and shoot gravitropism by regulating the expression of auxin transporters and signaling factors in rice. Plant Cell Physiol, 2021, 61: 2111-2125.
doi: 10.1093/pcp/pcaa131 pmid: 33067639
[28] 孔冬艳, 陈会广. 近40年来中国农作物与耕地受灾时空特征及影响因素分析. 长江流域资源与环境, 2020, 29: 1236-1246.
Kong D Y, Chen H G. Spatial-temporal characteristics and influencing factors of agricultural crop and cultivated land disaster in China in recent 40 years. Res Environ Yangtze Basin, 2020, 29: 1236-1246. (in Chinese)
[29] Wang Y P, Cheng X, Shan Q W, Zhang Y, Liu J X, Gao C X, Qiu J L. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol, 2014, 32: 947-951.
doi: 10.1038/nbt.2969 pmid: 25038773
[30] Wang F J, Wang C L, Liu P Q, Lei C L, Hao W, Gao Y, Liu Y G, Zhao K J. Enhanced rice blast resistance by CRISPR/Cas9- targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS One, 2016, 11: e0154027.
[31] Wang Y X, Liu X Q, Zheng X X, Wang W X, Yin X Q, Liu H F, Ma C L, Niu X M, Zhu J K, Wang F. Creation of aromatic maize by CRISPR/Cas. J Integr Plant Biol, 2021, 63: 1664-1670.
doi: 10.1111/jipb.13105
[32] 侯智红, 吴艳, 程群, 董利东, 芦思佳, 南海洋, 甘卓然, 刘宝辉. 利用CRISPR/Cas9技术创制大豆高油酸突变系. 作物学报, 2019, 45: 839-847.
doi: 10.3724/SP.J.1006.2019.84157
Hou Z H, Wu Y, Cheng Q, Dong L D, Lu S J, Nan H Y, Gan Z R, Liu B H. Creation of high oleic acid soybean mutation plants by CRISPR/Cas9. Acta Agron Sin, 2019, 45: 839-847. (in Chinese with English abstract)
[33] 张旺, 冼俊霖, 孙超, 王春明, 石丽, 于为常. CRISPR/Cas9编辑花生FAD2基因研究. 作物学报, 2021, 47: 1481-1490.
doi: 10.3724/SP.J.1006.2021.04214
Zhang W, Xian J L, Sun C, Wang C M, Shi L, Yu W C. Preliminary study of genome editing of peanut FAD2 genes by CRISPR/ Cas9. Acta Agron Sin, 2021, 47: 1481-1490. (in Chinese with English abstract)
[34] Zhang J H, Zhang H T, Li S Y, Li J Y, Yan L, Xia L Q. Increasing yield potential through manipulating of an ARE1 ortholog related to nitrogen use efficiency in wheat by CRISPR/Cas9. J Integr Plant Biol, 2021, 63: 1649-1663.
doi: 10.1111/jipb.v63.9
[35] Fu Y F, Foden J A, Khayter C, Maeder M L, Reyon D, Joung J K, Sander J D. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol, 2013, 31: 822-826.
doi: 10.1038/nbt.2623 pmid: 23792628
[36] Riechmann J L, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe O J, Samaha R R, Creelman R, Pilgrim M, Broun P, Zhang J Z, Ghandehari D, Sherman B K, Yu G. Arabidopsis transcription factors: genome-wide comparative analysis among Eukaryotes. Science, 2000, 290: 2105-2110.
doi: 10.1126/science.290.5499.2105 pmid: 11118137
[37] Shuichi Y. Dof domain proteins: plant-specific transcription factors associated with diverse phenomena unique to plants. Plant Cell Physiol, 2004, 45: 386-391.
doi: 10.1093/pcp/pch055 pmid: 15111712
[38] Shigyo M, Tabei N, Yoneyama T, Yanagisawa S. Evolutionary processes during the formation of the plant-specific Dof transcription factor family. Plant Cell Physiol, 2007, 48: 179-185.
pmid: 17132629
[1] XU Gao-Feng, SHEN Shi-Cai, ZHANG Fu-Dou, YANG Shao-Song, JIN Gui-Mei, ZHENG Feng-Ping, WEN Li-Na, ZHANG Yun, WU Ran-Di. Effects of soil microbes on rice allelopathy and its mechanism of wild rice (Oryza longistaminata) and its descendants [J]. Acta Agronomica Sinica, 2023, 49(9): 2562-2571.
[2] LIU Kai, CHEN Ji-Jin, LIU Shuai, CHEN Xu, ZHAO Xin-Ru, SUN Shang, XUE Chao, GONG Zhi-Yun. Dynamic change profile of histone H3K18cr on rice whole genome under cold stress [J]. Acta Agronomica Sinica, 2023, 49(9): 2398-2411.
[3] LI Gang, ZHOU Yan-Chen, XIONG Ya-Jun, CHEN Yi-Jie, GUO Qing-Yuan, GAO Jie, SONG Jian, WANG Jun, LI Ying-Hui, QIU Li-Juan. Haplotype analysis of soybean leaf type regulator gene Ln and its homologous genes [J]. Acta Agronomica Sinica, 2023, 49(8): 2051-2063.
[4] TANG Jie, LONG Tuan, WU Chun-Yu, LI Xin-Peng, ZENG Xiang, WU Yong-Zhong, HUANG Pei-Jin. Identification of OsGMS2 and construction of seed production system for genic male sterile line in rice [J]. Acta Agronomica Sinica, 2023, 49(8): 2025-2038.
[5] SONG Zhao-Jian, FENG Zi-Yi, QU Tian-Ge, LYU Pin-Cang, YANG Xiao-Lu, ZHAN Ming-Yue, ZHANG Xian-Hua, HE Yu-Chi, LIU Yu-Hua, CAI De-Tian. Indica-japonica attribute identification and heterosis utilization of diploid rice lines reverted from tetraploid rice [J]. Acta Agronomica Sinica, 2023, 49(8): 2039-2050.
[6] WEI Xin-Yu, ZENG Yue-Hui, YANG Wang-Xing, XIAO Chang-Chun, HOU Xin-Po, HUANG Jian-Hong, ZOU Wen-Guang, XU Xu-Ming. Development of high-quality fragrant indica CMS line by editing Badh2 gene using CRISPR-Cas9 technology in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2023, 49(8): 2144-2159.
[7] CHEN Ting, JIAO Yan-Yang, ZHOU Xin-Ye, WU Lin-Kun, ZHANG Zhong-Yi, LIN Yu, LIN Sheng, LIN Wen-Xiong. Effects of different soil intensification treatments on growth and development of Radix pseudostellariae in continuous cropping system [J]. Acta Agronomica Sinica, 2023, 49(8): 2225-2239.
[8] JIA Lu-Qi, SUN You, TIAN Ran, ZHANG Xue-Fei, DAI Yong-Dong, CUI Zhi-Bo, LI Yang-Yang, FENG Xin-Yu, SANG Xian-Chun, and WANG Xiao-Wen. Identification of the rgs1 mutant with rapid germination of seed and isolation of the regulated gene in rice [J]. Acta Agronomica Sinica, 2023, 49(8): 2288-2295.
[9] DENG Ai-Xing, LI Ge-Xing, LYU Yu-Ping, LIU You-Hong, MENG Ying, ZHANG Jun, ZHANG Wei-Jian. Effect of shading duration after heading on grain yield and quality of japonica rice in northwest China [J]. Acta Agronomica Sinica, 2023, 49(7): 1930-1941.
[10] XU Na, XU Quan, XU Zheng-Jin, CHEN Wen-Fu. Research progress on physiological ecology and genetic basis of rice plant architecture [J]. Acta Agronomica Sinica, 2023, 49(7): 1735-1746.
[11] LIN Xiao-Xin, HUANG Ming-Jiang, WEI Yi, ZHU Hong-Hui, WANG Zi-Yi, LI Zhong-Cheng, ZHUANG Hui, LI Yan-Xi, LI Yun-Feng, CHEN Rui. Identification and gene mapping of long grain and degenerated palea (lgdp) in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2023, 49(6): 1699-1707.
[12] XU Ran, CHEN Song, XU Chun-Mei, LIU Yuan-Hui, ZHANG Xiu-Fu, WANG Dan-Ying, CHU Guang. Effects of nitrogen fertilizer rates on grain yield and nitrogen use efficiency of japonica-indica hybrid rice cultivar Yongyou 1540 and its physiological bases [J]. Acta Agronomica Sinica, 2023, 49(6): 1630-1642.
[13] DING Jie-Rong, MA Ya-Mei, PAN Fa-Zhi, JIANG Li-Qun, HUANG Wen-Jie, SUN Bing-Rui, ZHANG Jing, LYU Shu-Wei, MAO Xing-Xue, YU Hang, LI Chen, LIU Qing. Ubiquitin receptor protein OsDSK2b plays a negative role in rice leaf blast resistance and osmotic stress tolerance [J]. Acta Agronomica Sinica, 2023, 49(6): 1466-1479.
[14] HE Yong-Ming, ZHANG Fang. Study of regulating effect of auxin on floret opening in rice [J]. Acta Agronomica Sinica, 2023, 49(6): 1690-1698.
[15] TAO Yue-Yue, SHENG Xue-Wen, XU Jian, SHEN Yuan, WANG Hai-Hou, LU Chang-Ying, SHEN Ming-Xing. Characteristics of heat and solar resources allocation and utilization in rice- oilseed rape double cropping systems in the Yangtze River Delta [J]. Acta Agronomica Sinica, 2023, 49(5): 1327-1338.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[2] NI Da-Hu;YI Cheng-Xin;LI Li;WANG Xiu-Feng;ZHANG Yi;ZHAO Kai-Jun;WANG Chun-Lian;ZHANG Qi;WANG Wen-Xiang;YANG Jian-Bo. Developing Rice Lines Resistant to Bacterial Blight and Blast with Molecular Marker-Assisted Selection[J]. Acta Agron Sin, 2008, 34(01): 100 -105 .
[3] DAI Xiao-Jun;LIANG Man-Zhong;CHEN Liang-Bi. Comparison of rDNA Internal Transcribed Spacer Sequences in Oryza sativa L.[J]. Acta Agron Sin, 2007, 33(11): 1874 -1878 .
[4] WANG Chun-Mei;FENG Yi-Gao;ZHUANG Li-Fang;CAO Ya-Ping;QI Zeng-Jun;BIE Tong-De;CAO Ai-Zhong;CHEN Pei-Du. Screening of Chromosome-Specific Markers for Chromosome 1R of Secale cereale, 1V of Haynaldia villosa and 1Rk#1 of Roegneria kamoji[J]. Acta Agron Sin, 2007, 33(11): 1741 -1747 .
[5] ZHOU Lu-Ying;LI Xiang-Dong;WANG Li-Li;TANG Xiao;LIN Ying-Jie. Effects of Different Ca Applications on Physiological Characteristics, Yield and Quality in Peanut[J]. Acta Agron Sin, 2008, 34(05): 879 -885 .
[6] WANG Li-Xin; LI Yun-Fu; CHANG Li-Fang; HUANG Lan ;; LI Hong-Bo ; GE Ling-Ling; Liu Li-Hua ;; YAO Ji ;; ZHAO Chang-Ping ;. Method of ID Constitution for Wheat Cultivars[J]. Acta Agron Sin, 2007, 33(10): 1738 -1740 .
[7] ZHENG Tian-Qing;XU Jian-Long;FU Bing-Ying;GAO Yong-Ming;Satish VERUKA;Renee LAFITTE;ZHAI Hu-Qu;WAN Jian-Min;ZHU Ling-Hua;LI Zhi-Kang. Preliminary Identification of Genetic Overlaps between Sheath Blight Resistance and Drought Tolerance in the Introgression Lines from Directional Selection[J]. Acta Agron Sin, 2007, 33(08): 1380 -1384 .
[8] YANG Yan;ZHAO Xian-Lin; ZHANG Yong;CHEN Xin-Min;HE Zhong-Hu;YU Zhuo;XIA Lan-Qin
. Evaluation and Validation of Four Molecular Markers Associated with Pre-Harvest Sprouting Tolerance in Chinese Wheats[J]. Acta Agron Sin, 2008, 34(01): 17 -24 .
[9] Xia Zhongyan. STUDIES ON INHERITANCE AND SELECTION OF THE LEAF SHAPE IN KENG RICE[J]. Acta Agron Sin, 1983, 9(04): 275 -282 .
[10] ZHAO Hui;JING Qi;DAI Ting-Bo;JIANG Dong;CAO Wei-Xing. Effects of Post-Anthesis High Temperature and Water Stress on Activities of Key Regulatory Enzymes Involved in Protein Formation in Two Wheat Cultivars[J]. Acta Agron Sin, 2007, 33(12): 2021 -2027 .