Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (9): 2562-2571.doi: 10.3724/SP.J.1006.2023.22047

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of soil microbes on rice allelopathy and its mechanism of wild rice (Oryza longistaminata) and its descendants

XU Gao-Feng1,2(), SHEN Shi-Cai1,2, ZHANG Fu-Dou1,2,*(), YANG Shao-Song1,2, JIN Gui-Mei1,2, ZHENG Feng-Ping1,2, WEN Li-Na1,2, ZHANG Yun3,*(), WU Ran-Di1,4   

  1. 1Institute of Agricultural Environment and Resources Research, Yunnan Academy of Agricultural Sciences, Kunming 650205, Yunnan, China
    2Yunnan Lancang-Mekong Agricultural Bio-Security International Science and Technology Cooperation Joint Research Center, Kunming 650205, Yunnan, China
    3Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, Yunnan, China
    4College of Agronomy and Life Sciences, Kunming University, Kunming 650205, Yunnan, China
  • Received:2022-08-11 Accepted:2023-02-21 Online:2023-09-12 Published:2023-03-16
  • Supported by:
    National Natural Science Foundation of China(31960544);National Natural Science Foundation of China(31860511);Technological Innovation Talent Plan of Yunnan Province(202105AD160021);National Key Research and Development Program of China(2021YFC2600400);Special Funds of Major Science and Technology Project in Yunnan Province(202102AE090003)

Abstract:

Soil microbes may affect weed inhibitory effects of allelopathic crops that it is great significant to understand their causes and mechanisms for green ecological management of weeds in paddy fields. Oryza longistaminata (OL), a wild rice with strong allelopathic potential, is excellent cultivars for breeding allelopathic rice. However, the effect of soil microbes on allelopathy of this wild rice and its descendants is still unclear. In this study, the allelopathic effects of two allelopathic rice genotypes (OL and its descendant-RL169) and non-allelopathic Asian cultivated rice cultivar (RD23) affected by soil microbes on barnyardgrass were studied, and characteristics of rhizosphere soil microbes, and absorption and utilization of nutrients of barnyardgrass were analyzed. The results showed that: 1) Soil microbes significantly increased weed suppression of wild rice (OL) and its descendants (RL169) (P < 0.05) and had no significant effect on RD23. Multivariate analysis of variance showed that plant height, root length and biomass of barnyardgrass were significantly increased with interaction of soil microbes, root exudates and different allelopathic rice genotypes (P < 0.05). 2) Wild rice (OL) and its descendants (RL169) changed soil microbe community structure, reduced diversity and richness of bacteria in barnyardgrass rhizosphere soils, which the number of bacteria was significantly lower than that of RD23 at the family, genus and species levels (P < 0.05). 3) Soil microbes significantly reduced absorption and utilization of N, P and K of barnyardgrass which co-cultured with wild rice and its descendants (RL169). In the presence of soil microbes, the absorption of N and P of barnyardgrass which co-cultured with wild rice(OL) and the absorption of N of barnyardgrass which co-cultured with rice genotypes (RL169) were significantly reduced. Multivariate analysis of variance revealed that soil microbes and allelopathic rice genotypes significantly affected N (P < 0.01) or K (P < 0.05) absorption of barnyardgrass and had no significant effect on P absorption; but nutrient utilization of barnyardgrass was only obviously affected by allelopathic rice genotypes (P < 0.05). In conclusion, the allelopathic suppression of wild rice (OL) and its descendants (RL169) was significantly improved through soil microbe community structure changing of barnyardgrass rhizosphere soils and nutrient absorption and utilization (N, P, and K) reducing of barnyardgrass. Our study could increase further understanding of effect of soil microbes on rice allelopathy and provide a theoretical basis for the development and utilization of wild rice germplasm resources.

Key words: rice allelopathy, rhizospheric soil, soil microbial diversity, allelopathic weed suppression, nutrient absorption and utilization

Fig. 1

Effects of different allelopathic rice genotypes on plant height, root length, and biomass of barnyardgrass under different soil treatments Fig. A, B, and C show plant height, root length, and biomass of barnyardgrass, respectively. Lowercase letters indicate significant difference at the 0.05 probability level. RE × SM: root exudates × soil microbes; RE × NSM: only root exudates; NRE × SM: only soil microbes; NRE × NSM: no root exudates and no soil microbes."

Table 1

Multivariate analysis of the effects of different factors on the growth of barnyardgrass"

稗草生长
Barnyardgrass growth
影响因子
Factor
自由度
DF
均方
MS
F
F-value
P
P-value
株高
Height
A 1 44.8533 27.3844 0.0001
B 1 3.7408 2.2839 0.1395
C 2 11.7475 7.1722 0.0024
A × B 1 3.0000 1.8316 0.1844
A × C 2 11.4008 6.9606 0.0028
B × C 2 1.1658 0.7118 0.4975
A × B× C 2 6.8125 6.4961 0.0130
根长
Root length
A 1 30.4008 37.1560 0.0001
B 1 1.9200 2.3466 0.1343
C 2 11.4494 13.9935 0.0001
A×B 1 0.6075 0.7425 0.3946
A×C 2 9.7627 11.9320 0.0001
B×C 2 0.3194 0.3903 0.6797
A × B× C 2 6.6869 6.8395 0.0402
生物量
Biomass
A 2 5808.0000 128.4324 0.0001
B 2 132.0000 2.9480 0.0638
C 2 3892.0000 86.0639 0.0001
A×B 4 133.3333 2.9484 0.0946
A×C 4 1524.0000 33.7002 0.0001
B×C 4 156.0000 3.4496 0.0626
A × B× C 8 633.3333 49.5528 0.0152

Table 2

Weed suppression ability of different allelopathic rice genotypes under different soil treatments"

土壤处理
Soil treatment
综合抑制率Synthetic inhibitory effect (IRSE)
长雄野生稻
Oryza longistaminata
中化感潜力后代RL169
Medium allelopathic potential descendant of RL169
亚洲栽培稻RD23
Asian cultivated rice of RD23
RE × SM 65.30±2.21 a 47.45±2.16 a 27.06±3.06 a
RE × NSM 49.73±1.41 b 42.04±3.72 a 26.21±1.55 a
NRE × SM 27.20±1.96 c 31.24±1.47 b 24.86±1.15 a
NRE × NSM 25.63±1.78 c 29.96±0.95 b 23.65±1.33 a

图A

Effects of barnyardgrass rhizosphere soil microbial community structure under different allelopathic rice genotypes and Fig. B show the number of bacteria in different taxa and their community structure character of barnyardgrass rhizosphere soil under different allelopathic rice genotypes."

Fig. 3

Effects of barnyardgrass rhizosphere soil microbial biodiversity index under different allelopathic rice genotypes"

Table 3

Effects of different allelopathic rice genotypes on nutrient absorption and utilization of barnyardgrass under different soil treatments"

营养元素
Nutrient
土壤处理
Soil treatment
长雄野生稻
Oryza longistaminata
中化感潜力后代RL169
Medium allelopathic potential
descendant of RL169
亚洲栽培稻RD23
Asian cultivated rice of RD23
养分吸收率
UPE (mg)
养分利用率
NUE (%)
养分吸收率
UPE (mg plant-1)
养分利用率
NUE (%)
养分吸收率
UPE (mg)
养分利用率
NUE (%)
N 未灭菌SNS 1.03±0.07 Cc 35.37±2.28 Cb 1.48±0.09 Bc 42.64±3.51 Bb 2.14±0.07 Aa 47.39±2.14 Aab
灭菌SS 1.54±0.05 Cb 36.59±3.16 Cb 1.79±0.07 Bb 43.31±1.23 Bb 2.21±0.13 Aa 48.69±2.95 Aab
对照CK 2.31±0.11 Aa 56.49±3.27 Aa 2.31±0.11 Aa 56.49±3.27 Aa 2.31±0.11 Aa 56.49±3.27 Aa
P 未灭菌SNS 0.67±0.05 Cc 71.41±1.57 Cb 0.98±0.07 Bb 78.64±1.35 Bb 1.21±0.05 Aa 84.65±3.58 Aa
灭菌SS 1.08±0.10 Bb 72.63±1.08 Cb 1.04±0.08 Bb 79.26±4.67 Bb 1.29±0.07 Aa 85.19±4.03 Aa
对照CK 1.34±0.07 Aa 94.18±2.36 Aa 1.34±0.07 Aa 94.18±2.36 Aa 1.34±0.07 Aa 94.18±2.36 Aa
K 未灭菌SNS 0.14±0.02 Bb 276.45±7.91 Cb 0.19±0.05 Bb 289.35±13.72 Bb 0.31±0.04 Aa 324.92±6.52 Aab
灭菌SS 0.23±0.03 Bb 278.37±4.93 Cb 0.26±0.03 Bab 291.39±3.09 Bb 0.35±0.05 Aa 325.58±8.69 Aab
对照CK 0.39±0.04 Aa 358.19±8.58Aa 0.39±0.04 Aa 358.19±8.58 Aa 0.39±0.04 Aa 358.19±8.58 Aa

Table 4

Multivariate analysis of the effects of nutrient absorption and utilization on the growth of barnyardgrass"

养分吸收与利用
Nutrient absorption and utilization
影响因子
Factor
自由度
DF
均方
MS
F
F-value
P
P-value
N (UPE) A 1 0.4902 19.5480 0.0003
B 2 1.6410 65.4400 0.0001
A×B 2 0.1848 13.3800 0.0067
P (UPE) A 1 0.1962 2.5360 0.2523
B 2 0.2835 3.6640 0.2144
A×B 2 0.0774 3.5380 0.0506
K (UPE) A 1 0.0280 5.1460 0.0358
B 2 0.0468 8.6030 0.0024
A×B 2 0.0011 0.1980 0.8220
N (NUE) A 1 5.6438 0.2260 0.6399
B 2 282.8473 11.3490 0.0006
A×B 2 0.0928 0.0040 0.9963
P (NUE) A 1 5.5129 21.4400 0.0436
B 2 335.1219 1303.3060 0.0008
A×B 2 0.2571 0.0070 0.9932
K (NUE) A 1 14.3586 0.0530 0.8198
B 2 4873.0003 18.1430 0.0001
A×B 2 1.0096 0.0040 0.9962
[1] Heap I. Global perspective of herbicide-resistant weeds. Pest Manag Sci, 2014, 70: 1306-1315.
doi: 10.1002/ps.3696 pmid: 24302673
[2] Chen G Q, Wang Q, Yao Z W, Zhu L F, Dong L Y. Penoxsulam-resistant barnyardgrass (Echinochloa crus-galli) in rice fields in China. Weed Biol Manag, 2016, 16: 16-23.
doi: 10.1111/wbm.2016.16.issue-1
[3] Kong C H, Hu F, Wang P, Wu J L. Effects of allelopathic rice varieties combined with cultural management options on paddy field weeds. Pest Manag Sci, 2008, 64: 276-282.
doi: 10.1002/(ISSN)1526-4998
[4] 郭怡卿, 张付斗, 陶大云, 余柳青. 野生稻化感抗(耐)稗草种质资源的初步研究. 西南农业学报, 2014, 17(3): 295-298.
Guo Y Q, Zhang F D, Tao D Y, Yu L Q. A preliminary study on the allelopathic activity of wild rice germplasm. Southwest Chin J Agric Sci, 2014, 17(3): 295-298. (in Chinese with English abstract)
[5] Khanh T D, Xuan T D, Chung M I. Rice allelopathy and the possibility for weed management. Ann Appl Biol, 2007, 151: 325-339.
doi: 10.1111/aab.2007.151.issue-3
[6] Kong C H, Xu X H, Wang P, Zhao H, Gu Y. Activity and allelopathy of soil of flavone O-glycosides from rice. J Agric Food Chem, 2007, 55: 6007-6012.
doi: 10.1021/jf0703912
[7] 林文雄. 水稻化感抑草作用的根际生物学特性与研究展望. 作物学报, 2013, 39: 951-960.
doi: 10.3724/SP.J.1006.2013.00951
Lin W X. Rhizobiological properties of allelopathic rice in suppression of weeds and its research prospect. Acta Agron Sin, 2013, 39: 951-960. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.00951
[8] Wu L K, Wang H B, Zhang Z X, Lin R, Zhang Z Y, Lin W X. Comparative metaproteomic analysis on consecutively Rehmannia glutinosa-monocultured rhizosphere soil. PLoS One, 2011, 6: e20611.
doi: 10.1371/journal.pone.0020611
[9] 李秋玲, 肖辉林. 土壤性质及生物化学因素与植物化感作用的相互影响. 生态环境学报, 2012, 21: 2013-2036.
Li Q L, Xiao H L. The interactions of soil properties and biochemical factors with plant allelopathy. J Ecol Environ Sci, 2012, 21: 2031-2036. (in Chinese with English abstract)
[10] Zhu X, Zhang J, Ma K. Soil biota reduce allelopathic effects of the invasive Eupatorium adenophorum. PLoS One, 2011, 6: e25393.
doi: 10.1371/journal.pone.0025393
[11] 孔垂华, 徐效华, 梁文举, 周勇军, 胡飞. 水稻化感品种根分泌物中非酚酸类化感物质的鉴定与抑草活性. 生态学报, 2004, 24: 1317-1322.
Kong C H, Xu X H, Liang W J, Zhou Y J, Hu F. Non-phenolic allelochemicals in root exudates of an allelopathic rice variety and their identification and weed-suppressive activity. Acta Ecol Sin, 2004, 24: 1317-1322. (in Chinese with English abstract)
[12] Kong C H, Zhang S Z, Li Y H, Xia Z C, Yang X F, Meiners S J, Wang P. Plant neighbor detection and allelochemical response are driven by root-secreted signaling chemicals. Nat Commun, 2018, 9: 3867.
doi: 10.1038/s41467-018-06429-1
[13] 蒋婧, 宋明华. 植物与土壤微生物在调控生态系统养分循环中的作用. 植物生态学报, 2010, 34: 979-988.
doi: 10.3773/j.issn.1005-264x.2010.08.011
Jiang Q, Song M H. Review of the roles of plants and soil microorganisms in regulating ecosystem nutrient cycling. Chin J Plant Ecol, 2010, 34: 979-988. (in Chinese with English abstract)
doi: 10.3773/j.issn.1005-264x.2010.08.011
[14] Guo Y Q, Zhang F D, Tao D Y, Yu L Q, David G. Preliminary studies on the allelopathic potential of wild rice (Oryza) germplasm. Allelopathy, 2005, 15: 13-19.
[15] 张付斗, 郭怡卿, 余柳青, 陶大云. 野生稻和非洲栽培稻抗稗草种质资源筛选和评价. 作物学报, 2014, 30: 1144-1148.
Zhang F D, Guo Y Q, Yu L Q, Tao D Y. Evaluation and screening of resistance to barnyardgrass in germplasm of wild rice (Oryza sativa) and African cultivar. Acta Agron Sin, 2014, 30: 1144-1148. (in Chinese with English abstract)
doi: 10.3724/SP.J.1095.2013.20557
[16] 张付斗, 郭怡卿, 余柳青. 水稻对稗草化感作用的生物测定. 华中农业大学学报, 2004, 23(2): 203-207.
Zhang F D, Guo Y Q, Yu L Q. The study on bioassay for rice allelopathy to barnyardgrass. J Huazhong Agric Univ, 2004, 23(2): 203-207.
[17] 徐高峰, 申时才, 张付斗, 张玉华. 长雄野生稻及其后代抑草效果与化感潜力和农艺性状的关系. 中国生态农业学报, 2014, 22: 1348-1356.
Xu G F, Shen S C, Zhang F D, Zhang Y H. Relationships among weed suppression effect, allelopathy and agronomic characteristics of Oryza longistaminata and related descendants. Chin J Eco- Agric, 2014, 22: 1348-1356. (in Chinese with English abstract)
[18] Xu G F, Shen S C, Zhang F D, Zhang Y, Kato-Noguchi H, David R C. Relationship between allelopathic effects and functional traits of different allelopathic potential rice accessions at different growth stages. Rice Sci, 2018, 25: 32-41.
doi: 10.1016/j.rsci.2017.09.001
[19] 刘春生, 杨守祥. 农业化学分析. 北京: 中国农业出版社, 1996, pp 8-60.
Liu C S, Yang S X. The Methods of Agrochemical Analysis. Beijing: China Agriculture Press, 1996. pp 8-60. (in Chinese)
[20] Rice E L. Allelopathy. Orlando, FL, USA: Academic Press, 1984.
[21] Williamson G B. Richardson D. Bioassays for allelopathy: measuring treatment responses within independent controls. J Chem Ecol, 1989, 14: 181-187.
doi: 10.1007/BF01022540
[22] 徐高峰, 申时才, 张付斗, 张玉华. 温度对不同叶龄长雄野生稻及其后代化感作用的影响. 中国水稻科学, 2016, 30: 559-566.
doi: 10.16819/j.1001-7216.2016.5158
Xu G F, Shen S C, Zhang F D, Zhang Y H. Allelopathic response to different temperature conditions of wild rice (Oryza longistaminata) and its descendants. Chin J Rice Sci, 2016, 30: 559-566. (in Chinese with English abstract)
[23] Chandramohan D, Purushothaman D, Kothandaraman R. Soil phenolics and plant growth inhibition. Plant Soil, 1973, 39: 303-308.
doi: 10.1007/BF00014797
[24] Putnam A R, Duke W B. Biological suppression of weeds: evidence for allelopathy in accessions of cucumber. Science, 1974, 185: 370-372.
pmid: 17794306
[25] 俞慎, 何振立, 黄昌勇. 重金属胁迫下土壤微生物和微生物过程研究进展. 应用生态学报, 2003, 14: 618-622.
Yu S, He Z L, Huang C Y. Advances in the research of soil microorganisms and their mediated processes under heavy metal stress. Chin J Appl Ecol, 2003, 14: 618-622. (in Chinese with English abstract)
[26] 陈良生. 低磷对化感水稻根际微生物多样性的影响. 福建农林大学硕士学位论文, 福建福州, 2011.
Chen L S. Impact of Lower Phosphorus Supplies on Rhizospheric Microbial Diversity of Different Allelopathic Rice. MS Thesis of Fujian A&F University, Fuzhou, Fujian, China, 2011. (in Chinese with English abstract)
[27] 熊君, 林辉锋, 李振方, 方长旬, 韩庆典, 林文雄. 旱直播条件下强弱化感潜力水稻根际微生物的群落结构. 生态学报, 2012, 32: 6100-6109.
Xiong J, Lin H F, Li Z F, Fang C X, Han Q D, Lin W X. Analysis of rhizosphere microbial community structure of weak and strong allelopathic rice varieties under dry paddy field. Acta Ecol Sin, 2012, 32: 6100-6109. (in Chinese with English abstract)
[1] TU Yong,YANG Wen-Yu,LIU Wei-Guo,YONG Tai-Wen,JIANG Lian-Qiang,WANG Xiao-Chun. Effects of Relay Strip Intercropping Years between Flue-cured Tobacco and Soybean on Rhizospheric Microbes Quantities  [J]. Acta Agron Sin, 2015, 41(05): 733-742.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[4] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .
[5] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .
[6] ZHENG Yong-Mei;DING Yan-Feng;WANG Qiang-Sheng;LI Gang-Hua;WANG Hui-Zhi;WANG Shao-Hua. Effect of Nitrogen Applied before Transplanting on Tillering and Nitrogen Utilization in Rice[J]. Acta Agron Sin, 2008, 34(03): 513 -519 .
[7] QIN En-Hua;YANG Lan-Fang;. Selenium Content in Seedling and Selenium Forms in Rhizospheric Soil of Nicotiana tabacum L.[J]. Acta Agron Sin, 2008, 34(03): 506 -512 .
[8] LÜ Li-Hua;TAO Hong-Bin;XIA Lai-Kun; HANG Ya-Jie;ZHAO Ming;ZHAO Jiu-Ran;WANG Pu;. Canopy Structure and Photosynthesis Traits of Summer Maize under Different Planting Densities[J]. Acta Agron Sin, 2008, 34(03): 447 -455 .
[9] Zhang Shubiao;Yang Rencui. Some Biological Character of eui-hybrid Rice[J]. Acta Agron Sin, 2003, 29(06): 919 -924 .
[10] SHAO Rui-Xin;SHANG-GUAN Zhou-Ping. Effects of Exogenous Nitric Oxide Donor Sodium Nitroprusside on Photosynthetic Pigment Content and Light Use Capability of PS II in Wheat under Water Stress[J]. Acta Agron Sin, 2008, 34(05): 818 -822 .