Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (8): 2225-2239.doi: 10.3724/SP.J.1006.2023.24155

• TILLAGE & CULTIVATION · PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of different soil intensification treatments on growth and development of Radix pseudostellariae in continuous cropping system

CHEN Ting1(), JIAO Yan-Yang1(), ZHOU Xin-Ye1, WU Lin-Kun1, ZHANG Zhong-Yi2, LIN Yu1, LIN Sheng1,*(), LIN Wen-Xiong1,*()   

  1. 1 College of Life Sciences, Fujian Agriculture and Forestry University / Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fuzhou 350002, Fujian, China
    2 College of Agronomy, Fujian Agriculture and Forestry University / Fujian Provincial High Education Key Laboratory of Crop Physiology and Molecular Ecology, Fuzhou 350002, Fujian, China
  • Received:2022-07-03 Accepted:2023-02-10 Online:2023-08-12 Published:2023-02-21
  • Contact: LIN Sheng,LIN Wen-Xiong E-mail:iamchenting@126.com;daniel2zhu@163.com;wenxiong181@163.com;lsjk1958@163.com
  • About author:First author contact:**Contributed equally to this work
  • Supported by:
    National Key Research and Development Program of China(2017YFE0121800);National Natural Science Foundation of China(U1205021);National Natural Science Foundation of China(81573530);Science and Technology Innovation Special Fund of Fujian Agriculture and Forestry University(CXZX2020037A)

Abstract:

Continuous monoculture problems of medicinal plants are threatening the supply and quality safety of the source products in intensive traditional Chinese medicine agricultural practice. Therefore, it is of great ecological and economic significance to intensively explore the ecological restoration of conducive-disease soil. Radix pseudostellariae is a tuberous Chinese medicine that suffers from serious continuous cropping impediments under intensive cultivation. In this study, to evaluate the effects of different treatments on alleviating the continuous cropping obstacle of R. pseudostellariae and uncover the mechanism from the perspective of soil micro-ecological environment, four different soil intensification treatments including tuber reserved, fallow, flooding and rice rotation were set between two crops of R. pseudostellariae, and dynamically detected the changes of photosynthesis, stress-resistance physiology, and dry matter translocation.The results showed that, compared with fallow treatment, rice rotation treatment significantly slowed down the downtrend of soil pH, and the organic matter content in soil. The abundance of beneficial microorganisms and nitrogen cycling genes in the rhizosphere of R. pseudostellariae was increased while the pathogenic microorganisms decreased when rotated with rice in comparison with the fallow regime. This in turn led to significantly increased net photosynthetic rate and improved process of dry matter translocation of R. pseudostellariae under rice rotation treatment, indicating that the yield of R. pseudostellariae and the contents of polysaccharides and total saponins were significantly increased by 19.5%, 22.9%, and 5.8%, respectively. The improved grey T’s correlation degree analysis showed that soil pH, soil organic matter content, the abundance of specific microorganisms, the abundance of nitrogen cycling genes, the photosynthetic rate and antioxidant enzyme system in leaves of R. pseudostellariae were highly correlated with the yield of tuberous roots (Absolute correlation degree >0.6). In addition, the physiological parameters of R. pseudostellariae reflecting the growth status and the improvement of soil environment in middle and pre-phases of tuberous root greatly contributed to high-yielding formation of the medicinal plants when rotated with rice crop. Therefore, the seedling stage, early and middle tuberous root expansion stages of R. pseudostellariae were critical to alleviate the continuous cropping obstacles of R. pseudostellariae. This study also suggested that rice exudates and its residual bio-degradants entering soil ecosystem were conducive to accelerating the reconstruction of specific microflora, alleviating soil acidification, and improving nutrition sequestration after rice rotation treatment, thus resulting in the decreased environmental stress intensity, improved energy and nutrition metabolism, and optimized dry matter allocation in the growth and development prophase, consequently improved yield and quality of the medicinal plants. These results provided a theoretical basis for the ecological remediation of continuous cropping obstacles and the construction of the pivotal technology system in ecological sustainable cultivation practice.

Key words: ecological intensification, continuous cropping obstacles, Radix pseudostellariae, rice rotation, grey correlation analysis

Table 1

Detail information of each treatment"

处理
Treatment
缩写
Abbreviation
处理描述
Description for treatments
正茬太子参
Newly plant Radix pseudostellariae
NP 休闲新地第一次种植太子参, 作为对照处理。
Plant Radix pseudostellariae in new farmland as control.
原地留种
Remain tuberous roots in soil as
storage
RP-S 前茬太子参成熟块根作为种参留存于田地中, 该地块来年用于再植太子参, 即相当于三季连作处理。
Tuberous roots of former crop Radix pseudostellariae are left in soil and planted in the next crop.
休耕
Keep soil fallow
RP-F 前茬太子参种植收获后该田块作休闲处理, 下季再种太子参。
Keep soil fallow between two crops of Radix pseudostellariae.
淹水
Submerge soil in water
RP-WF 前作太子参收获后田块作淹水处理, 下一季排水至落干后再种太子参种。
Submerge soil in water between two crop of Radix pseudostellariae, then dry it before next crop.
稻参轮作
Rotate with rice
RP-R 前作太子参收获后轮作水稻, 水稻收获后再种植太子参。
Plant rice between two crops of Radix pseudostellariae.

Fig. 1

Schematic diagram of soil treatment of Radix pseudostellariae in 2019 and 2020 NP: the newly planting Radix pseudostellariae; RP-S: the stands for remaining Radix pseudostellariae tuberous roots in situ soil as storage; RP-F: the keeping soil fallow after harvesting Radix pseudostellariae; RP-WF: the submerging soil in water after harvesting Radix pseudostellariae; RP-R: Radix pseudostellariae rotated with rice."

Table 2

qPCR primer sequences for specific beneficial and harmful microorganisms in rhizosphere soil and genes associated with nitrogen cycle"

项目
Item
引物
Primer
序列
Sequences (5°-3°)
马铃薯皮斑病菌Polyscytalum algarvense POL-F GCTGCGTTCTTCATCGATG
POL-R ACATACCTGTTGCCTCGGC
尖孢镰刀菌Fusarium oxysporum ITS1-F CTTGGTCATTTAGAGGAAGTAA
AFP308R CGAATTAACGCGAGTCCCAA
菠萝泛菌Pantoea ananatis PANT-F GAGGTCGCTTCTCTTTGTATGC
PANT-R GCTCGTGTTGTGAAATGTTGG
梅奇酵母属Metschnikowia MET-F TAACAAGGTTTCCGTAGGTGA
MET-R ATTCGCTGCGTTCTTCATC
灰腐质霉Humicola grisea HUM-F CGATGCCAGAACCAAGAGA
HUM-R CCAAACCATTGTGAACATACCT
哈茨木霉Trichoderma harzianum ITS1 S TACAACTCCCAAACCCAATGTGA
ITS1 R CCGTTGTTGAAAGTTTTGATTCATTT
伯克氏菌属Burkholderia Burk3 CTGCGAAAGCCGGAT
Burk R TGCCATACTCTAGCYYGC
假单胞菌属Pseudomonas Ps-for GGTCTGAGAGGATGATCAGT
芽孢杆菌属Bacillus Bac F GGGAAACCGGGGCTAATACCGGAT
R1378 CGGTGTGTACAAGGCCCGGGAACG
AOA 19F ATGGTCTGGCTWAGACG
CrenamoA616r48x GCCATCCABCKRTANGTCCA
AOB amoA-1F CCCCTCKGSAAAGCCTTCTTC
amoA-2R AAAGGYGGWATCGGYAARTCCACCAC
nifH nifH-F AAAGGYGGWATCGGYAARTCCACCAC
nifH-R TTGTTSGCSGCRTACATSGCCATCAT
narG narG1960m2F TAYGTSGGGCAGGARAAACTG
narG2050m2R CGTAGAAGAAGCTGGTGCTGTT
nirK nirK876 ATYGGCGGVCAYGGCGA
nirK1040 GCCTCGATCAGRTTRTGGTT
nirS nirSCd3aFm AACGYSAAGGARACSGG
nirSR3cdm GASTTCGGRTGSGTCTTSAYGAA
nosZ nosZ2F CGCRACGGCAASAAGGTSMSSGT
nosZ2R CAKRTGCAKSGCRTGGCAGAA

Table 3

Effects of different treatments on yield and quality of Radix pseudostellariae"

处理
Treatment
2020年产量
Yield of the first year
(kg hm-2)
2021年产量
Yield of the second year
(kg hm-2)
多糖含量
Content of polysaccharide
(mg g-1)
总皂苷含量
Content of total saponin
(mg g-1)
NP 3850.69±83.37 a 3771.84±32.92 a 15.15±0.65 a 0.86±0.02 a
RP-S 1010.81±144.40 d 600.64±19.20 c 10.78±0.16 d 0.72±0.02 d
RP-F 2069.74±166.74 c 1230.38±42.56 b 11.53±0.28 d 0.82±0.02 bc
RP-WF 2214.14±83.37 c 1798.67±71.10 a 13.10±0.01 c 0.83±0.01 ab
RP-R 2644.99±79.296 b 1906.13±34.00 a 14.16±0.24 b 0.87±0.01 a

Fig. 2

Dry matter content accumulations and distribution ratio of different organs of Radix pseudostellariae at different growth stages under different treatments Treatments are the same as those given in Fig. 1. SS: seedling stage; EE: the early expanding stage of tuber roots; ME: the middle expanding stage of tuber roots; LE: the late expanding stage of tuber; HS: the harvesting stage. Different lowercase letters indicate significant differences at P < 0.05 in the same stage and same plant tissue between different treatments."

Fig. 3

Antioxidant enzyme activities of continuously monocultured Radix pseudostellariae in under different treatments Treatments are the same as those given in Fig. 1. SS: the seedling stage; EE: the early expanding stage of tuber roots; ME: the middle expanding stage of tuber roots; LE: the late expanding stage of tuber; HS: the harvesting stage."

Table 4

Photosynthetic rate of Radix pseudostellariae leaves at different growth stages under different treatments"

处理
Treatment
叶片净光合速率Leaf net photosynthetic rate (μmol CO2 m-2 s-1)
块根膨大前期EE 块根膨大中期ME 块根膨大后期LE
NP 11.5±0.2 a 10.9±0.1 a 9.2±0.1 a
RP-S 7.5±0.1 d 6.2±0.1 e 4.1±0.2 e
RP-F 8.4±0.4 c 8.7±0.1 d 5.9±0.2 d
RP-WF 8.4±0.1 c 9.1±0.1 c 6.8±0.1 c
RP-R 9.6±0.3 b 9.7±0.1 b 7.0±0.1 b

Fig. 4

Soil pH value of Radix pseudostellariae under different treatments BT: before treatment; BP: before the planting of second crop; SS: the seedling stage; EE: the early expanding stage of tuber roots; ME: the middle expanding stage of tuber roots; LE: the late expanding stage of tuber. Treatments are the same as those given in Fig. 1."

Fig. 5

Soil nitrogen, phosphorus, and potassium contents of Radix pseudostellariae under different treatments SS: the seedling stage; EE: the early expanding stage of tuber roots; ME: the middle expanding stage of tuber roots; LE: the late expanding stage of tuber. Treatments are the same as those given in Fig. 1. Different lowercase letters indicate significant differences between different treatments at the same stage at P < 0.05."

Fig. 6

Soil organic matter content of Radix pseudostellariae under different treatments Treatments are the same as those given in Fig. 1. Different lowercase letters indicate significant differences between different treatments at P < 0.05."

Fig. 7

Heat map of the abundance of key microorganisms in the rhizosphere soil of Radix pseudostellariae under different treatments Treatments are the same as those given in Fig. 1. The data were standardized by row with z-score method. * represents significant differences at P < 0.05 compared with NP."

Fig. 8

Heat map of differences in the abundance of genes related to nitrogen cycling in rhizosphere soil of Radix pseudostellariae under different treatments Treatments are the same as those given in Fig. 1. The data were standardized by row with z-score method, * represents significant differences at P < 0.05 compared with NP."

Fig. 9

Grey correlation degree analysis BT: before treatment; BP: before the planting of second crop; SS: the seedling stage; EE: the early expanding stage of tuber roots; ME: the middle expanding stage of tuber roots; LE: the late expanding stage of tuber; HS: the harvesting stage; MO: the microorganism-related genes; Gene: nitrogen cycling-related genes."

[1] Bommarco R, Kleijn D, Potts S G. Ecological intensification: harnessing ecosystem services for food security. Trends Ecol Evol, 2013, 28: 230-238.
doi: 10.1016/j.tree.2012.10.012 pmid: 23153724
[2] Tilman D, Balzer C, Hill J, Befort B. Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci USA, 2011, 108: 20260-20264.
doi: 10.1073/pnas.1116437108 pmid: 22106295
[3] 吴凤芝, 赵凤艳, 刘元英. 设施蔬菜连作障碍原因综合分析与防治措施. 东北农业大学学报, 2000, 31: 241-247.
Wu F Z, Zhao F Y, Liu Y Y. On the reasons of continuous cropping obstacles in vegetable facility gardening. J Northeast Agric Univ, 2000, 31: 241-247. (in Chinese with English abstract)
[4] 喻景权, 杜尧舜. 蔬菜设施栽培可持续发展中的连作障碍问题. 沈阳农业大学学报, 2000, 31: 124-126.
Yu J Q, Du Y S. Soil-sickness problem in the sustainable development for the protected production of vegetables. J Shenyang Agric Univ, 2000, 31: 124-126. (in Chinese with English abstract)
[5] 张重义, 林文雄. 药用植物的化感自毒作用与连作障碍. 中国生态农业学报, 2009, 17: 189-196.
Zhang Z Y, Lin W X. Continuous cropping obstacle and allelopathic autotoxicity of medicinal plants. Chin J Eco-Agric, 2009, 17: 189-196. (in Chinese with English abstract)
doi: 10.3724/SP.J.1011.2009.00189
[6] Yang Q, Cai X X, Huang M C, Wang S Y. A specific peptide with immunomodulatory activity from Pseudostellaria heterophylla and the action mechanism. J Funct Foods, 2020, 68: 103887.
doi: 10.1016/j.jff.2020.103887
[7] Ng T B, Liu F, Wang H X. The antioxidant effects of aqueous and organic extracts of Panax quinquefolium, Panax notoginseng, Codonopsis pilosula, Pseudostellaria heterophylla and Glehnia littoralis. J Ethnopharmacol, 2004, 93: 285-288.
doi: 10.1016/j.jep.2004.03.040 pmid: 15234766
[8] Wu H M, Lin M H, Christopher R, Qin X J, Zhang S K, Chen J, Wu L K, Zhao Y L, Lin S, Lin W X. Plant-mediated rhizospheric interactions in intraspecific intercropping alleviate the replanting disease of Radix pseudostellariae. Plant Soil, 2020, 454: 411-430.
doi: 10.1007/s11104-020-04659-1
[9] 吴林坤, 林向民, 林文雄. 根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望. 植物生态学报, 2014, 38: 298-310.
doi: 10.3724/SP.J.1258.2014.00027
Wu L K, Lin X M, Lin W X. Advances and perspective in research on plant-soil-microbe interactions mediated by root exudates. Chin J Plant Ecol, 2014, 38: 298-310. (in Chinese with English abstract)
doi: 10.3724/SP.J.1258.2014.00027
[10] Mazzola M, Manici L M. Apple replant disease: role of microbial ecology in cause and control. Annu Rev Phytopathol, 2012, 50: 45-65.
doi: 10.1146/annurev-phyto-081211-173005 pmid: 22559069
[11] Huang L F, Song L X, Xia X J, Mao W H, Shi K, Zhou Y H, Yu J Q. Plant-soil feedbacks and soil sickness: from mechanisms to application in agriculture. J Chem Ecol, 2013, 39: 232-242.
doi: 10.1007/s10886-013-0244-9
[12] Chen J, Wu L K, Xiao Z G, Wu Y H, Wu H M, Qin X J, Wang J Y, Wei X Y, Khan M U, Lin S, Lin W X. Assessment of the diversity of Pseudomonas spp. and Fusarium spp. in Radix pseudostellariae rhizosphere under monoculture by combining DGGE and quantitative PCR. Front Microbiol, 2017, 8: 1748.
doi: 10.3389/fmicb.2017.01748 pmid: 28966607
[13] Wu H M, Qin X J, Wang J Y, Wu L K, Chen J, Fan J K, Zheng L, Tantai H P, Arafat Y, Lin W W, Luo X M, Lin S, Lin W X. Rhizosphere responses to environmental conditions in Radix pseudostellariae under continuous monoculture regimes. Agric Ecosyst Environ, 2019, 270: 19-31.
[14] Chen T, Lin S, Wu L K, Lin W X, Sampietro D. Soil sickness: current status and future perspectives. Allelopathy J, 2015, 36: 167-196.
[15] 吴红淼, 林文雄. 药用植物连作障碍研究评述和发展透视. 中国生态农业学报, 2020, 28: 775-793.
Wu H M, Lin W X. A commentary and development perspective on the consecutive monoculture problems of medicinal plants. Chin J Eco-Agric, 2020, 28: 775-793. (in Chinese with English abstract)
[16] Dore T, Makowski D, Malezieux E, Munier N, Tchamitchian M, Tittonell P. Facing up to the paradigm of ecological intensification in agronomy: revisiting methods, concepts and knowledge. Eur J Agron, 2011, 34: 197-210.
doi: 10.1016/j.eja.2011.02.006
[17] Kleijn D, Bommarco R, Fijen T P, Garibaldi L A, Potts S G, Putten W H. Ecological intensification: bridging the gap between science and practice. Trends Ecol Evol, 2019, 34: 154-166.
doi: S0169-5347(18)30273-8 pmid: 30509848
[18] Garnett T, Appleby M C, Balmford A, Benton T G, Bloomer P, Burlingame B, Dawkins M, Dolan L, Fraser D, Herrero M, Hoffmann I, Smith P, Thornton P K, Toulmin C, Vermeulen S J, Godfray H. Sustainable intensification in agriculture: premises and policies. Science, 2013, 341: 33-34.
doi: 10.1126/science.1234485 pmid: 23828927
[19] Prasad S, Malav L C, Choudhary J, Kannojiya S, Kundu M, Kumar S, Yadav A N. Soil microbiomes for healthy nutrient recycling. In: Yadav A N, Singh J, Singh C, Yadav N, Current Trends in Microbial Biotechnology for Sustainable Agriculture. Environmental and Microbial Biotechnology. eds. Singapore: Springer, 2021. pp 1-21.
[20] 陈军, 黄珊瑜, 刘冰, 吴林坤, 林文雄. 不同菌肥处理对太子参根际微生物群落的影响. 福建农业学报, 2015, 30: 1171-1177.
Chen J, Huang S Y, Liu B, Wu L K, Lin W X. Effects of microbial fertilizers on microbial community structure in Radix pseudostellariae rhizosphere. Fujian J Agric Sci, 2015, 30: 1171-1177. (in Chinese with English abstract)
[21] Wu H M, Wu H M, Jiao Y Y, Zhang Z Y, Rensing C, Lin W X. The combination of biochar and PGPBs stimulates the differentiation in rhizosphere soil microbiome and metabolites to suppress soil-borne pathogens under consecutive monoculture regimes. GCB Bioenergy, 2022, 14: 84-103.
doi: 10.1111/gcbb.v14.1
[22] Li X F, Wang Z G, Bao X G, Sun J H, Yang S C, Wang P, Wang C B, Wu J P, Liu X R, Tian X L, Wang Y, Li J P, Li J, Wang Y, Xia H Y, Mei P P, Wang X F, Zhao J H, Yu R P, Zhang W P, Che Z X, Gui L G, Callaway R, Tilman D, Li L. Long-term increased grain yield and soil fertility from intercropping. Nat Sustain, 2021, 4: 943-950.
doi: 10.1038/s41893-021-00767-7
[23] Renard D, Tilman D. National food production stabilized by crop diversity. Nature, 2019, 571: 257-260.
doi: 10.1038/s41586-019-1316-y
[24] 李隆. 间套作强化农田生态系统服务功能的研究进展与应用展望. 中国生态农业学报, 2016, 24: 403-415.
Li L. Intercropping enhances agroecosystem services and functioning: current knowledge and perspectives. Chin J Eco-Agric, 2016, 24: 403-415. (in Chinese with English abstract)
[25] Franke A C, Van den Brand G J, Vanlauwe B, Giller K E. Sustainable intensification through rotations with grain legumes in Sub-Saharan Africa: a review. Agric Ecosyst Environ, 2018, 261: 172-185.
doi: 10.1016/j.agee.2017.09.029
[26] Degani E, Leigh S G, Barber H M, Jones H, Lukac M, Sutton P, Potts S. Crop rotations in a climate change scenario: short-term effects of crop diversity on resilience and ecosystem service provision under drought. Agric Ecosyst Environ, 2019, 285: 106625.
doi: 10.1016/j.agee.2019.106625
[27] 刘帮艳.不同有机质含量的壤土环境对两种太子参生长、产量与品质的影响. 贵州大学硕士学位论文, 贵州贵阳, 2018.
Liu B Y. Effects of Different Organic Matter Content of the Soil Environment on the Growth, Yield and Quality of Two Kinds of Radix pseudostellariae. MS Thesis of Guizhou University, Guiyang, Guizhou, China, 2018. (in Chinese with English abstract)
[28] 王晓强, 许跃奇, 何晓冰, 阎海涛, 常栋, 张凯, 毛娟. 不同烤烟品种干物质积累及养分吸收特征. 贵州农业科学, 2022, 50(8): 8-14.
Wang X Q, Xu Y Q, He X B, Yan H T, Chang D, Zhang K, Mao J. Characteristics of dry matte accumulation and nutrient absorption of different flue-cured tobacco varieties. Guizhou Agric Sci, 2022, 50(8): 8-14. (in Chinese with English abstract)
[29] 郭晓蕾, 朱思潮, 翟旭峰, 王怀豫, 宝丽. 硫酸蒽酮法与硫酸苯酚法测定灵芝多糖含量比较. 中华中医药学刊, 2010, 28: 2000-2002.
Guo X L, Zhu S C, Zhai X F, Wang H Y, Bao L. Comparison of methods in determination of polysaccharide in Ganoderma lucidum. Chin Arch Trad Chin Med, 2010, 28: 2000-2002. (in Chinese with English abstract)
[30] 许茜, 王红芳, 周小羽. 太子参皂苷提取工艺优选. 中草药, 2001, 32(9): 34-35.
Xu Q, Wang H F, Zhou X Y. Optimization of extraction technology of Radix pseudostellariae saponins. Chin Trad Herb Drugs, 2001, 32(9): 34-35. (in Chinese with English abstract)
[31] 位小丫, 林煜, 陈婷, 陶子曦, 赵涵予, 林生, 林文雄. 田间条件下植物促生细菌缓解太子参连作障碍的效果评价. 生态学杂志, 2018, 37: 399-408.
Wei X Y, Lin Y, Chen T, Tao Z X, Zhao H Y, Lin S, Lin W X. Effects of plant growth-promoting rhizobacteria on alleviating consecutive monoculture problem of Pseudostellaria heterophylla under field conditions. Chin J Ecol, 2018, 37: 399-408. (in Chinese with English abstract)
[32] Coutinho T, Stephanus-N V. Pantoea ananatis: an unconventional plant pathogen. Mol Plant Pathol, 2009, 10: 325-335.
doi: 10.1111/j.1364-3703.2009.00542.x pmid: 19400836
[33] Wu H M, Wu L K, Wang J Y, Zhu Q, Lin S, Xu J H, Zheng C L, Chen J, Qin X J, Fang C X, Zhang Z Z, Azeem S, Lin W X. Mixed phenolic acids mediated proliferation of pathogens Talaromyces helicus and Kosakonia sacchari in continuously monocultured Radix pseudostellariae rhizosphere soil. Front Microbiol, 2016, 7: 335.
[34] 中国科学院南京土壤研究所. 土壤理化分析. 上海: 上海科学技术出版社, 1978. pp 62-136.
Institute of Soil Science, Chinese Academy of Sciences. Analysis of Soil Physico-chemical Properties. Shanghai: Shanghai Scientific and Technical Publishers, 1978. pp 62-136. (in Chinese)
[35] 郑世英, 商学芳, 王景平. 可见分光光度法测定盐胁迫下玉米幼苗抗氧化酶活性及丙二醛含量. 生物技术通报, 2010, (7): 106-109.
Zheng S Y, Shang X F, Wang J P. Determination of antioxidant enzyme activity and contents of MDA in maize seedlings under salt stress with visible spectrophotometry. Biotechnol Bull, 2010, (7): 106-109. (in Chinese with English abstract)
[36] Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190
[37] 唐五湘. T型关联度及其计算方法. 数理统计与管理, 1995, 14(1): 34-37.
Tang W X. The concept and the computation method of T’s correlation degree. Appl Statist Manag, 1995, 14(1): 34-37. (in Chinese)
[38] David K. Grey system and grey relational model. ACM SIGICE Bull, 1994, 20: 2-9.
doi: 10.1145/190690.190691
[39] Zhou X G, Wu F. Dynamics of the diversity of fungal and Fusarium communities during continuous cropping of cucumber in the greenhouse. FEMS Microbiol Ecol, 2012, 80: 469-478.
doi: 10.1111/j.1574-6941.2012.01312.x pmid: 22273443
[40] 吴林坤, 吴红淼, 朱铨, 陈军, 王娟英, 吴艳红, 林生, 林文雄. 不同改良措施对太子参根际土壤酚酸含量及特异菌群的影响. 应用生态学报, 2016, 27: 3623-3630.
doi: 10.13287/j.1001-9332.201611.004
Wu L K, Wu H M, Zhu Q, Chen J, Wang J Y, Wu Y H, Lin S, Lin W X. Effects of different amendments on contents of phenolic acids and specific microbes in rhizosphere of Pseudostellaria heterophylla. J Appl Ecol, 2016, 27: 3623-3630. (in Chinese with English abstract)
[41] 吴红淼.连作太子参根际环境灾变的机理及其防控策略研究. 福建农林大学博士学位论文, 福建福州, 2018. pp 10-14.
Wu H M.The Ecological Mechanism of Rhizosphere Environment Succession Mediated by the Monoculture of Radix Pseudostellariae and Its Regulation. PhD Dissertation of Fujian Agriculture and Forestry University, Fuzhou, Fujian, 2018. pp 10-14. (in Chinese with English abstract)
[42] Wu H M, Wu L K, Zhu Q, Wang J Y, Qin X X, Xu J H, Kong L F, Chen J, Lin S, Khan M, Amjad H, Lin W X. The role of organic acids on microbial deterioration in the Radix pseudostellariae rhizosphere under continuous monoculture regimes. Sci Rep, 2017, 7: 3497.
doi: 10.1038/s41598-017-03793-8
[43] Hu J L, Jin V L, Konkel J, Schaeffer S, Schneider L, Debruyn J. Soil health management enhances microbial nitrogen cycling capacity and activity. Msphere, 2021, 6: 1220-1237.
[44] 陆姣云, 张鹤山, 田宏, 熊军波, 刘洋. 氮沉降影响草地生态系统土壤氮循环过程的研究进展. 草业学报, 2022, 31(6): 221-234.
doi: 10.11686/cyxb2021156
Lu J Y, Zhang H S, Tian H, Xiong J B, Liu Y. Research progress on effects of nitrogen deposition on soil nitrogen cycling in grassland ecosystems. Acta Pratac Sin, 2022, 31(6): 221-234. (in Chinese with English abstract)
[45] 郭俊杰, 朱晨, 刘文波, 王建中, 凌宁, 郭世伟. 不同施肥模式对土壤氮循环功能微生物的影响. 植物营养与肥料学报, 2021, 27: 751-759.
Guo J J, Zhu C, Liu W B, Wang J Z, Ling N, Guo S W. Effects of different fertilization managements on functional microorganisms involved in nitrogen cycle. J Plant Nutr Fert, 2021, 27: 751-759. (in Chinese with English abstract)
[46] Fang C X, Li Y Z, Li C X, Li B L, Ren Y J, Zheng H P, Zeng X M, Shen L H, Lin W X. Identification and comparative analysis of micro RNAs in barnyardgrass (Echinochloa crus-galli) in response to rice allelopathy. Plant Cell Environ, 2015, 38: 1368-1381.
doi: 10.1111/pce.2015.38.issue-7
[47] Henry S, Stephanie T, Hallet S, Bru D, Dambreville D, Chèneby D, Bizouard F, Germon C, Philippot L. Disentangling the rhizosphere effect on nitrate reducers and denitrifiers: insight into the role of root exudates. Environ Microbiol, 2008, 10: 3082-3092.
doi: 10.1111/j.1462-2920.2008.01599.x pmid: 18393993
[48] Coskun D, Britto D, Shi W M, Kronzucker H. How plant root exudates shape the nitrogen cycle. Trends Plant Sci, 2017, 22: 661-673.
doi: S1360-1385(17)30093-6 pmid: 28601419
[49] Lin S, Huangpu J J, Chen T, Wu L K, Zhang Z Y, Lin W X. Effects of different cropping patterns on the physiology and quality of Pseudostellariae heterophylla. Int J Agric Biol, 2014, 16: 981.
[50] Deng J L. Introduction to grey system theory. J Grey Syst, 1989, 1: 1-24.
[1] LIN Zhi-Min, QIN Xian-Jin, WU Hong-Miao, PANG Zi-Qin, LIN Wen-Xiong. Differential response of different Radix pseudostellariae cultivars to continuous cropping stress and its intraspecific intercropping effects [J]. Acta Agronomica Sinica, 2022, 48(9): 2351-2365.
[2] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
[3] ZHANG Fan, YANG Qian. Effects of combined application of organic materials and chemical fertilizers in barley-double cropping rice rotation system on barley resource utilization efficiency and yield [J]. Acta Agronomica Sinica, 2021, 47(12): 2522-2531.
[4] HASAN Umut,SAWUT Mamat,Shui-Sen CHEN,Dan LI. Inversion of leaf area index of winter wheat based on GF-1/2 image [J]. Acta Agronomica Sinica, 2020, 46(5): 787-797.
[5] DING Jin-Feng,ZI Yan,YANG Jia-Feng,PAN Ting,FENG Chao-Nian,ZHU Xin-Kai,LI Chun-Yan,PENG Yong-Xin,GUO Wen-Shan*. Potassium Accumulation, Distribution, and Utilization in Wheat with Yield Potential of 9000 kg ha−1 in Rice-Wheat Rotation System [J]. Acta Agron Sin, 2014, 40(06): 1035-1043.
[6] ZHU Ze-Sheng and SUN Ling. Estimation of Regional Cotton-Rice and Rice-Cotton Rotation Periods Based on Satellite Remote Sensing Methodology [J]. Acta Agron Sin, 2006, 32(01): 57-63.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .