Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (8): 2039-2050.doi: 10.3724/SP.J.1006.2023.22057

• CROP GENETICS & BREEDING · GERMPLASM RESOURCES · MOLECULAR GENETICS • Previous Articles     Next Articles

Indica-japonica attribute identification and heterosis utilization of diploid rice lines reverted from tetraploid rice

SONG Zhao-Jian1,*(), FENG Zi-Yi1, QU Tian-Ge1, LYU Pin-Cang1, YANG Xiao-Lu1, ZHAN Ming-Yue1, ZHANG Xian-Hua1, HE Yu-Chi1, LIU Yu-Hua2, CAI De-Tian1,2,*()   

  1. 1 School of Life Sciences, Hubei University, Wuhan 430062, Hubei, China
    2 Wuhan Polyploid Biotechnology Co., Ltd., Wuhan 430345, Hubei, China
  • Received:2022-09-27 Accepted:2023-02-10 Online:2023-08-12 Published:2023-02-28
  • Contact: SONG Zhao-Jian,CAI De-Tian E-mail:zjsong99@126.com;dtcai8866@163.com
  • Supported by:
    Key Research and Development Program of Hubei Province(2020BBA032);Major Science and Technology Project of Wuhan, and the Brand Agriculture Development Plan of Wuhan

Abstract:

In this study, the indica-japonica attribute of eight reverted diploid lines were identified by InDel molecular marker. The hybrid combinations were made between the reverted diploid lines and photoperiod- and thermo-sensitive genic male sterile lines Peiai 64S (indica) and Nongken 58S (japonica), respectively. The genetic distance and cluster analysis of the parents and hybrids were carried out, the yield related traits of the hybrids and the male parents were investigated, then the over male parent heterosis and the competitive heterosis of the hybrids were analyzed. In addition, the correlation between parental genetic distance and the heterosis was analyzed to explore the feasibility of using parental genetic distance to predict heterosis. The results showed as follows: (1) The indica gene frequency of the reverted diploid lines ranged from 0.605 to 0.947. All lines had both indica and japonica genetic components, but the proportions of indica and japonica components were different from each other. (2) The genetic distance between the reverted diploid lines and Pei’ai 64S were 0.21-0.42, and that between the reverted diploid lines and Nongken 58S were 0.68-0.95. The materials with the same or similar indica-japonica attribute were clustered together, which clearly showed the genetic relationship between the materials. (3) The heterosis utilization of the reverted diploid lines needed the participation of wide compatibility genes. The hybrid combinations made between Peiai 64S that had wide compatibility gene and the reverted diploid lines had obvious over male parent heterosis and competitive heterosis in the effective panicle number per plant, the total grain number per panicle, and the filled grain number per panicle. In the yield per plant, eight hybrid combinations all showed over male parent heterosis and competitive heterosis, especially the yield per plant of HYP2 was prominent, up to 45.92%. (4) The genetic distance of parents was significantly positively correlated with the total grain number per panicle and the yield per plant of the hybrids, indicating that the InDel genetic distance can be used for predicting heterosis. The study confirmed that the reverted diploid lines from the tetraploid indica-japonica subspecies rice had both indica and japonica genetic components, and contained abundant genetic diversity. Using the reverted diploid lines, the hybrid combinations with super heterosis could be made, which providing a theoretical basis and reference for the utilization of indica-japonica subspecies heterosis through the combination of indica-japonica intermediate lines and photoperiod- and thermo-sensitive genic male sterile lines with wide compatibility genes. At the same time, we preliminarily confirmed the feasibility of the pathway “breeding new diploid rice varieties by using polyploid as the vector for creating variation”, which provided a new idea and approach for rice breeding.

Key words: rice, polyploid, reverted diploid, InDel, indica-japonica attribute, genetic distance, heterosis

Table 1

Primer sequences of 19 InDel markers for indica-japonica attribute identification"

标记名称
Marker
正向引物DNA序列
Forward sequence (5′-3′)
反向引物DNA序列
Reverse sequence (5′-3′)
9311与日本晴片段差异
Fragment differences between 9311 and Nipponbare (bp)
R1M7 ATTCCTGGTTCTACATTACTTA CGCCTCACTAGAATATCGGA 37
R1M37 ATAGTTCGCCATCGTCAT ACACGCCATAGCAAGGAA 53
R2M10 CCCAGTCTGCTGCCATCT GAATGTATTTCAGTTCCAGTAAG 48
R2M50 CCTGAAGGAAATGATAGCAATAG GTTTTGTATGCTCTTCACTTGTC 42
R3M10 CCGAGTACCATTGCTTTC CTGCCATAGTTACTGCTCTGTT 37
R3M53 ACACTGGCTACGGCAAAG TTTGTTCGGGAATAATGATGC 35
R4M17 AGTGCTCGGTTTTGTTTTC GTCAGATATAATTGATGGATGTA 51
R5M13 GAGAAAGAGTGGAAGGAG AGTATCGTCAGGAGGGTC 32
R5M30 CTCAATTTCACCCATCCC CGCTCCGTCTCCAACCTC 46
R6M14 AAATGTCCATGTGTTTGCTTC CATGTGTGGAATGTGGTTG 34
R6M44 TTAGGAATAAAGGCTGGATA TTACCGTTAATAGGTGGAA 34
R7M7 ACCTTCCCTCCCCTTTTGAT AACTTGGTCTTCCTGTTTTATTG 67
R7M37 CAGCCCTAAATCTAAATACCC ACGTTGAGACAGGCGAGC 36
R8M33 CGAAAGAGGAGAGGGGTAGT CGAAAACGAGAAACAAATA 38
R9M42 CTATAAGACCAAAACGAAAACT GAAAACCATTGTGTCACTGTA 48
R10M17 TGAACAATAAACCACAGAAGCA CCCTTTATTCCCTCCTTTG 31
R11M23 AAGGTTGACAAGGACAGAAG TCGCAGGAATGGATAAAA 42
R12M10 ATCATTTCAGCCTGTGCC AGCTTAATAGGGGGGACG 47
R12M27 ATTTCATTGCCATCAGTT GTAATCTTCTATCCGTTCA 33

Table 2

InDel classification criteria for indica-japonica attribute identification based on indica or japonica gene frequency"

籼粳属性
Indica-japonica
attributes
基因频率 Gene frequency
籼型(Fi) Indica 粳型(Fj) Japonica
典型籼稻Typical indica 0.90-1.00 0-0.10
籼稻Indica 0.75-0.89 0.11-0.25
偏籼Indica cline 0.61-0.74 0.26-0.39
中间类型Intermediate 0.40-0.60 0.40-0.60
偏粳Japonica cline 0.26-0.39 0.61-0.74
粳稻Japonica 0.11-0.25 0.75-0.89
典型粳稻Typical japonica 0-0.10 0.90-1.00

Table 3

Indica-japonica attributes of reverted diploid lines, sterile lines and their hybrids identified by InDel markers"

材料名称
Material
材料类型
Type
籼型基因频率(Fi)
Gene frequencies of indica
粳型基因频率(Fj)
Gene frequencies of japonica
籼粳属性鉴定结果
Indica-japonica attributes
identified by InDel markers
9311 籼稻对照品种Control variety of indica 1.000 0.000 典型籼稻Typical indica
日本晴Nipponbare 粳稻对照品种Control variety of japonica 0 1.000 典型粳稻Typical japonica
A3 回复二倍体Reverted diploid line 0.658 0.342 偏籼Indica cline
T1 回复二倍体Reverted diploid line 0.605 0.395 偏籼Indica cline
ST110 回复二倍体Reverted diploid line 0.868 0.132 籼稻Indica
ST112 回复二倍体Reverted diploid line 0.947 0.053 典型籼稻Typical indica
ST126 回复二倍体Reverted diploid line 0.789 0.211 籼稻Indica
ST130 回复二倍体Reverted diploid line 0.816 0.184 籼稻Indica
ST133 回复二倍体Reverted diploid line 0.789 0.211 籼稻Indica
ST141 回复二倍体Reverted diploid line 0.895 0.105 籼稻Indica
PA64S 籼稻不育系Indica sterile line 0.842 0.158 籼稻Indica
NK58S 粳稻不育系Japonica sterile line 0.105 0.895 粳稻Japonica
HYP1 杂交组合Hybrid rice 0.737 0.263 偏籼Indica cline
HYP2 杂交组合Hybrid rice 0.737 0.263 偏籼Indica cline
HYP3 杂交组合Hybrid rice 0.816 0.184 籼稻Indica
HYP4 杂交组合Hybrid rice 0.816 0.184 籼稻Indica
HYP5 杂交组合Hybrid rice 0.737 0.263 偏籼Indica cline
HYP6 杂交组合Hybrid rice 0.763 0.237 籼稻Indica
HYP7 杂交组合Hybrid rice 0.711 0.289 偏籼Indica cline
HYP8 杂交组合Hybrid rice 0.816 0.184 籼稻Indica
HYN1 杂交组合Hybrid rice 0.447 0.553 中间类型Intermediate
HYN2 杂交组合Hybrid rice 0.447 0.553 中间类型Intermediate
HYN3 杂交组合Hybrid rice 0.289 0.711 偏粳Japonica cline
HYN4 杂交组合Hybrid rice 0.289 0.711 偏粳Japonica cline
HYN5 杂交组合Hybrid rice 0.447 0.553 中间类型Intermediate
HYN6 杂交组合Hybrid rice 0.316 0.684 偏粳Japonica cline
HYN7 杂交组合Hybrid rice 0.316 0.684 偏粳Japonica cline
HYN8 杂交组合Hybrid rice 0.289 0.711 偏粳Japonica cline

Table 4

Genetic distance between reverted diploid lines and sterile lines"

父本
(回复二倍体品系)
Male parent
与母本(不育系)的遗传距离
Genetic distance between male and female parents
PA64S NK58S
A3 0.37 0.74
T1 0.42 0.68
ST110 0.26 0.95
ST112 0.21 0.89
ST126 0.32 0.89
ST130 0.21 0.89
ST133 0.26 0.89
ST141 0.26 0.95

Fig. 1

Dendrogram of genetic similarity coefficient based on InDel molecular marker A: dendrogram of parents and hybrids (PA64S as female parent); B: dendrogram of parents and hybrids (NK58S as female parent)."

Table 5

Main agronomic traits of hybrid combinations and their male parents"

材料/组合
Material/
combination
生育期PD (d) 株高
PH (cm)
单株有效穗数EP 每穗总粒数TG 每穗实粒数FG 结实率
SSR (%)
千粒重
TGW (g)
单株产量
YPP (g)
A3 118 135.14±1.42 11.50±1.22 308.05±11.83 267.25±12.73 86.76±2.52 26.08±0.68 80.15±11.37
T1 123 133.64±1.93 12.50±1.58 305.70±8.18 254.95±8.57 83.40±0.91 25.70±0.77 81.89±9.70
ST110 140 124.28±2.02 12.40±1.43 207.37±9.20 184.33±10.96 88.89±1.91 27.06±0.67 61.85±8.57
ST112 136 123.24±2.19 11.60±1.51 210.55±14.88 186.51±12.74 88.58±2.54 30.80±0.48 66.63±8.94
ST126 130 123.82±1.30 14.20±1.14 269.44±23.02 229.79±16.62 85.29±3.93 22.48±0.56 73.35±7.16
ST130 133 124.45±1.93 13.60±1.35 270.00±22.36 232.65±16.22 86.17±2.61 23.53±0.69 74.44±10.83
ST133 135 118.62±1.44 13.80±1.48 246.94±16.64 217.76±14.75 88.18±1.11 25.55±0.49 76.78±10.29
ST141 132 130.03±1.83 11.60±1.07 207.96±9.77 193.62±8.68 93.10±1.58 30.12±0.78 67.65±6.17
HYP1 124 140.14±1.18 14.30±1.34 338.16±22.07 277.86±12.07 82.17±3.65 23.74±0.57 94.33±7.53
HYP2 130 139.36±1.12 15.20±0.92 384.31±8.87 312.76±9.94 81.38±2.68 23.69±0.33 112.63±9.81
HYP3 137 128.64±1.47 15.40±1.07 289.04±12.75 253.96±13.55 87.86±2.39 25.51±0.50 99.76±8.21
HYP4 139 125.06±1.13 14.40±0.84 277.27±15.42 225.31±13.98 81.26±2.08 26.58±0.41 86.23±9.49
HYP5 136 127.74±0.69 14.80±1.14 370.73±20.99 301.37±15.72 81.29±0.93 22.85±0.60 101.93±9.35
HYP6 135 134.64±1.38 14.00±1.41 335.93±11.54 305.76±12.46 91.02±2.44 22.61±0.40 96.78±12.05
HYP7 140 129.83±1.87 13.40±1.35 338.17±18.98 309.46±16.91 91.51±1.04 23.75±0.61 98.48±13.52
HYP8 135 131.77±1.35 13.90±0.99 265.30±14.24 222.73±13.38 83.95±2.02 27.16±0.62 84.10±10.89
HYN1 135 97.23±2.35 29.50±1.65 92.28±5.40 13.32±2.37 14.13±1.86 26.52±1.48 10.34±1.79
HYN2 132 101.97±2.36 32.00±2.54 105.31±8.24 27.16±3.45 25.71±2.15 25.32±1.26 21.88±3.71
HYN3 142 96.35±2.29 36.60±2.01 161.26±6.80 18.58±2.09 11.80±1.26 24.37±1.48 17.13±3.14
HYN4 145 87.93±2.51 25.20±1.81 127.12±2.52 11.46±1.00 8.70±0.73 25.06±1.44 6.89±1.03
HYN5 140 80.08±2.32 33.50±2.80 108.46±5.04 7.79±0.62 7.25±0.56 26.72±1.36 7.27±0.49
HYN6 137 100.30±2.94 36.50±2.27 107.89±5.67 15.60±1.87 14.81±1.59 25.26±1.29 14.95±2.03
HYN7 140 101.00±2.76 33.30±2.45 166.40±10.39 13.15±1.50 7.55±0.61 24.62±0.75 10.56±1.43
HYN8 140 97.79±2.34 23.20±1.87 101.15±7.16 7.82±0.92 7.90±0.61 25.08±1.13 4.61±0.76
丰两优4号(对照)
Fengliangyou 4 (CK)
135 132.19±1.39 10.60±1.17 278.94±11.35 245.76±13.68 88.10±2.39 29.63±0.56 77.19±10.45

Table 6

Statistical values of over male parent heterosis on yield-related traits of hybrid combinations (%)"

统计数值
Statistical value
单株有效穗数
EP
每穗总粒数
TG
每穗实粒数
FG
结实率
SSR
千粒重
TGW
单株产量
YPP
均值Mean 14.80 29.14 25.62 -2.78 -6.91 33.43
极差Range 27.25 29.61 38.14 15.46 15.36 43.62
最大值Max. 24.35 39.39 42.11 5.63 1.66 61.30
最小值Min. -2.90 9.78 3.97 -9.83 -13.70 17.68
正向优势组合数PDC 7 8 8 2 1 8
负向优势组合数NDC 1 0 0 6 7 0

Fig. 2

Over male parent heterosis on yield-related traits of hybrid combinations EP: the effective panicle number per plant; TG: the total grain number per panicle; FG: the filled grain number per panicle; SSR: seed-setting rate; TGW: 1000-grain weight; YPP: yield per plant."

Table 7

Statistical values of competitive heterosis on yield-related traits of hybrid combinations (Fengliangyou 4 as the control) (%)"

统计数值
Statistical value
单株有效穗数
EP
每穗总粒数
TG
每穗实粒数
FG
结实率
SSR
千粒重
TGW
单株产量
YPP
均值Mean 36.08 16.46 12.37 -3.46 -17.36 25.38
极差Range 18.86 42.66 36.63 11.64 15.38 36.97
最大值Max. 45.28 37.77 27.26 3.87 -8.32 45.92
最小值Min. 26.42 -4.89 -9.37 -7.77 -23.70 8.95
正向优势组合数PDC 8 6 6 2 0 8
负向优势组合数NDC 0 2 2 6 8 0

Fig. 3

Competitive heterosis on yield-related traits of hybrid combinations (Fengliangyou 4 as the control) EP: the effective panicle number per plant; TG: the total grain number per panicle; FG: the filled grain number per panicle; SSR: seed-setting rate; TGW: 1000-grain weight; YPP: yield per plant."

Table 8

Correlation coefficient between GD and heterosis on yield-related traits"

性状
Trait
亲本遗传距离
GD
单株有效穗数
EP
每穗总粒数
TG
每穗实粒数
FG
结实率
SSR
千粒重
TGW
单株有效穗数EP 0.554
每穗总粒数TG 0.761* 0.198
每穗实粒数FG 0.536 -0.008 0.920**
结实率SSR -0.468 -0.460 -0.098 0.298
千粒重TGW -0.527 -0.005 -0.880** -0.941** -0.241
单株产量YPP 0.736* 0.529 0.847** 0.806* 0.010 -0.680
[1] FAO, IFAD, UNICEF, WFP, WHO. The State of Food Security and Nutrition in the World 2022. FAO, 2022. DOI: https://doi.org/10.4060/cc0639en.
doi: https://doi.org/10.4060/cc0639en
[2] Chen R Z, Deng Y W, Ding Y L, Guo J X, Qiu J, Wang B, Wang C S, Xie Y Y, Zhang Z H, Chen J X, Chen L T, Chu C C, He G C, He Z H, Huang X H, Xing Y Z, Yang S H, Xie D X, Liu Y G, Li J Y. Rice functional genomics: decades’ efforts and roads ahead. Sci China Life Sci, 2022, 65: 33-92.
doi: 10.1007/s11427-021-2024-0
[3] Karki S, Rizal G, Quick W P. Improvement of photosynthesis in rice (Oryza sativa L.) by inserting the C4 pathway. Rice, 2013, 6: 28-36.
doi: 10.1186/1939-8433-6-28
[4] Khush G S. Strategies for increasing the yield potential of cereals: case of rice as an example. Plant Breed, 2013, 132: 433-436.
[5] 孙传清, 王象坤, 吉村淳, 岩田伸夫. 普通野生稻和亚洲栽培稻遗传多样性的研究. 遗传学报, 2000, 27: 227-234.
Sun C Q, Wang X K, Yoshimura A, Iwata N.A study of the genetic diversity of common wild rice (O. rufipogon Griff.) and cultivated rice (O. sativa L.) by RFLP analysis. Acta Genet Sin, 2000, 27: 227-234. (in Chinese with English abstract)
[6] Ge S, Sang T, Lu B R, Hong D Y. Phylogeny of rice genomes with emphasis on origins of allotetraploid species. Proc Natl Acad Sci USA, 1999, 96: 14400-14405.
doi: 10.1073/pnas.96.25.14400 pmid: 10588717
[7] Tian C G, Xiong Y Q, Liu T Y, Sun S H, Chen L B, Chen M S. Evidence for an ancient whole-genome duplication event in rice and other cereals. Acta Genet Sin, 2005, 32: 519-527.
[8] Soltis P S. Ancient and recent polyploid in angiosperm. New Phytol, 2005, 166: 1-5.
doi: 10.1111/nph.2005.166.issue-1
[9] Otto S P. The evolutionary consequences of polyploidy. Cell, 2007, 131: 452-462.
doi: 10.1016/j.cell.2007.10.022 pmid: 17981114
[10] Jiang W K, Liu Y L, Xia E H, Gao L Z. Prevalent role of gene features in determining evolutionary fates of whole-genome duplication duplicated genes in flowering plants. Plant Physiol, 2013, 161: 1844-1861.
doi: 10.1104/pp.112.200147
[11] Lagudah E S, Appels R. Wheat as a model system. In: Chapman G P, ed. Grass Evolution and Domestication. Cambridge: Cambridge University Press, 1992. pp 225-265.
[12] 蔡得田, 袁隆平, 卢兴桂. 二十一世纪水稻育种新战略: II. 利用远缘杂交和多倍体双重优势进行超级稻育种. 作物学报, 2001, 27: 110-116.
Cai D T, Yuan L P, Lu X G. A new strategy of rice breeding in the 21st century: II. Searching a new pathway of rice breeding by utilization of double heterosis of wide cross and polyploidization. Acta Agron Sin, 2001, 27: 110-116 (in Chinese with English abstract).
[13] Cai D T, Chen J G, Chen D L, Dai B C, Zhang W, Song Z J, Yang Z F, Du C Q, Tang Z Q, He Y C, Zhang D S, He G C, Zhu Y G. The breeding of two polyploid rice lines with the characteristic of polyploid meiosis stability. Sci China (Ser C, Life Sci), 2007, 50: 356-366.
[14] 李丽冰, 周晓玲, 王杰, 梅潇, 张献华, 宋兆建, 蔡得田. 多倍体水稻优良回复二倍体品系的米质分析. 农业科学, 2021, 11(3): 184-190.
Li L B, Zhou X L, Wang J, Mei X, Zhang X H, Song Z J, Cai D T. Analysis of the grain quality of elite diploid rice lines reverted from polyploid rice. Hans J Agric Sci, 2021, 11(3): 184-190. (in Chinese with English abstract)
[15] 宋兆建, 蔡得田, 王维. 利用隔代回交构建多倍体水稻PMeS近等基因系的方法. ZL201510015646.1, (2015-01-13).
Song Z J, Cai D T, Wang W.The method of breeding PMeS near isogenic line in polyploid rice by alternate-generation backcross.ZL201510015646.1, (2015-01-13) (Chinese Patent).
[16] 卢宝荣, 蔡星星, 金鑫. 籼稻和粳稻的高效分子鉴定方法及其在水稻育种和进化研究中的意义. 自然科学进展, 2009, 19: 628-638.
Lu B R, Cai X X, Jin X. Efficiently molecular identification method of indica and japonica rice and it’s significance in rice breeding and evolution research. Prog Nat Sci, 2009, 19: 628-638. (in Chinese)
[17] 王林友, 张礼霞, 勾晓霞, 范宏环, 金庆生, 王建军. 利用InDel标记鉴定浙优系列杂交稻籼粳属性和预测杂种优势. 中国农业科学, 2014, 47: 1243-1255.
doi: 10.3864/j.issn.0578-1752.2014.07.001
Wang L Y, Zhang L X, Gou X X, Fan H H, Jin Q S, Wang J J. Identification of indica-japonica attribute and prediction of heterosis of Zheyou hybrids rice using InDel molecular markers. Sci Agric Sin, 2014, 47: 1243-1255. (in Chinese with English abstract)
[18] Nei M, Li W H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA, 1979, 76: 5269-5273.
doi: 10.1073/pnas.76.10.5269 pmid: 291943
[19] 盖钧镒. 作物育种学各论(第2版). 北京: 中国农业出版社, 2006. pp 47-49
Gai J Y. Crop Breeding, 2nd edn. Beijing: China Agriculture Press, 2006. pp 47-49. (in Chinese)
[20] Ou-Yang Y D, Li X, Zhang Q F. Understanding the genetic and molecular constitutions of heterosis for developing hybrid rice. J Genet Genomics, 2022, 49: 385-393.
doi: 10.1016/j.jgg.2022.02.022 pmid: 35276387
[21] 米甲明, 欧阳亦聃. 水稻籼粳亚种间杂种优势利用的理论与实践. 华中农业大学学报, 2022, 41(1): 40-47.
Mi J M, Ou-Yang Y D. Theory and practice of utilizing xian-geng inter-subspecific heterosis in rice. J Huazhong Agric Univ, 2022, 41(1): 40-47. (in Chinese with English abstract)
[22] 袁隆平. 杂交水稻的育种战略设想. 杂交水稻, 1987, 2(1): 1-3.
Yuan L P. Strategy assumption of hybrid rice breeding. Hybrid Rice, 1987, 2(1): 1-3. (in Chinese)
[23] 杨振玉, 高勇, 赵迎春, 魏耀林, 华泽田, 张忠旭, 高日玲. 水稻籼粳亚种间杂种优势利用研究进展. 作物学报, 1996, 22: 422-429.
Yang Z Y, Gao Y, Zhao Y C, Wei Y L, Hua Z T, Zhang Z X, Gao R L. Progress in research on utilization of vigor in hybrids between indica and japonica rice subspecies. Acta Agron Sin, 1996, 22: 422-429. (in Chinese with English abstract)
[24] Ikehashi H, Araki H. Varietal screening of compatibility types revealed in F1 fertility of distant crosses in rice. Jpn J Breed, 1984, 34: 304-313.
doi: 10.1270/jsbbs1951.34.304
[25] 吕川根, 邹江石. 两系法杂交稻两优培九育种的理论与实践. 中国农业科学, 2016, 49: 1635-1645.
doi: 10.3864/j.issn.0578-1752.2016.09.001
Lyu C G, Zou J S. Theory and practice on breeding of two-line hybrid rice, Liangyoupeijiu. Sci Agric Sin, 2016, 49: 1635-1645. (in Chinese with English abstract)
[26] 沈希宏, 陈深广, 曹立勇, 占小登, 陈代波, 吴伟明, 程式华. 超级杂交稻协优9308重组自交系的分子遗传图谱构建. 分子植物育种, 2008, 6: 861-866.
Shen X H, Chen S G, Cao L Y, Zhan X D, Chen D B, Wu W M, Cheng S H. Construction of genetic linkage map based on a RIL population derived from super hybrid rice, XY9308. Mol Plant Breed, 2008, 6: 861-866. (in Chinese with English abstract)
[27] 许德海, 王晓燕, 马荣荣, 禹盛苗, 朱练峰, 欧阳由男, 金千瑜. 重穗型籼粳杂交稻甬优6号超高产生理特性. 中国农业科学, 2010, 43: 4796-4804.
Xu D H, Wang X Y, Ma R R, Yu S M, Zhu L F, Ou-Yang Y N, Jin Q Y.Analysis on physiological properties of the heavy panicle type of indica-japonica inter-subspecific hybrid rice Yongyou 6. Sci Agric Sin, 2010, 43: 4796-4804. (in Chinese with English abstract)
[28] 韦还和, 李超, 张洪程, 孙玉海, 马荣荣, 王晓燕, 杨筠文, 戴其根, 霍中洋, 许轲, 魏海燕, 郭保卫. 水稻甬优12不同产量群体的株型特征. 作物学报, 2014, 40: 2160-2168.
doi: 10.3724/SP.J.1006.2014.02160
Wei H H, Li C, Zhang H C, Sun Y H, Ma R R, Wang X Y, Yang J W, Dai Q G, Huo Z Y, Xu K, Wei H Y, Guo B W.Plant-type characteristics in populations with different yield of Yongyou 12. Acta Agron Sin, 2014, 40: 2160-2168. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.02160
[29] 吴明国, 林建荣, 宋昕蔚, 阮关海. 籼粳亚种间杂交水稻新组合春优84的选育. 杂交水稻, 2014, 29(2): 19-21.
Wu M G, Lin J R, Song X W, Ruan G H.Breeding of new japonica-indica hybrid rice combination Chunyou 84. Hybrid Rice, 2014, 29(2): 19-21. (in Chinese with English abstract)
[30] 王林友, 王建军, 张礼霞, 金庆生, 阮关海, 洪晓富, 何祖华. 杂交稻浙优18特征特性及栽培技术. 浙江农业科学, 2013, (4): 364-366.
Wang L Y, Wang J J, Zhang L X, Jin Q S, Ruan G H, Hong X F, He Z H. Characteristics and cultivation techniques of hybrid rice, Zheyou 18. J Zhejiang Agric Sci, 2013, (4): 364-366. (in Chinese)
[31] 宋昕蔚, 林建荣, 吴明国. 水稻籼粳亚种间杂种优势利用研究进展与展望. 科学通报, 2016, 61: 3778-3786.
Song X W, Lin J R, Wu M G. Review and prospect on utilization of heterosis between indica-japonica rice subspecies. Chin Sci Bull, 2016, 61: 3778-3786. (in Chinese with English abstract)
doi: 10.1360/N972016-01039
[32] 赵小燕, 叶胜海, 李小华, 翟荣荣, 余鹏, 金庆生, 张小明. InDel标记鉴定水稻籼粳属性及预测杂种优势. 浙江农业学报, 2015, 27: 1309-1316.
Zhao X Y, Ye S H, Li X H, Zhai R R, Yu P, Jin Q S, Zhang X M. Identification of indica-japonica attribute and prediction of heterosis using InDel markers in rice. Acta Agric Zhejiang, 2015, 27: 1309-1316. (in Chinese with English abstract)
[33] 杨继. 植物多倍体基因组的形成与进化. 植物分类学报, 2001, 39: 357-371.
Yang J. The formation and evolution of polyploid genomes in plants. Acta Phytotaxon Sin, 2001, 39: 357-371. (in Chinese with English abstract)
[34] Conant G C, Birchler J A, Pires J C. Dosage, duplication, and diploidization: clarifying the interplay of multiple models for duplicate gene evolution over time. Curr Opin Plant Biol, 2014, 19: 91-98.
doi: 10.1016/j.pbi.2014.05.008 pmid: 24907529
[35] Moghe G D, Shiu S H. The causes and molecular consequences of polyploidy in flowering plants. Ann NY Acad Sci, 2014, 1320: 16-34.
doi: 10.1111/nyas.12466 pmid: 24903334
[36] Wendel J F. Genome evolution in polyploids. Plant Mol Biol, 2000, 42: 225-249.
pmid: 10688139
[37] Liu B, Wendel J F. Non-Mendelian phenomena in allopolyploid genome evolution. Curr Genomics, 2002, 3: 489-505.
doi: 10.2174/1389202023350255
[1] XU Gao-Feng, SHEN Shi-Cai, ZHANG Fu-Dou, YANG Shao-Song, JIN Gui-Mei, ZHENG Feng-Ping, WEN Li-Na, ZHANG Yun, WU Ran-Di. Effects of soil microbes on rice allelopathy and its mechanism of wild rice (Oryza longistaminata) and its descendants [J]. Acta Agronomica Sinica, 2023, 49(9): 2562-2571.
[2] HU Yan-Juan, XUE Dan, GENG Di, ZHU Mo, WANG Tian-Qiong, WANG Xiao-Xue. Mutation effects of OsCDF1 gene and its genomic variations in rice [J]. Acta Agronomica Sinica, 2023, 49(9): 2362-2372.
[3] LIU Kai, CHEN Ji-Jin, LIU Shuai, CHEN Xu, ZHAO Xin-Ru, SUN Shang, XUE Chao, GONG Zhi-Yun. Dynamic change profile of histone H3K18cr on rice whole genome under cold stress [J]. Acta Agronomica Sinica, 2023, 49(9): 2398-2411.
[4] JIA Lu-Qi, SUN You, TIAN Ran, ZHANG Xue-Fei, DAI Yong-Dong, CUI Zhi-Bo, LI Yang-Yang, FENG Xin-Yu, SANG Xian-Chun, and WANG Xiao-Wen. Identification of the rgs1 mutant with rapid germination of seed and isolation of the regulated gene in rice [J]. Acta Agronomica Sinica, 2023, 49(8): 2288-2295.
[5] TANG Jie, LONG Tuan, WU Chun-Yu, LI Xin-Peng, ZENG Xiang, WU Yong-Zhong, HUANG Pei-Jin. Identification of OsGMS2 and construction of seed production system for genic male sterile line in rice [J]. Acta Agronomica Sinica, 2023, 49(8): 2025-2038.
[6] WEI Xin-Yu, ZENG Yue-Hui, YANG Wang-Xing, XIAO Chang-Chun, HOU Xin-Po, HUANG Jian-Hong, ZOU Wen-Guang, XU Xu-Ming. Development of high-quality fragrant indica CMS line by editing Badh2 gene using CRISPR-Cas9 technology in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2023, 49(8): 2144-2159.
[7] CHEN Ting, JIAO Yan-Yang, ZHOU Xin-Ye, WU Lin-Kun, ZHANG Zhong-Yi, LIN Yu, LIN Sheng, LIN Wen-Xiong. Effects of different soil intensification treatments on growth and development of Radix pseudostellariae in continuous cropping system [J]. Acta Agronomica Sinica, 2023, 49(8): 2225-2239.
[8] XU Na, XU Quan, XU Zheng-Jin, CHEN Wen-Fu. Research progress on physiological ecology and genetic basis of rice plant architecture [J]. Acta Agronomica Sinica, 2023, 49(7): 1735-1746.
[9] DENG Ai-Xing, LI Ge-Xing, LYU Yu-Ping, LIU You-Hong, MENG Ying, ZHANG Jun, ZHANG Wei-Jian. Effect of shading duration after heading on grain yield and quality of japonica rice in northwest China [J]. Acta Agronomica Sinica, 2023, 49(7): 1930-1941.
[10] LIN Xiao-Xin, HUANG Ming-Jiang, WEI Yi, ZHU Hong-Hui, WANG Zi-Yi, LI Zhong-Cheng, ZHUANG Hui, LI Yan-Xi, LI Yun-Feng, CHEN Rui. Identification and gene mapping of long grain and degenerated palea (lgdp) in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2023, 49(6): 1699-1707.
[11] XU Ran, CHEN Song, XU Chun-Mei, LIU Yuan-Hui, ZHANG Xiu-Fu, WANG Dan-Ying, CHU Guang. Effects of nitrogen fertilizer rates on grain yield and nitrogen use efficiency of japonica-indica hybrid rice cultivar Yongyou 1540 and its physiological bases [J]. Acta Agronomica Sinica, 2023, 49(6): 1630-1642.
[12] DING Jie-Rong, MA Ya-Mei, PAN Fa-Zhi, JIANG Li-Qun, HUANG Wen-Jie, SUN Bing-Rui, ZHANG Jing, LYU Shu-Wei, MAO Xing-Xue, YU Hang, LI Chen, LIU Qing. Ubiquitin receptor protein OsDSK2b plays a negative role in rice leaf blast resistance and osmotic stress tolerance [J]. Acta Agronomica Sinica, 2023, 49(6): 1466-1479.
[13] HE Yong-Ming, ZHANG Fang. Study of regulating effect of auxin on floret opening in rice [J]. Acta Agronomica Sinica, 2023, 49(6): 1690-1698.
[14] TAO Yue-Yue, SHENG Xue-Wen, XU Jian, SHEN Yuan, WANG Hai-Hou, LU Chang-Ying, SHEN Ming-Xing. Characteristics of heat and solar resources allocation and utilization in rice- oilseed rape double cropping systems in the Yangtze River Delta [J]. Acta Agronomica Sinica, 2023, 49(5): 1327-1338.
[15] WEI Hai-Min, TAO Wei-Ke, ZHOU Yan, YAN Fei-Yu, LI Wei-Wei, DING Yan-Feng, LIU Zheng-Hui, LI Gang-Hua. Panicle silicon fertilizer optimizes the absorption and distribution of mineral elements in rice (Oryza sativa L.) in coastal saline-alkali soil to improve salt tolerance [J]. Acta Agronomica Sinica, 2023, 49(5): 1339-1349.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .