Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (5): 787-797.doi: 10.3724/SP.J.1006.2020.91049

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Inversion of leaf area index of winter wheat based on GF-1/2 image

HASAN Umut1,2,4,SAWUT Mamat1,2,3,*(),Shui-Sen CHEN4,Dan LI4   

  1. 1College of Resources and Environmental Science, Xinjiang University, Urumqi 830046, Xinjiang, China
    2Key Laboratory of Oasis Ecology of Ministry of Education, Urumqi 830046, Xinjiang, China
    3Key Laboratory for Wisdom City and Environmental Modeling, Xinjiang University, Urumqi 830046, China
    4Guangzhou Institute of Geography, Guangzhou 510070, Guangdong, China
  • Received:2019-07-28 Accepted:2019-12-26 Online:2020-05-12 Published:2020-01-15
  • Contact: SAWUT Mamat E-mail:korxat@xju.edu.cn
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(41361016)

Abstract:

Leaf area index (LAI) is an important parameter for monitoring crop growth, and an important input parameter for crop yield prediction model, hydrological and climatic models. LAI can be used in field crop growth monitoring and verification of remote sensing products. Therefore, accurate, rapid and large-scale estimation of LAI is not only conducive to better monitoring crops, but also conducive to its application in modeling, crop management and precision agriculture. Remote sensing technique has become a promising method to detect and monitor the crop LAI due to its many advantages. In this paper, Banjiequan Village, Wumachang Township, Qitai County, Xinjiang, China was selected as the study area. In order to rapidly and extensively retrieve LAI of winter wheat using domestic remote sensing images, 17 common vegetation indices were extracted from the GF-1/2 images, which was synchronized with field sampling, and observation at intervals of 20 m in the east-west direction and 30 m in the north-south direction in a 130 m × 420 m block. A total of 78 sampling points were taken from a small area of 4 rows × 50 cm. Sampling width was measured by tape ruler and coordinates of sampling points were given by GPS. Based on the vegetation indices extracted from GF-1/2 image and LAI data measured at erecting stage, jointing stage and flowering stage, we established univariate (linear, exponential, power, quadratic polynomials) and multivariate (partial least squares regression, PLSR) empirical models for inversion of winter wheat LAI, and validated them. The correlation coefficients of LAI with MSR (modified simple ratio), GNDVI (green normalized difference vegetation index), EVI (enhanced vegetation index) extracted from the erecting, jointing and flowering stages of GF-1 were the maximum, which were 0.708, 0.671, and 0.743, respectively, indicating that the correlation between these vegetation indices and LAI of winter wheat was significant. The univariate model R 2 based on MSRGF-1, NDVIGF-2 (normalized difference vegetation index), GNDVIGF-1 at jointing stage and EVIGF-1 at flowering stage were all greater than 0.7. Compared with different image data at the same growth stage, the quadratic polynomial model based on NDVIGF-2 and PLSR model based on NDVIGF-2, MSRGF-2, and SAVIGF-2 (soil-adjusted vegetation index) were more precise than those based on GF-1, with R 2 of 0.768 and 0.809 respectively. Compared with the models with the same data (GF-1) at different growth stages, the quadratic polynomial model based on GNDVIGF-1 at jointing stage and the PLSR model based on EVIGF-1, GSRGF-1 (green simple ratio) and NDVIGF-1 at flowering stage had the maximum value of R 2, which was 0.783. The RMSE of the PLSR model was smaller than that of the quadratic polynomial model, indicating the stability of the multivariate model was better than univariate model. Analyzing the LAI distribution maps inverted from different growth stages, it was found that the LAI inversion values basically coincided with the measured LAI values. The above results show that the domestic high-resolution remote sensing image has certain application value in crop physiological parameter inversion, and provides some references for related researches in the future.

Key words: GF-1/2 image, vegetation index, leaf area index, grey correlation analysis, remote sensing inversion

Fig. 1

Sketch map of the study area"

Table 1

Time of winter wheat remote sensing image acquisition in Qitai county"

影像获取时间
Image acquisition time (month/day)
冬小麦生育期
Growth stage of winter wheat
影像名称
Image name
波段信息
Band information
4/14, 4/16 起身期 Erecting stage GF-1, GF-2 GF-1/2: 多光谱 Multispectral
(0.45-0.52, 0.52-0.59, 0.63-0.69, 0.77-0.89 μm)
5/9 拔节期 Jointing stage GF-1
6/6 开花期 Flowering stage GF-1 GF-2: 全色 Panchromatic (0.45-0.90 μm)

Table 2

Common wide band vegetation indices"

植被指数
VI
名称
Name
公式
Equation
参考文献
Reference
NDVI 归一化差值植被指数
Normalized Difference Vegetation Index
$(R_{NIR}-R_{red})/(R_{NIR}+R_{red})$ [18]
GNDVI 绿度归一化差值植被指数
Green Normalized Difference Vegetation Index
$(R_{NIR}-R_{green})/(R_{NIR}+R_{green})$ [19]
RDVI 复归一化差值植被指数
Renormalized Difference Vegetation Index
$(R_{NIR}-R_{red})/ \sqrt{R_{NIR}+R_{red}}$ [20]
SAVI 土壤调整植被指数
Soil-Adjusted Vegetation Index
$(1+0.1)/ \frac{R_{NIR}-R_{red}}{R_{NIR}+R_{red}+0.1}$ [21]
MSR 修正简单比
Modified Simple Ratio
$(R_{NIR}-R_{blue})/(R_{red}+R_{blue})$ [22]
TVI 三角植被指数
Triangular Vegetation Index
$0.5[120(R_{NIR}-R_{green})-200(R_{red}+R_{green})]$ [18]
OSAVI 优化土壤调整植被指数
Optimized Soil-Adjusted Vegetation Index
$1.16(R_{NIR}-R_{red})/(R_{NIR}+R_{red}+0.16)$ [23]
EVI 增强植被指数
Enhanced Vegetation Index
$2.5 \times \frac{R_{NIR}-R_{red}}{R_{NIR}+6 \times R_{red}-7.5 \times R_{blue}+1}$ [24]
EVI2 双波段增强植被指数
Two-band Enhanced Vegetation Index
$2.5(R_{NIR}-R_{red})/(R_{NIR}+2.4 \times R_{red}+1)$ [25]
GSR 绿度简单比
Green Simple Ratio
${R_{NIR}}/{R_{green}}$ [26]
DVI 差值植被指数
Difference Vegetation Index
$R_{NIR}-R_{red}$ [27]
WDRVI 宽动态植被指数
Wide Dynamic Range Vegetation Index
$0.1\times(R_{NIR}-R_{red})/0.1 \times(R_{NIR}+R_{red})$ [28]
CIgreen 绿色叶绿素指数
Green Chlorophyll Index
$\frac{R_{NIR}}{R_{green}}-1$ [29]
VARI 可见光大气阻力指数
Visible Atmospherically Resistant Index
$(R_{green}-R_{red})/(R_{green}+R_{red}-R_{blue})$ [30]
MTVI 修正三角植被指数
Modified Triangular vegetation index
$1.2[1.2(R_{NIR}-R_{green})-200(R_{red}-R_{green})]$ [18]
NLI 非线性植被指数
Nonlinear Vegetation Index
$(R^{2}_{NIR}-R_{red})/(R^{2}_{NIR}+R_{red})$ [31]
MNLI 修正非线性植被指数
Modified Nonlinear Vegetation Index
$1.5(R^{2}_{NIR}-R_{red})/(R^{2}_{NIR}+R_{red}+0.5)$ [31]

Fig. 2

Correlation coefficient diagram between LAI and GF-1/2 broad band vegetation indices"

Table 3

Grey correlation degree and order between LAI and GF-1/2 broad band vegetation indices"

起身期 Erecting stage 拔节期 Jointing stage 开花期 Flowering stage
GF-1
VI
灰色关联度(排序)
Grey correlation degree (ranking)
GF-2
VI
灰色关联度(排序)
Grey correlation degree (ranking)
GF-1
VI
灰色关联度(排序) Grey correlation degree (ranking) GF-1
VI
灰色关联度(排序)
Grey correlation degree (ranking)
MSR 0.8015(1) NDVI 0.8657(1) GNDVI 0.8154(1) EVI 0.7894(1)
EVI2 0.7607(2) MSR 0.8622(2) NDVI 0.8006(2) GSR 0.7737(2)
OSAVI 0.7570(3) SAVI 0.8582(3) SAVI 0.7890(3) NDVI 0.7450(3)
GSR 0.7211(4) DVI 0.8545(4) GSR 0.7693(4) SAVI 0.7417(4)
SAVI 0.6839(5) MTVI 0.8523(5) OSAVI 0.7448(5) OSAVI 0.7417(5)
NDVI 0.6687(6) RDVI 0.8508(6) EVI2 0.7440(6) GNDVI 0.7413(6)
TVI 0.6590(7) VARI 0.8500(7) CIgreen 0.7434(7) EVI2 0.7376(7)
VARI 0.6584(8) CIgreen 0.8495(8) WDRVI 0.7424(8) WDRVI 0.7325(8)
MTVI 0.6366(9) MSR 0.8494(9) RDVI 0.7406(9) MSR 0.7235(9)
CIgreen 0.6360(10) WDRVI 0.8488(10) EVI 0.7399(10) VARI 0.7195(10)
WDRVI 0.6340(11) EVI2 0.8485(11) MSR 0.7366(11) RDVI 0.7176(11)
DVI 0.6327(12) OSAVI 0.8483(12) MTVI 0.7318(12) MTVI 0.7175(12)
EVI 0.6306(13) EVI 0.8482(13) DVI 0.7312(13) CIgreen 0.7173(13)
GNDVI 0.6293(14) MNLI 0.8470(14) VARI 0.7308(14) DVI 0.7155(14)
RDVI 0.6225(15) NLI 0.8305(15) MNLI 0.7172(15) NLI 0.7127(15)
NLI 0.6098(16) GSR 0.8303(16) NLI 0.7169(16) MNLI 0.7126(16)
MNLI 0.6096(17) TVI 0.8167(17) TVI 0.6898(17) TVI 0.6530(17)

Table 4

LAI univariate estimation model based on GF-1/2 broad band vegetation indices"

生育期
Growth stage
宽波段VI
Wide band VI
模型方程
Model equation
R2 RMSE
GF-1起身期
GF-1 Erecting stage
MSR y = 5.4668x-2.6287 0.701 0.494
y = 2.9635x2.6672 0.722 0.477
y = 0.1309e3.1277x 0.716 0.481
y = 6.6008x2-5.0771x+1.4542 0.724 0.475
GF-2起身期
GF-2 Erecting stage
NDVI y = 12.4782x-2.5336 0.765 0.437
y = 17.8705x2.2060 0.745 0.455
y = 0.2349e5.6859x 0.722 0.477
y = -11.7369x2+21.1498x-4.0829 0.768 0.435
GF-1拔节期
GF-1 Jointing stage
GNDVI y = 8.7911x+0.4153 0.761 0.553
y = 9.1945x0.9409 0.759 0.555
y = 2.2386e1.5225x 0.774 0.537
y = 17.5354x2-13.1548x+7.0072 0.783 0.527
GF-1开花期
GF-1 Flowering stage
EVI y = 3.1677x+0.6820 0.766 0.379
y = 3.7582x0.9018 0.767 0.378
y = 2.8333e0.4510x 0.766 0.379
y = -0.1721x2+3.8568x+0.0010 0.766 0.379

Table 5

LAI multivariable estimation model based on GF-1/2 broad band vegetation indices"

生育期 Growth stage 模型方程 Model equation R2 RMSE
GF-1起身期 GF-1 Erecting stage LAI=2.0666×MSR+2.4609×EVI2+5.8022×OSAVI-4.2774 0.751 0.451
GF-2起身期 GF-2 Erecting stage LAI=6.8168×NDVI+3.1975×MSR+1.5024×SAVI-3.0187 0.809 0.395
GF-1拔节期 GF-1 Jointing stage LAI=2.4087×GNDVI+2.0794×NDVI+1.6322×SAVI+0.1967×GSR +0.7757 0.760 0.554
GF-1开花期 GF-1 Flowering stage LAI=1.2643×EVI+0.2265×GSR+4.2343×NDVI+0.0108 0.783 0.365

Fig. 3

Fitting analysis chart between measured and predicted values of LAI"

Fig. 4

Spatial distribution map of LAI in different growth stages"

[1] Chen J M, Black T A . Defining leaf area index for non-flat leaves. Plant Cell & Environ, 2010,15:421-429.
[2] 张显峰, 廖春华 . 生态环境参数遥感协同反演与同化模拟. 北京: 科学出版社, 2014. pp 22-23.
Zhang X F, Liao C H. Synergistic Inversion and Assimilation Simulation of Ecological Environment Parameters by Remote sensing. Beijing: Science Press, 2014. pp 22-23(in Chinese).
[3] Barclay H J . Conversion of total leaf area to projected leaf area in lodgepole pine and Douglas-fir. Tree Physiol, 1998,18:185-193.
doi: 10.1093/treephys/18.3.185 pmid: 12651388
[4] 孙涛 . 农作物叶面积指数反演方法研究——以水稻和小麦为例. 南京信息工程大学硕士学位论文, 江苏南京, 2013.
Sun T . Study on Inversion Method of Crop Leaf Area Index: A Case Study of Rice and Wheat. MS Thesis of Nanjing University of Information Science & Technology, Nanjing, China, 2013 (in Chinese with English abstract).
[5] Pinty B, Lavergne T, Widlowski J L, Gobrona N, Verstraetea M M . On the need to observe vegetation canopies in the near-infrared to estimate visible light absorption. Remote Sense Environ, 2009,113:10-23.
doi: 10.1016/j.rse.2008.08.017
[6] 李鑫川, 徐新刚, 鲍艳松, 黄文江, 罗菊花, 董莹莹, 宋晓宇, 王纪华 . 基于分段方式选择敏感植被指数的冬小麦叶面积指数遥感反演. 中国农业科学, 2012,45:3486-3496.
doi: 10.3864/j.issn.0578-1752.2012.17.004
Li X C, Xu X G, Bao Y S, Huang W J, Luo J H, Dong Y Y, Song X Y, Wang J H . Retrieving LAI of winter wheat based on sensitive vegetation index by the segmentation method. Sci Agric Sin, 2012,45:3486-3496 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2012.17.004
[7] 陈艳华, 张万昌, 雍斌 . 基于分类知识利用神经网络反演叶面积指数. 生态学报, 2007,27:2785-2793.
Chen Y H, Zhang W C, Yong B . Retrieving leaf area index using a neural network based on classification knowledge. Acta Ecol Sin, 2007,27:2785-2793 (in Chinese with English abstract).
[8] 刘明, 冯锐, 纪瑞鹏, 武晋雯, 王宏博, 于文颖 . 基于MODIS-NDVI的春玉米叶面积指数和地上生物量估算. 中国农学通报, 2014,31(6):80-87.
Liu M, Feng R, Ji R P, Wu J W, Wang H B, Yu W Y . Estimation of leaf area index and aboveground biomass of spring maize by MODIS-NDVI. Chin Agric Sci Bull, 2014,31(6):80-87 (in Chinese with English abstract).
[9] Masayasu M, Koki H . Empirical regression models for estimating multiyear leaf area index of rice from several vegetation indices at the field scale. Remote Sens, 2014,6:4764-4779.
doi: 10.3390/rs6064764
[10] Mairaj D, Wen Z, Muhammad R, Wang S Q, Shi Z H . Evaluating hyperspectral vegetation indices for leaf area index estimation of Oryza sativa L. at diverse phenological stages. Front Plant Sci, 2017,8:820-837.
doi: 10.3389/fpls.2017.00820 pmid: 28588596
[11] 苏伟, 侯宁, 李琪, 张明政, 赵晓凤, 蒋坤萍 . 基于Sentinel-2遥感影像的玉米冠层叶面积指数反演. 农业机械学报, 2018,49(1):151-156.
Su W, Hou N, Li Q, Zhang M Z, Zhao X F, Jiang K P . Retrieving leaf area index of corn canopy based on sentinel-2 remote sensing image. Trans CSAM, 2018,49(1):151-156 (in Chinese with English abstract).
[12] Propastin P A . Spatial non-stationarity and scale-dependency of prediction accuracy in the remote estimation of LAI over a tropical rainforest in Sulawesi, Indonesia. Remote Sense Environ, 2009,113:2234-2242.
doi: 10.1016/j.rse.2009.06.007
[13] 高林, 杨贵军, 于海洋, 徐波, 赵晓庆, 董锦绘, 马亚斌 . 基于无人机高光谱遥感的冬小麦叶面积指数反演. 农业工程学报, 2016,32(22):113-120.
Gao L, Yang G J, Yu H Y, Xu B, Zhao X Q, Dong J H, Ma Y B . Retrieving winter wheat leaf area index based on unmanned aerial vehicle hyperspectral remoter sensing. Trans CSAE, 2016,32(22):113-120 (in Chinese with English abstract).
[14] 杜鹤娟, 柳钦火, 李静, 杨乐 . 光学与微波植被指数协同反演农作物叶面积指数的可行性分析. 遥感学报, 2013,17:1587-1611.
doi: 10.11834/jrs.20133035
Du H J, Liu Q H, Li J, Yang L . Retrieving crop leaf area index by combining optical and microwave vegetation indices: a feasibility analysis. J Remote Sens, 2013,17:1587-1611 (in Chinese with English abstract).
doi: 10.11834/jrs.20133035
[15] Liang L, Di L P, Zhang L P, Deng M X, Qin Z H, Zhao S H, Lin H . Estimation of crop LAI using hyperspectral vegetation indices and a hybrid inversion method. Remote Sense Environ, 2015,165:123-134.
[16] 李亚妮, 鲁蕾, 刘勇 . 基于PROSAIL模型的水稻田缨帽三角-叶面积指数模型及其应用. 应用生态学报, 2017,28:3976-3984.
Li Y N, Lu L, Liu Y . Tasseled cap triangle (TCT)-leaf area index (LAI) model of rice fields based on PROSAIL model and its application. Chin J Appl Ecol, 2017,28:3976-3984 (in Chinese with English abstract).
[17] 魏海鹏, 贾永红, 孔建平, 曾雪华, 邢玉萍 . 适宜新疆奇台生态区种植的春小麦品种探究. 农业科技通讯, 2017, ( 5):88-90.
Wei H P, Jia Y H, Kong J P, Zeng X H, Xing Y P . Study on spring wheat varieties suitable for planting in Qitai eco-region of Xinjiang. Bull Agric Sci Technol, 2017, ( 5):88-90 (in Chinese with English abstract).
[18] Schell J A . Monitoring vegetation systems in the great plains with ERTS. NASA Special Public, 1973,351:309.
[19] Gitelson A A, Merzlyak M N . Remote sensing of chlorophyll concentration in higher plant leaves. Adv Space Res, 1998,22:689-692.
doi: 10.1016/S0273-1177(97)01133-2
[20] Haboudane D, Miller J R, Pattey E, Zarco-Tejadad P J, Strachane I B . Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: modeling and validation in the context of precision agriculture. Remote Sense Environ, 2004,90:337-352.
doi: 10.1016/j.rse.2003.12.013
[21] 黄文江, 孔维平, 谢巧云 . 作物理化参数遥感定量反演. 北京: 科学出版社, 2017. pp 51-76.
Huang W J, Kong W P, Xie Q Y. Quantitative Retrieval of Crop Physical and Chemical Parameters by Remote Sensing. Beijing: Science Press, 2017. pp 51-76(in Chinese).
[22] Sims D A, Gamon J A . Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sense Environ, 2002,81:337-354.
[23] Huete A R . A soil-adjusted vegetation index (SAVI). Remote Sense Environ, 1988,25:295-309.
[24] Huete A, Didan K, Miura T, Rodrigueza E P, Gao X, Ferreirab L G . Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sense Environ, 2002,83:195-213.
doi: 10.1016/S0034-4257(02)00096-2
[25] Jiang Z, Huete A R, Didan K, Miurab T . Development of a two-band enhanced vegetation index without a blue band. Remote Sense Environ, 2008,112:3833-3845.
doi: 10.1016/j.rse.2008.06.006
[26] Sripada R P, Heiniger R W, White J G, Meijer A D . Aerial color infrared photography for determining in-season nitrogen requirements for corn. Agron J, 2006,98:968-977.
doi: 10.2134/agronj2005.0200
[27] Tucker C J . Red and photographic infrared linear combinations for monitoring vegetation. Remote Sense Environ, 1979,8:127-150.
[28] Gitelson A A . Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation. J Plant Physiol, 2004,161:165-173.
doi: 10.1078/0176-1617-01176 pmid: 15022830
[29] Gitelson A A, Gritz Y, Merzlyak M N . Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J Plant Physiol, 2003,160:271-282.
doi: 10.1078/0176-1617-00887 pmid: 12749084
[30] Gitelson A A, Stark R, Grits U, Rundquist D, Kaufman Y, Derry D . Vegetation and soil lines in visible spectral space: A concept and technique for remote estimation of vegetation fraction. Internat J Remote Sens, 2002,23:2537-2562.
[31] Gong P, Pu R, Biging G S, Larrieu M R . Estimation of forest leaf area index using vegetation indices derived from hyperion hyperspectral data. IEEE Transact Geosci Remote Sens, 2003,41:1355-1362.
[32] Xia X, Sun Y, Wu K, Jiang Q . Optimization of a straw ring-die briquetting process combined analytic hierarchy process and grey correlation analysis method. Fuel Proc Technol, 2016,152:303-309.
doi: 10.1016/j.fuproc.2016.06.018
[33] Fang S S, Yao X S, Zhang J Q, Han M . Grey Correlation Analysis on Travel Modes and their Influence Factors. Proc Engin, 2017,174:347-352.
[34] Elarab M, Ticlavilca A M, Torres-Rua A F, Maslovac I, McKeeab M . Estimating chlorophyll with thermal and broadband multispectral high resolution imagery from an unmanned aerial system using relevance vector machines for precision agriculture. Int J Appl Earth Obs, 2015,140:32-42.
[35] Maitiniyazi M, Abduwasit G, Paheding S, Sean H, Matthew M, Kyle P, Ethan S, Jack F, Jim P, Suhas K, Joel B, Felix F . Unmanned Aerial System (UAS)-based phenotyping of soybean using multi-sensor data fusion and extreme learning machine. ISPRS J Photogr Remote Sens, 2017,134:43-58.
doi: 10.1016/j.isprsjprs.2017.10.011
[36] Ding S, Zhao H, Zhang Y, Xu X, Nie R . Extreme learning machine: algorithm, theory and applications. Artific Intellig Rev, 2015,44:103-115.
[37] Huang G B, Zhou H, Ding X, Zhang R . Extreme learning machine for regression and multiclass classification. IEEE Transact Syst Man Cybern Part B (Cybernetics), 2012,42:513-529.
doi: 10.1109/TSMCB.2011.2168604 pmid: 21984515
[38] 束美艳, 顾晓鹤, 孙林, 朱金山, 杨贵军, 王延仓, 张丽妍 . 基于新型植被指数的冬小麦LAI高光谱反演. 中国农业科学, 2018,51:3486-3496.
Shu M Y, Gu X H, Sun L, Zhu J S, Yang G J, Wang Y C, Zhang L Y . High spectral inversion of winter wheat LAI based on new vegetation index. Sci Agric Sin, 2018,51:3486-3496 (in Chinese with English abstract).
[39] 高林, 杨贵军, 李长春, 冯海宽, 徐波, 王磊, 董锦绘, 付奎 . 基于光谱特征与PLSR结合的叶面积指数拟合方法的无人机画幅高光谱遥感应用. 作物学报, 2017,43:549-557.
Gao L, Yang G J, Li C C, Feng H K, Xu B, Wang L, Dong J H, Fu K . Application of an improved method in retrieving leaf area index combined spectral index with PLSR in hyperspectral data generated by unmanned aerial vehicle snapshot camera. Acta Agron Sin, 2017,43:549-557 (in Chinese with English abstract).
[1] LI Yan-Da, CAO Zhong-Sheng, SHU Shi-Fu, SUN Bin-Feng, YE Chun, HUANG Jun-Bao, ZHU Yan, TIAN Yong-Chao. Model for monitoring leaf dry weight of double cropping rice based on crop growth monitoring and diagnosis apparatus [J]. Acta Agronomica Sinica, 2021, 47(10): 2028-2035.
[2] YU Ning-Ning,ZHANG Ji-Wang,REN Bai-Zhao,ZHAO Bin,LIU Peng. Effect of integrated agronomic managements on leaf growth and endogenous hormone content of summer maize [J]. Acta Agronomica Sinica, 2020, 46(6): 960-967.
[3] LI Zong-Fei,SU Ji-Xia,FEI Cong,LI Yang-Yang,LIU Ning-Ning,DAI Yu-Xiang,ZHANG Kai-Xiang,WANG Kai-Yong,FAN Hua,CHEN Bing. Estimation of total nitrogen content in sugarbeet leaves under drip irrigation based on hyperspectral characteristic parameters and vegetation index [J]. Acta Agronomica Sinica, 2020, 46(4): 557-570.
[4] GAO Lin,YANG Gui-Jun,LI Chang-Chun,FENG Hai-Kuan,XU Bo,WANG Lei,DONG Jin-Hui,FU Kui. Application of an Improved Method in Retrieving Leaf Area Index Combined Spectral Index with PLSR in Hyperspectral Data Generated by Unmanned Aerial Vehicle Snapshot Camera [J]. Acta Agron Sin, 2017, 43(04): 549-557.
[5] QI Bo,ZHANG Ning,ZHAO Tuan-Jie,XING Guang-Nan,ZHAO Jing-Ming*,GAI Jun-Yi*. Prediction of Leaf Area Index Using Hyperspectral Remote Sensing in Breeding Programs of Soybean [J]. Acta Agron Sin, 2015, 41(07): 1073-1085.
[6] HU Ning,L? Chuan-Gen,YAO Ke-Min,ZHANG Xiao-Cui. Inversion of Rice Canopy Construction Parameters from the Hemispherical Photograph [J]. Acta Agron Sin, 2014, 40(08): 1443-1451.
[7] WU Qiong,QI Bo,ZHAO Tuan-Jie,YAO Xin-Feng,ZHU Yan,GAI Jun-Yi. A Tentative Study on Utilization of Canopy Hyperspectral Reflectance to Esti-mate Canopy Growth and Seed Yield in Soybean [J]. Acta Agron Sin, 2013, 39(02): 309-318.
[8] PAN Sheng-Gang, HUANG Qing-Ai, ZHANG Fan, QANG Jin-Ping, CAI Ming-Li, CAO Cou-Gui, TANG Xiang-Ru, LI Guo-Chi. Growth and Development Characteristics of Super-High-Yielding Mid-Season Indica Hybrid Rice [J]. Acta Agron Sin, 2011, 37(03): 537-544.
[9] LI Xiang-Ling, ZHAO Ming, LI Cong-Feng, GE Jun-Zhu, HOU Hai-Peng. Dynamic Characteristics of Leaf Area Index in Maize and Its Model Establishment Based on Accumulated Temperature [J]. Acta Agron Sin, 2011, 37(02): 321-330.
[10] CHEN Chuan-Yong, HOU Yu-Hong, SUN Rui, ZHU Ping, DONG Zhi-Qiang, ZHAO Ming. Effects of Planting Density on Yield Performance and Density-Tolerance Analysis for Maize Hybrids [J]. Acta Agron Sin, 2010, 36(07): 1153-1160.
[11] SUN Rui,ZHU Ping,WANG Zhi-Min,CONG Yan-Xia,GOU Ling,FANG Li-Feng,ZHAO Ming. Effect of Plant Density on Dynamic Characteristics of Leaf Area Index in Development of Spring Maize [J]. Acta Agron Sin, 2009, 35(6): 1097-1105.
[12] SUN Jin-Ying,CAO Hong-Xin,HUANG Yun. Correlation between Canopy Spectral Vegetation Index and Leaf Stomatal Conductance in Rapeseed(Brassica napus L.) [J]. Acta Agron Sin, 2009, 35(6): 1131-1138.
[13] YANG Fei; ZHANG Bai;SONG Kai-Shan;WANG Zong-Ming;LIU Huan-Jun;DU Jia. Relationship between Fraction of Photosynthetically Active Radiation and Vegetation Indices, Leaf Area Index of Corn and Soybean [J]. Acta Agron Sin, 2008, 34(11): 2046-2052.
[14] ZHU Yu-Jie; FENG Li-Ping ; ; YI Peng; YING Xiao-Guang; HU Yue-Gao. A Dynamic Model Simulating Photosynthetic Production and Dry Matter Accumulation for Alfalfa (Medicago sativa L.) [J]. Acta Agron Sin, 2007, 33(10): 1682-1687.
[15] ZHOU Dong-Qin;ZHU Yan;YAO Xia;TIAN Yong-Chao;CAO Wei-Xing. Estimating Grain Protein Content with Canopy Spectral Reflectance in Rice [J]. Acta Agron Sin, 2007, 33(08): 1219-1225.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!