Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (8): 2025-2038.doi: 10.3724/SP.J.1006.2023.22051

• CROP GENETICS & BREEDING · GERMPLASM RESOURCES · MOLECULAR GENETICS •     Next Articles

Identification of OsGMS2 and construction of seed production system for genic male sterile line in rice

TANG Jie1(), LONG Tuan2(), WU Chun-Yu1, LI Xin-Peng1, ZENG Xiang1, WU Yong-Zhong1, HUANG Pei-Jin1,*()   

  1. 1 Hainan Bolian Technology Co., Ltd., Haikou 570125, Hainan, China
    2 College of Tropical Crops, Hainan University, Haikou 570208, Hainan, China
  • Received:2022-09-18 Accepted:2023-02-10 Online:2023-08-12 Published:2023-03-13
  • Contact: HUANG Pei-Jin E-mail:jesontom@126.com;longtuan2001@aliyun.com;ricetj@126.com
  • About author:First author contact:**Contributed equally to this work
  • Supported by:
    Open Project of the State Key Laboratory of Rice Biology, China Rice Research Institute(20190203)

Abstract:

Male sterility is the basis for application of crop heterosis. The common nuclear male sterile mutant osgms2 was isolated from a mutant library created by 60Co-γ-treated indica cultivar 93-11. The male of the mutant was completely aborted, the female was nomal, and other agronomic characters were consistent with those of the wild type. Genetic analyses indicated that the male sterility phenotype was stably controlled by a single recessive gene. The OsGMS2 gene was fine-mapped within the 86 kb physical interval between two molecular markers S3b and 4826 on the long arm of chromosome 4 with a mapping population of osgms2 and Minghui 63. Further sequencing found the gene LOC_Os04g48490, encoding a fasciclin-like arabinogalactan protein, had a 9-bp deletion at position 118 to 126 from start codon of translation, resulting in three codons mutation. The osgms2 gene was a novel allele of OsFLA1. Subsequent gene knockout and genetic complementation experiments in Zhonghua 11 background confirmed the function of the gene. Real-time quantitative PCR (qPCR) analyses showed that the gene was expressed in all tissues, with the highest level at the flowering and immature seed stages. Alignment analyses revealed that the protein sequence was conserved in different species. By creating the OsGMS2-T maintainer, seed production of the common sterile line was achieved. The identification of the allelic mutant osgms2 provides the new materials for the study on rice nuclear male sterility and application of heterosis.

Key words: rice, genic male sterile, osgms2, gene mapping, OsGMS2-T maintainer line

Table 1

List of primers for gene mapping"

引物名称
Primer name
上游引物
Forward primer (5°-3°)
下游引物
Reverse primer (5°-3°)
RM17332 CGGTACATCACGGTATCAAATCG TAAATGCTGGAGCGATGCTAACC
RM280 GTGCTCTCCATGTCGGATTATGC CAAGGCAACAAGATTGGTTAGTGG
RM17351 ATAAAGGAGGAGGGCCTCAGATGG CACGGTTTGGAGGTTGGAAGC
RM17352 GCTTGGCATCTGCTTCTGTTGTTGG CTCGCTGCTGATCGAGGTGTCG
RM303 ATCGATGTAGGTAGAGGGACACC CAGATCTAGTCGACATGGTTGG
4826 ACACCATCTCTCTTCTTTTTCTAT ATATGGGTAGGTTTGGATATTCG
S4b GTGTGTGTGAGTAAAATCCTAGTGCA
AAAAAGTGTGTGTGAGTAAAATCCTAGAGCC
ATTTGTACTCCTATGTTTAGAATAGC
S3b ACAAATATATAGCAAAATCGGTGACC
AAAAAACAAATATATAGCAAAATCGGTTACG
GTGGTTTTGTGGATGTTTTGTAACT
S2 AAGTATTTGTAATGCACTATGTAAAGGT
AAAAAAAGTATTTGTAATGCACTATGTAATGGC
TTAAGAGCACACACTTCCAATAATATGT
S1 CTGGGCGCGGTGCGGCGGGCGAGGC
AAAAACTGGGCGCGGTGCGGCGGGCGTGGT
CCGCCTCAGCGCCACCGCCAAGCTGA
S8 AAGTTGTGTTTAGCACTATGTTATTACG
AAAAAAAGTTGTGTTTAGCACTATGTTATGACA
TTTAGCATAATAACTACTATTCATCATT
S10 GCAGGAGACACTTGGTGCCGCCTCTC
AAAAAGCAGGAGACACTTGGTGCCGCCACTT
GCAGATTATTTTCGGTGGGTCCCGTCTC

Table 2

List of primers for gene cloning"

引物名称
Primer name
上游引物
Forward primer (5°-3°)
下游引物
Reverse primer (5°-3°)
LOC_Os04g48490_1 AAACAGAAAGCCCCAATG TGCCGCAGTACGCGCCCAAG
LOC_Os04g48490_2 TTGTCCATGCCGGTGTCCAT GGTCACGGCACAAACTCA
InD48490 GCTCCGGCTGTTGATCT GCCTGCTCTTCCTCCTG
GAPDH-RT GAATGGCTTTCCGTGTT CAAGGTCCTCCTCAACG
T1-sg GCGGTCGGTGGCGGCCATGG
SP CCCGACATAGATGCAATAACTTC GCGCGGTGTCATCTATGTTACT
B1 AAACCCACGCCCAGAAA GCCAGGAGGAAGAGCAG
3148 HB CgcgtttcgaaatttTGATTTCTTCATCGCACT GtcgcgatcgcatgcACAACATGGTGCAACAGTG

Fig. 1

Phenotypic comparisons of wild type 93-11 and osgms2 A-F: plant (A), panicle (B), spikelets (C), spikelets after dehulling (D), anther (E), and pollen iodine staining (F) of 93-11 and osgms2. Bar: 10 cm (A), 1 cm (B), 2 mm (C, D), 1 mm (E), and 0.1 mm (F)."

Table 3

Genetic analyses of mutant osgms2"

杂交组合
Cross combination
异交结实率
Out-crossing seed-setting rate
F2 χ23:1 χ20.05
可育株Fertile plants 不育株Sterile plants
osgms2/93-11 71.27%±14.67% 57 13 0.85 3.841
osgms2/ZH11 62.94%±14.34% 80 16 0.57 3.841

Fig. 2

Fine mapping of osgms2 A: the preliminary mapping of osgms2 between marker RM303 and S10 on chromosome 4. B: the fine mapping of osgms2 in the 86 kb physical interval between markers S3b and 4826. C: the prediction of the 11 predictive gene, ORF11 marked in red is candidate gene. D: the structure of candidate gene LOC_Os04g48490 and the mutation site in osgms2 (The deletion of mutant AACAGCTAC leads to the deletion of Asn, Ser, and Tyr)."

Table 4

Predicted genes in target region"

序号
Serial number
基因
Gene name
功能注释
Function annotation
ORF1 LOC_Os04g48390 SPX-Major Facility Superfamily (MFS) protein
ORF2 LOC_Os04g48400 HOTHEAD precursor
ORF3 LOC_Os04g48410 Copper chaperone for superoxide dismutase
ORF4 LOC_Os04g48416 OsSub45-putative subtilisin homologue
ORF5 LOC_Os04g48440 The expressed protein
ORF6 LOC_Os04g48450 The expressed protein
ORF7 LOC_Os04g48460 Cytochrome P450
ORF8 LOC_Os04g48470 The expressed protein
ORF9 LOC_Os04g48480 The exostosin family domain containing protein
ORF10 LOC_Os04g48484 The expressed protein
ORF11 LOC_Os04g48490 The fasciclin-like arabinogalactan protein

Fig. 3

Co-segregation analysis of osgms2 mutants The osgms2 amplified a 140 bp product; MH63 amplified a 149 bp product; the size of PCR products of F2 fertile plants was either 149 bp, or 149 bp, and 140 bp; all PCR products of F2 sterile plants were 140 bp in length."

Fig. 4

Knockout and genetic complementation of mutant gene A: knockout vector target sequence and sequencing results of homozygous mutant cr-osgms2-3, the black bold underlined base is the PAM region, the red mark indicates AT base deletion; B: osgms2 genetic complemention vector construction map; C-F: plant (C), panicle (D), anther (E), and pollen iodine staining (F) of ZH11 and knockout homozygous strain cr-osgms2-3; G-J: plant (G), panicle (H), anther (I), and pollen iodine staining (J) of ZH11 and genetically complementary strain Com-osgms2. Bar: 10 cm (C), 2 mm (D)-(E), 0.1 mm (F), 10 cm (G), 2 mm (H)-(I), and 0.1 mm (J)."

Fig. 5

Alignment of amino acid sequence of OsGMS2"

Fig. 6

Relative expression levels of OsGMS2 genes in different tissues of rice"

Fig. 7

Sterile line breeding of OsGMS2 A: OsGMS2-T vector; B: OsGMS2 sterile line breeding process; C: left, wild type ZH11 (genotype Ms/Ms), middle, OsGMS2-T maintainer line (genotype ms/Ms-T), right, osgms2 sterile line (genotype ms/ms) pollen 1% iodine-potassium iodide staining. Bar: 0.1 mm; D: bright field (BF), fluorescence (FRFP), and merged OsGMS2-T maintainer seeds. Bar: 5 mm."

Fig. 8

Phenotype identification of OsGMS2-T maintainer line and osgms2 male sterile line in T1 generation A-B: plant and panicle of OsGMS2-T maintainer line (A) and the osgms2 male sterile line (B); C: OsGMS2-T maintainer seeds in fluorescence field; D-E: pollen 1% iodine potassium iodide staining of OsGMS2-T maintainer line (D) and osgms2 male sterile line (E). Bar: 10 cm (A), 5 cm (B), 1 cm (C), and 0.1 mm (D)-(E)."

[1] 朱英国. 水稻雄性不育生物学. 武汉: 武汉大学出版社, 2000.
Zhu Y G. Biology of Cytoplasmic Male Sterility in Rice. Wuhan: Wuhan University Press, 2000. (in Chinese)
[2] Kaulm L H. Male Sterility in Higher Plants. Berlin: Springer Verlag, 1988. p 1005.
[3] Hong L L, Tang D, Zhu K M, Wang K J, Li M, Cheng Z K. Somatic and reproductive cell development in rice anther is regulated by a putative glutaredoxin. Plant Cell, 2012, 24: 577-588.
doi: 10.1105/tpc.111.093740
[4] Ding Z J, Wang T, Chong K, Bai S N. Isolation and characterization of OsDMC1, the rice homologue of the yeast DMC1 gene essential for meiosis. Sexual Plant Reprod, 2001, 13: 285-288.
doi: 10.1007/s004970100065
[5] Nonomura K, Nakano M, Fukuda T, Eiguchi M, Miyao A, Hirochika H, Kurata N. The novel gene HOMOLOGOUS PAIRING ABERRATION IN RICE MEIOSIS1 of rice encodes a putative coiled-coil protein required for homologous chromosome pairing in meiosis. Plant Cell, 2004, 16: 1008-1020.
doi: 10.1105/tpc.020701
[6] Nonomura K I, Nakano M, Murata K, Miyoshi K, Kurata N. An insertional mutation in the rice PAIR2 gene, the ortholog of Arabidopsis ASY1, results in a defect in homologous chromosome pairing during meiosis. Mol Genet Genomics, 2004, 271: 121-129.
pmid: 14758540
[7] Yuan W Y, Li X W, Chang Y X, Wen R Y, Chen G X, Zhang Q F, Wu C Y. Mutation of the rice gene PAIR3 results in lack of bivalent formation in meiosis. Plant J, 2009, 59: 303-315.
doi: 10.1111/tpj.2009.59.issue-2
[8] Wang M, Wang K J, Tang D, Wei C X, Li M, Shen Y, Chi Z C, Gu M H, Cheng Z K. The central element protein ZEP1 of the synaptonemal complex regulates the number of crossovers during meiosis in rice. Plant Cell, 2010, 22: 417-430.
doi: 10.1105/tpc.109.070789
[9] Shao T, Tang D, Wang K J, Wang M, Che L X, Qin B X, Yu H X, Li M, Gu M H, Cheng Z K. OsREC8 is essential for chromatid cohesion and metaphase I monopolar orientation in rice meiosis. Plant Physiol, 2011, 156: 1386-1396.
doi: 10.1104/pp.111.177428
[10] Nonomura K I, Miyoshi K, Eiguchi M, Suzuki T, Miyao A, Kurata H N. The MSP1 gene is necessary to restrict the number of cells entering into male and female sporogenesis and to initiate anther wall formation in rice. Plant Cell, 2003, 15: 1728-1739.
doi: 10.1105/tpc.012401
[11] Jung K H, Han M J, Lee Y S, Kim Y W, Hwang I, Kim M J, Kim Y K, Nahm B H, An G. Rice undeveloped tapetum1 is a major regulator of early tapetum development. Plant Cell, 2005, 17: 2705-2722.
doi: 10.1105/tpc.105.034090 pmid: 16141453
[12] Li N, Zhang D S, Liu H S, Yin C S, Li X X, Liang W Q, Yuan Z, Xu B, Chu H W, Wang J, Wen T Q, Huang H, Luo D, Ma H, Zhang D B. The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development. Plant Cell, 2006, 18: 2999-3014.
doi: 10.1105/tpc.106.044107 pmid: 17138695
[13] Kaneko M, Inukai Y, Ueguchi-Tanaka M, Itoh H, Izawa T, Kobayashi Y, Hattori T, Miyao A, Hirochika H, Ashikari M, Matsuoka M. Loss-of-function mutations of the rice GAMYB gene impair α-amylase expression in aleurone and flower development. Plant Cell, 2004, 16: 33-44.
doi: 10.1105/tpc.017327
[14] Li H, Yuan Z, Gema V B, Yang C Y, Liang W Q, Zong J, Wilson Z, Zhang D B. PERSISTENT TAPETAL CELL1 encodes a PHD-Finger protein that is required for tapetal cell death and pollen development in rice. Plant Physiol, 2011, 156: 615-630.
doi: 10.1104/pp.111.175760 pmid: 21515697
[15] Yang Z F, Liu L, Sun L P, Yu P, Zhang P P, Adil A, Xiang X J, Wu W X, Zhang Y X, Cao L Y, Cheng S H. OsMS1 functions as a transcriptional activator to regulate programmed tapetum development and pollen exine formation in rice. Plant Mol Biol, 2019, 99: 175-191.
doi: 10.1007/s11103-018-0811-0
[16] Tan H X, Liang W Q, Hu J P, Zhang D B. MTR1 encodes a secretory fasciclin glycoprotein required for male reproductive development in rice. Developmental Cell, 2012, 22: 1127-1137.
doi: 10.1016/j.devcel.2012.04.011
[17] Li X W, Gao X Q, Wei Y, Deng L, Ouyang Y D, Chen G X, Li X H, Zhang Q F, Wu C Y. Rice APOPTOSIS INHIBITOR5 coupled with two DEAD-Box adenosine 5’-triphosphate-dependent RNA helicases regulates tapetum degeneration. Plant Cell, 2011, 23: 1416-1434.
doi: 10.1105/tpc.110.082636
[18] 陈驰, 陈代波, 孙志豪, 彭泽群, Adil Abbas, 贺登美, 张迎信, 程海涛, 于萍, 马兆慧, 宋建, 曹立勇, 程式华, 孙廉平, 占小登, 吕文彦. 水稻典败型隐性核雄性不育突变体ap90的鉴定与基因定位. 作物学报, 2022, 48: 1569-1582.
doi: 10.3724/SP.J.1006.2022.12044
Chen C, Chen D B, Sun Z h, Peng Z Q, Adil A, He D M, Zhang Y X, Cheng H T, Yu P, Ma Z H, Song J, Cao L Y, Cheng S H, Sun L P, Zhan X D, Lyu W Y. Rice classic recessive nuclear male identification and gene mapping of sterile mutant ap90. Acta Agron Sin, 2022, 48: 1569-1582. (in Chinese with English abstract)
[19] Shi J, Tan H X, Yu X H, Liu Y Y, Liang W Q, Kosala R, Rochus B F, Lukas S, Wang Y J, Kai G Y, John S, Ma H, Zhang D B. Defective pollen wall is required for anther and microspore development in rice and encodes a fatty acyl carrier protein reductase. Plant Cell, 2011, 23: 2225-2246.
doi: 10.1105/tpc.111.087528
[20] Li H, Pinot F, Sauveplane V, Werck-Reichhart D, Diehl P, Schreiber L, Franke R, Zhang P, Chen L, Gao Y W, Liang W Q, Zhang D B. Cytochrome P 450 family member CYP704B2 catalyzes the ω-Hydroxylation of fatty acids and is required for anther cutin biosynthesis and pollen exine formation in rice. Plant Cell, 2010, 22: 173-190.
doi: 10.1105/tpc.109.070326
[21] Yang X J, Wu D, Shi J X, He Y, Pinot F, Grausem B, Yin C S, Zhu L, Chen M J, Luo Z J, Liang W Q, Zhang D B. Rice CYP703A3, a cytochrome P450 hydroxylase, is essential for development of anther cuticle and pollen exine. J Integr Plant Biol, 2014, 56: 979-994.
doi: 10.1111/jipb.12212
[22] Men X, Shi J X, Liang W Q, Zhang Q F, Lian G B, Quan S, Zhu L, Luo Z J, Chen M J, Zhang D B. Glycerol-3-Phosphate Acyltransferase 3 (OsGPAT3) is required for anther development and male fertility in rice. J Exp Bot, 2017, 68: 513-526.
doi: 10.1093/jxb/erw445 pmid: 28082511
[23] Zou T, Li S C, Liu M X, Wang T, Xiao Q, Chen D, Li Q, Liang Y L, Zhu J, Liang Y Y, Deng Q M, Wang S Q, Zheng A P, Wang L X, Li P. An atypical strictosidine synthase, OsSTRL2, plays key roles in anther development and pollen wall formation in rice. Sci Rep, 2017, 7: 6863.
doi: 10.1038/s41598-017-07064-4
[24] Deng Y, Wan Y, Liu W, Zhang L S, Zhou K, Feng P, He G H, Wang N. OsFLA1 encodes a fasciclin-like arabinogalactan protein and affects pollen exine development in rice. Theor Appl Genet, 2022, 135: 1247-1262.
doi: 10.1007/s00122-021-04028-1
[25] Zhu Q H, Ramm K, Shivakkumar R, Elizabeth S, Upadhyaya D N M. The ANTHER INDEHISCENCE1gene encoding a single MYB domain protein is involved in anther development in rice. Plant Physiol, 2004, 135: 1514-1525.
doi: 10.1104/pp.104.041459
[26] Moritoh S, Miki D, Akiyama M, Kawahara M, Izawa T, Maki H, Shimamoto K. RNAi-mediated silencing of OsGEN-L (OsGEN-like), a new member of the RAD2/XPG nuclease family, causes male sterility by defect of microspore development in rice. Plant Cell Physiol, 2005, 46: 699-715.
doi: 10.1093/pcp/pci090 pmid: 15792960
[27] Shu J, Minnie 1 C, Srinivasan R. The Oryza sativa no pollen (osnop) gene plays a role in male gametophyte development and most likely encodes a C2-GRAM domain-containing protein. Plant Mol Biol, 2005, 57: 835-853.
doi: 10.1007/s11103-005-2859-x
[28] Huang X R, Peng X B, Sun M X. OsGCD1 is essential for rice fertility and required for embryo dorsal-ventral pattern formation and endosperm development. New Phytol, 2017, 215: 1039-1058.
doi: 10.1111/nph.2017.215.issue-3
[29] Xue Z Y, Xu X, Zhou Y, Wang X N, Zhang Y C, Liu D, Zhao B B, Duan L X, Qi X Q. Deficiency of a triterpene pathway results in humidity-sensitive genic male sterility in rice. Nat Commun, 2018, 9: 604.
doi: 10.1038/s41467-018-03048-8 pmid: 29426861
[30] 唐杰, 吴春瑜, 李佳林, 曾翔, 黄培劲, 龙湍. CRISPR/Cas9技术编辑RMS2基因及其利用. 分子植物育种, 2021, 19: 3973-3982.
Tang J, Wu C H, Li J L, Zeng X, Huang P J, Long T. CRISPR/ Cas9 technology editing RMS2 gene and its utilization. Mol Plant Breed, 2021, 19: 3973-3982. (in Chinese with English abstract)
[31] Nothnagel E A. Proteoglycans and related components in plant cells. Int Rev Plant Cytol, 1997, 174: 195-291.
[32] Showalter A M. Structure and function of plant cell wall proteins. Plant Cell, 1993, 5: 9-23.
doi: 10.1105/tpc.5.1.9 pmid: 8439747
[33] 秦源, 赵洁. 阿拉伯半乳糖蛋白在被子植物有性生殖中的作用. 植物生理与分子生物学学报, 2004, 30: 371-378.
Qin Y, Zhao J. The role of arabinogalactose protein in the sexual reproduction of angiosperms. J Plant Physiol Mol Biol, 2004, 30: 371-378. (in Chinese with English abstract)
[34] Kawaguchi K, Shibuya N. Characterization of arabinogalactan-proteins and a related oligosaccharide in developing rice anthers. In: Nothnagel E A, Bacic A, Clarke A E, eds. Cell Develop Biology of Arabinogalactan Proteins. New York: Kluwer Academic/Plenum Publishers, 2000. pp 149-152
[35] Ma H L, Zhao J. Genome-wide identification, classification, and expression analysis of the arabinogalactan protein gene family in rice (Oryza sativa L.). J Exp Bot, 2010, 61: 2647-2668.
doi: 10.1093/jxb/erq104
[36] 龙湍, 安保光, 李新鹏, 张维, 李京琳, 杨瑶华, 曾翔, 吴永忠, 黄培劲. 籼稻93-11辐射诱变突变体库的创建及其筛选. 中国水稻科学, 2016, 30: 44-52.
doi: 10.16819/j.1001-7216.2016.5126
Long T, An B G, Li X P, Zhang W, Li J L, Yang Y H, Zeng X, Wu Y Z, Huang P J.Construction and screening of an irradiation-induced mutant library of indica rice 93-11. J Chin Rice Sci, 2016, 30: 44-52. (in Chinese with English abstract)
[37] Zhao J, Long T, Wang Y F, Tong X H, Tang J, Li J L, Wang H M, Tang L Q, Li Z Y, Shu Y Z, Liu X X, Li S F, Liu H, Li J L, Wu Y Z, Zhang J. RMS2 encoding a GDSL lipase mediates lipid homeostasis in anthers to determine rice male fertility. Plant Physiol, 2020, 182: 2047-2064.
doi: 10.1104/pp.19.01487
[38] 李京琳, 李佳林, 李新鹏, 安保光, 曾翔, 吴永忠, 黄培劲, 龙湍. 水稻ptc1隐性核不育系的创制及其配合力分析. 作物学报, 2021, 47: 2173-2183.
doi: 10.3724/SP.J.1006.2021.02076
Li J L, Li J L, Li X P, An B G, Zeng X, Wu Y Z, Huang P J, Long T. Creation and combining ability analysis of recessive genic sterile lines with a new ptc1 locus in rice. Acta Agron Sin, 2021, 47: 2173-2183. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.02076
[39] 李京琳, 李新鹏, 龙湍, 安保光, 曾翔, 吴永忠, 黄培劲. 一个水稻MSP1突变体的鉴定和分析. 植物生理学报, 2018, 54: 393-400.
Li J L, Li X P, Long T, An B G, Zeng X, Wu Y Z, Huang P J. Identification and characterization of a rice MSP1 mutant. Plant Physiol J, 2018, 54: 393-400. (in Chinese with English abstract)
doi: 10.1111/ppl.1982.54.issue-4
[40] Rogers S O, Bendich A J. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol Biol, 1985, 5: 69-76.
doi: 10.1007/BF00020088 pmid: 24306565
[41] Michelmore R. Molecular approaches to manipulation of disease resistance genes. Annu Rev Phytopathol, 1995, 33: 393-427.
pmid: 18999967
[42] Orjuela J, Garavito A, Bouniol M. A universal core genetic map for rice. Theor Appl Genet, 2010, 120: 563-572.
doi: 10.1007/s00122-009-1176-1 pmid: 19847389
[43] Ma X L, Zhang Q Y, Zhu Q L, Liu W, Chen Y, Qiu R, Wang B, Yang Z F, Li H Y, Lin Y R, Xie Y Y, Shen R X, Chen S F, Wang Z, Chen Y L, Guo J X, Chen L T, Zhao X C, Dong Z C, Liu Y G. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant, 2015, 8: 1274-1284.
doi: 10.1016/j.molp.2015.04.007 pmid: 25917172
[44] 李俊.拟南芥阿拉伯半乳糖蛋白基因AtFLA3生物学功能研究. 武汉大学博士学位论文, 湖北武汉, 2010.
Li J.Biological Function of Arabidopsis Arabinogalactose Protein Gene AtFLA3. PhD Dissertation of Wuhan University, Wuhan, Hubei, China, 2010. (in Chinese with English abstract)
[45] Ito S, Suzuki Y, Miyamoto K, Ueda J, Yamaguchi I. AtFLA11, a fasciclin-like arabinogalactan-protein, specifically localized in screlenchyma cells. Biosci Biotechnol Biochem, 2005, 69: 1963-1969.
doi: 10.1271/bbb.69.1963
[46] 马腾飞.水稻木质形成素类AGP蛋白基因家族的鉴定及OsAGP13的生物学功能研究. 武汉大学博士学位论文, 湖北武汉, 2014.
Ma T F.Identification of Rice Lignin-like AGP Protein Gene Family and Biological Function Study of OsAGP13. PhD Dissertation of Wuhan University, Wuhan, Hubei, China, 2014. (in Chinese with English abstract)
[47] Zhang X, Zhao G C, Tan Q, Yuan H, Betts N, Zhu L, Zhang D B, Liang W Q. Rice pollen aperture formation is regulated by the interplay between OsINP1 and OsDAF1. Nat Plants, 2020, 6: 394-403.
doi: 10.1038/s41477-020-0630-6 pmid: 32284546
[48] 袁隆平. 杂交水稻发展的战略. 杂交水稻, 2018, 33(5): 1-2.
Yuan L P. The strategy for hybrid rice development. Hybrid Rice, 2018, 33(5): 1-2. (in Chinese with English abstract)
[1] XU Gao-Feng, SHEN Shi-Cai, ZHANG Fu-Dou, YANG Shao-Song, JIN Gui-Mei, ZHENG Feng-Ping, WEN Li-Na, ZHANG Yun, WU Ran-Di. Effects of soil microbes on rice allelopathy and its mechanism of wild rice (Oryza longistaminata) and its descendants [J]. Acta Agronomica Sinica, 2023, 49(9): 2562-2571.
[2] HU Yan-Juan, XUE Dan, GENG Di, ZHU Mo, WANG Tian-Qiong, WANG Xiao-Xue. Mutation effects of OsCDF1 gene and its genomic variations in rice [J]. Acta Agronomica Sinica, 2023, 49(9): 2362-2372.
[3] LIU Kai, CHEN Ji-Jin, LIU Shuai, CHEN Xu, ZHAO Xin-Ru, SUN Shang, XUE Chao, GONG Zhi-Yun. Dynamic change profile of histone H3K18cr on rice whole genome under cold stress [J]. Acta Agronomica Sinica, 2023, 49(9): 2398-2411.
[4] JIA Lu-Qi, SUN You, TIAN Ran, ZHANG Xue-Fei, DAI Yong-Dong, CUI Zhi-Bo, LI Yang-Yang, FENG Xin-Yu, SANG Xian-Chun, and WANG Xiao-Wen. Identification of the rgs1 mutant with rapid germination of seed and isolation of the regulated gene in rice [J]. Acta Agronomica Sinica, 2023, 49(8): 2288-2295.
[5] SONG Zhao-Jian, FENG Zi-Yi, QU Tian-Ge, LYU Pin-Cang, YANG Xiao-Lu, ZHAN Ming-Yue, ZHANG Xian-Hua, HE Yu-Chi, LIU Yu-Hua, CAI De-Tian. Indica-japonica attribute identification and heterosis utilization of diploid rice lines reverted from tetraploid rice [J]. Acta Agronomica Sinica, 2023, 49(8): 2039-2050.
[6] WANG Xing-Rong, ZHANG Yan-Jun, TU Qi-Qi, GONG Dian-Ming, QIU Fa-Zhan. Identification and gene localization of a novel maize nuclear male sterility mutant ms6 [J]. Acta Agronomica Sinica, 2023, 49(8): 2077-2087.
[7] WEI Xin-Yu, ZENG Yue-Hui, YANG Wang-Xing, XIAO Chang-Chun, HOU Xin-Po, HUANG Jian-Hong, ZOU Wen-Guang, XU Xu-Ming. Development of high-quality fragrant indica CMS line by editing Badh2 gene using CRISPR-Cas9 technology in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2023, 49(8): 2144-2159.
[8] CHEN Ting, JIAO Yan-Yang, ZHOU Xin-Ye, WU Lin-Kun, ZHANG Zhong-Yi, LIN Yu, LIN Sheng, LIN Wen-Xiong. Effects of different soil intensification treatments on growth and development of Radix pseudostellariae in continuous cropping system [J]. Acta Agronomica Sinica, 2023, 49(8): 2225-2239.
[9] DENG Ai-Xing, LI Ge-Xing, LYU Yu-Ping, LIU You-Hong, MENG Ying, ZHANG Jun, ZHANG Wei-Jian. Effect of shading duration after heading on grain yield and quality of japonica rice in northwest China [J]. Acta Agronomica Sinica, 2023, 49(7): 1930-1941.
[10] XU Na, XU Quan, XU Zheng-Jin, CHEN Wen-Fu. Research progress on physiological ecology and genetic basis of rice plant architecture [J]. Acta Agronomica Sinica, 2023, 49(7): 1735-1746.
[11] LIN Xiao-Xin, HUANG Ming-Jiang, WEI Yi, ZHU Hong-Hui, WANG Zi-Yi, LI Zhong-Cheng, ZHUANG Hui, LI Yan-Xi, LI Yun-Feng, CHEN Rui. Identification and gene mapping of long grain and degenerated palea (lgdp) in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2023, 49(6): 1699-1707.
[12] XU Ran, CHEN Song, XU Chun-Mei, LIU Yuan-Hui, ZHANG Xiu-Fu, WANG Dan-Ying, CHU Guang. Effects of nitrogen fertilizer rates on grain yield and nitrogen use efficiency of japonica-indica hybrid rice cultivar Yongyou 1540 and its physiological bases [J]. Acta Agronomica Sinica, 2023, 49(6): 1630-1642.
[13] DING Jie-Rong, MA Ya-Mei, PAN Fa-Zhi, JIANG Li-Qun, HUANG Wen-Jie, SUN Bing-Rui, ZHANG Jing, LYU Shu-Wei, MAO Xing-Xue, YU Hang, LI Chen, LIU Qing. Ubiquitin receptor protein OsDSK2b plays a negative role in rice leaf blast resistance and osmotic stress tolerance [J]. Acta Agronomica Sinica, 2023, 49(6): 1466-1479.
[14] HE Yong-Ming, ZHANG Fang. Study of regulating effect of auxin on floret opening in rice [J]. Acta Agronomica Sinica, 2023, 49(6): 1690-1698.
[15] TAO Yue-Yue, SHENG Xue-Wen, XU Jian, SHEN Yuan, WANG Hai-Hou, LU Chang-Ying, SHEN Ming-Xing. Characteristics of heat and solar resources allocation and utilization in rice- oilseed rape double cropping systems in the Yangtze River Delta [J]. Acta Agronomica Sinica, 2023, 49(5): 1327-1338.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .