Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (6): 1466-1479.doi: 10.3724/SP.J.1006.2023.22039

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Ubiquitin receptor protein OsDSK2b plays a negative role in rice leaf blast resistance and osmotic stress tolerance

DING Jie-Rong1,**(), MA Ya-Mei1,**(), PAN Fa-Zhi2, JIANG Li-Qun1, HUANG Wen-Jie3, SUN Bing-Rui1, ZHANG Jing1, LYU Shu-Wei1, MAO Xing-Xue1, YU Hang1, LI Chen1,*(), LIU Qing1,*()   

  1. 1Rice Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of New Technology in Rice Breeding/Guangdong Rice Engineering Laboratory, Guangzhou 510640, Guangdong, China
    2South China Agricultural University, Guangzhou 510642, Guangdong, China
    3Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Guangzhou 510640, Guangdong, China
  • Received:2022-06-22 Accepted:2022-11-25 Online:2023-06-12 Published:2022-12-07
  • Contact: *E-mail: liuqing198504@126.com;E-mail: 2369538973@qq.com
  • About author:First author contact:**Contributed equally to this work
  • Supported by:
    Investment Project of Department of Agriculture and Rural Affairs, Development and Reform Commission, Guangdong province(Yue Fa Gai Nong Jing [2021]272);Special Fund for Scientific Innovation Strategy-Construction of High Level Academy of Agriculture Science(R2020PY-JX001);Guangdong Key Laboratory of New Technology in Rice Breeding(2020B1212060047)

Abstract:

The ubiquitin receptor protein DSK2 (dominant suppressor of KAR2) plays an important role in the growth, development, and stress tolerance in plant, but its role in rice disease resistance and osmotic stress has not been reported yet. In this study, we identified that OsDSK2b was regulated by various stresses, and the relative expression level of this gene decreased significantly after Magnaporthe oryzae infection and 20% PEG-6000 treatment. The spatio-temporal expression analysis showed that the relative expression level of OsDSK2b was highest at three-leaf seedling stage. The subcellular localization analysis demonstrated that OsDSK2b was localized in the cytoplasm in rice protoplast. The lesion area of OsDSK2b knockout plants was about 0.05 cm2 and 0.10-0.13 cm2, which was much smaller than wild-type plants (0.24 cm2 and 0.31 cm2) after inoculation with Magnaporthe oryzae (GD08-T13 and Guy11). Compared with wild-type plants, knockout of OsDSK2b significantly enhanced the leaf blast resistance in rice, and the relative expression levels of pathogenesis-related protein (PR) genes were induced significantly in OsDSK2b knockout plants after Magnaporthe oryzae (Guy11) infection. The knockout of OsDSK2b also significantly enhanced the osmotic stress tolerance in rice. OsDSK2b knockout plants had higher survival rate (58.3%-74.0%) than wild-type plants (17.0%) after 20% PEG-6000 treatment. Meanwhile, compared with wild-type plants, OsDSK2b knockout plants had lower ion permeability and water loss rate after 20% PEG-6000 treatment. Scanning microscopy revealed that knockout of OsDSK2b could promote the stomatal closure both before and after 20% PEG-6000 treatment, and the promotion effect was stronger after osmotic stress treatment. In addition, qRT-PCR results showed that the relative expression level of DREB genes and abscisic acid (ABA) synthesis or pathway-related genes were significantly higher in OsDSK2b knockout plants than wild-type plants after osmotic stress treatment. The endogenous ABA contents of ko6 and ko14 knockout plants were 314.2 ng g-1 and 344.4 ng g-1, respectively, which were significantly higher than wild-type plants (206.8 ng g-1). These results indicated that OsDSK2b could regulate rice osmotic stress through both the ABA-dependent and ABA-independent pathways. This study provides a new candidate gene for the breeding of rice resistant varieties by analyzing the regulatory role of OsDSK2b in rice coping with biotic and abiotic stresses.

Key words: rice (Oryza sativa L.), rice blast, osmitic stress, PR, DREB, ABA

Table 1

Primers used for vector construction and qRT-PCR"

引物名称
Primer name
引物序列
Primer sequence (5°−3°)
OsDSK2b-6a-F/R TTGGTTGGTTAGAACCCTGACGGCAGCCAAGCCAGCA/TCAGGGTTCTAACCAACCAAGTTTTAGAGCTAGAAAT
OsDSK2b-6b-F/R CTGCTAGGAGCAGCTGAAGCAACACAAGCGGCAGC/CTTCAGCTGCTCCTAGCAGGTTTTAGAGCTAGAAAT
Pps-GGL/Pgs-GG2 TTCAGAGGTCTCTCTCGACTAGTATGGAATCGGCAGCAAAGG/AGCGTGGGTCTCGTCAGGGTCCATCCACTCCAAGCTC
Pps-GG2/Pgs-GGR TTCAGAGGTCTCTCTGACACTGGAATCGGCAGCAAAGG/AGCGTGGGTCTCGACCGACGCGTATCCATCCACTCCAAGCTC
U-F/gR-R CTCCGTTTTACCTGTGGAATCG/CGGAGGAAAATTCCATCCAC
SP1/SP2 CCCGACATAGATGCAATAACTTC/GCGCGGTGTCATCTATGTTACT
OsDSK2bJC-F/R TCTTTTCTTGCTTCTCACACTCC/TTGCCAGTAGAACCTGCCCG
OsDSK2b-F/R TGGTAGCCAAGGAGGCAATG/ATTGCCAAGAAGACGCTCCA
PR1a-F/R CGTCTTCATCACCTGCAACTACTC/CATGCATAAACACGTAGCATAGCA
PR2-F/R CCTTCACCAAGTATCTGCGA/GTCTAGCGCATTCTGCAAAC
PR5-F/R ACGAAATACTCCAAGTTCTTCAAGG/GTAATTTGTTCCGGCAGGGC
PR8-F/R TCTACGACGTGCAGAACAACTTCAG/TCCAACTCAACCACTGTGCAAGTAA
PR10a-F/R TGTGAGCCACGACAAATCCA/TGATCTCCCAGCAGCAAACA
PR10b-F/R GAGAGGCTGTGGAAGGTCTG/CCTTTAGCACGTGAGTTGCG
DREB1A-F/R TGGAGCTACTAGAGCTCAATCAACTG/TGGCATCGGAAGCCAGAA
DREB1B-F/R ACAGAGTAGGCAATGAGACTGAGGAT/TTACAGGAATTCATTGACTGCACAT
DREB2A-F/R GGAATCTCCTCCTTTCATCGTG/TTCCGCTCCTGACAAACACG
DREB2B-F/R TTGTGCTTATGACGAGGCAGC/GCTAGTGCAACCTGAACGGAAG
引物名称
Primer name
引物序列
Primer sequence (5°−3°)
LEA3-F/R CGGCAGCGTCCTCCAAC/CGGTCATCCCCAGCGTG
LIP9-F/R CCTCTTCGACAACCTCCTTGGCA/CTTCCTCATCACTCGACGAGCT
Rab16A-F/R CACACCACAGCAAGAGCTAAGTG/TGGTGCTCCATCCTGCTTAAG
ABI2-F/R TTGTGGAGACTCACGGGCAGTG/CGAGACATTCGTCATCCTTTGC
NCED3-F/R ACGTGATCAAGAAGCCGTACCT/GCTGGTCGAGCGGGATCT
NCED4-F/R GCCGAGACACGCATTGG/GTGAAGGTGGCGACAGCAA
EF1α-F/R TTTCACTCTTGGTGTGAAGCAGAT/GACTTCCTTCACGATTTCATCGTAA

Fig. 1

Relative expression pattern of OsDSK2b gene affected by various stresses and the spatio-temporal expression model of OsDSK2b in Nipponbare A: the relative expression levels of OsDSK2b before and after Guy11, 20% PEG-6000, 150?mmol L-1 NaCl, and 100 μmol L-1ABA treatments. B: the relative expression levels of OsDSK2b in different tissues of Nipponbare (two-week-old seedlings, young roots, node, second leaf, flag leaves, root of booting stage, young panicle, and panicle of heading stage). C: the subcellular localization of OsDSK2b in rice protoplast (Bar: 10 μm). Values are means (± SDs) from three biological replicates (by Dunnett’s test, *: P < 0.05, **: P < 0.01)."

Fig. 2

Knocking out of OsDSK2b enhances rice resistance to blast disease A: the gene structure of OsDSK2b and mutation of target sequence in OsDSK2b knockout strains. Exon and intron are represented by the blank rectangle black line. Red font represents the target sequence in CRISPR vector construction, blue fonts represent the inserted bases, and ellipsis represent the missing bases; B: the phenotype of wild-type Nipponbare and OsDSK2b knockout plants 7 d after inoculation with GD08-T13 using the punch method; C: the lesion sizes of wild-type Nipponbare and OsDSK2b knockout plants 7 d after inoculation with GD08-T13 using the punch method; D: the phenotype of wild-type Nipponbare and OsDSK2b knockout plants 7 d after inoculation with Guy11 in vivo; E: The lesion sizes of wild-type Nipponbare and OsDSK2b knockout plants 7 d after inoculation with Guy11 in vivo. Values are means (± SDs) from three biological replicates (Dunnett’s test, *: P < 0.05, **: P < 0.01)."

Fig. 3

Relative expression levels of pathogenesis-related genes of OsDSK2b The relative expression levels of PR genes in leaves of wild-type Nipponbare and OsDSK2b knockout plants before (0?h) and after (2 d and 4 d) pathogen inoculation with Guy11. Values are means (± SDs) from three biological replicates (Dunnett’s test, *: P < 0.05; **: P < 0.01)."

Fig. 4

Knocking out OsDSK2b increases the tolerance to osmotic stress in rice A: the phenotype of wild-type Nipponbare and OsDSK2b knockout plants under normal condition or 3 d 20% PEG-6000 treatment and 5 d recovery; B: the plant height of wild-type Nipponbare and OsDSK2b knockout plants under normal condition or 3 d 20% PEG-6000 treatment and 5 d recovery; C: the phenotype of wild-type Nipponbare and OsDSK2b knockout plants under normal condition or 5 d 20% PEG-6000 treatment and 5 d recovery; D: the survival rates of wild-type Nipponbare and OsDSK2b knockout plants under normal condition or 5 d 20% PEG-6000 treatment and 5 d recovery; E: the ion leakage of wild-type Nipponbare and OsDSK2b knockout plants before and after osmotic stress treatment; F: the water loss rates of seedlings of wild-type Nipponbare and OsDSK2b knockout plants at 0, 30, 60, 90, 120, 180, 240, and 300?min in vitro. Values are means (± SDs) of three biological replicates (Dunnett’s test, *: P < 0.05; **: P < 0.01)."

Fig. 5

Knocking out OsDSK2b reduces stomatal aperture A: the stomata with different opening degrees. Bar: 10 μm; B: the stomatal proportions of three different degrees of opening on the leaves of wild-type Nipponbare and OsDSK2b knockout plants under normal condition and after 20% PEG-6000 treatment for 4 h. Values are means (± SDs) of three biological replicates, and at least 300 stomata were calculated in each replicate; C: the stomatal density of wild-type Nipponbare and OsDSK2b knockout plants; D: the stomatal size of wild-type Nipponbare and OsDSK2b knockout plants. Values are means (± SDs) of three biological replicates, and at least 100 stomata were calculated in each replicate."

Fig. 6

OsDSK2b regulates the relative expression level of stress-related genes A: the relative expression levels of DREB genes in wild-type Nipponbare and OsDSK2b knockout plants before (0 h) and after (4 h) 20% PEG-6000 treatment; B: the relative expression levels of ABA-related genes in wild-type Nipponbare and OsDSK2b knockout plants before (0 h) and after (4 h) 20% PEG-6000 treatment. Values are means (± SDs) from three biological replicates (Dunnett’s test, *P < 0.05; **P < 0.01)."

Fig. 7

OsDSK2b affects the accumulation of endogenous ABA in rice under 20% PEG-6000 stress treatment Values are means (± SDs) from six biological replicates (Dunnett’s test, *: P < 0.05; **: P < 0.01)."

[1] 王亦栖, 余炳伟, 颜爽爽, 邱正坤, 陈长明, 雷建军, 田时炳, 曹必好. 植物泛素基因研究进展. 中国农学通报, 2020, 36(20): 14-22.
doi: 10.11924/j.issn.1000-6850.casb20190500148
Wang Y Q, Yu B W, Yan S S, Qiu Z K, Chen C M, Tian S B, Cao B H. Advances in research on plant ubiquitin genes. Chin Agric Sci Bull, 2020, 36(20): 14-22. (in Chinese with English abstract)
doi: 10.11924/j.issn.1000-6850.casb20190500148
[2] 盛仙永. 泛素/蛋白酶体途径在青扦花粉萌发及花粉管生长过程中的作用. 西北大学博士学位论文, 陕西西安, 2006.
Sheng X Y. Roles of the Ubiquitin/Proteasome Pathway in Picea wilsonii Pollen Germination and Tube Growth. PhD Dissertation of Northwest University, Xi’an, Shaanxi, China, 2006. (in Chinese with English abstract)
[3] Ko J H, Yang S H, Han K H. Upregulation of an Arabidopsis RING-H2 gene, XERICO, confers drought tolerance through increased abscisic acid biosynthesis. Plant J, 2006, 47: 343-355.
doi: 10.1111/tpj.2006.47.issue-3
[4] Xie D X, Feys B F, James S, Nieto-Rostro M, Turner J G. COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science, 1998, 280: 1091-1094.
doi: 10.1126/science.280.5366.1091 pmid: 9582125
[5] Fu H, Lin Y L, Fatimababy A S. Proteasomal recognition of ubiquitylated substrates. Trends Plant Sci, 2010, 15: 375-386.
doi: 10.1016/j.tplants.2010.03.004 pmid: 20399133
[6] Zhang H, Yang X, Ying Z, Liu J, Liu Q. Toxoplasma gondii UBL-UBA shuttle protein DSK2s are important for parasite intracellular replication. Int J Mol Sci, 2021, 22: 7943.
doi: 10.3390/ijms22157943
[7] Wang J, Qin H, Zhou S, Wei P C, Zhang H W, Zhou Y, Miao Y C, Huang R F. The ubiquitin-binding protein OsDSK2a mediates seedling growth and salt responses by regulating gibberellin metabolism in rice. Plant Cell, 2020, 32: 414-428.
doi: 10.1105/tpc.19.00593
[8] Fatimababy A S, Lin Y L, Usharani R, Radjacommare R, Wang H T, Tsai H L, Lee Y, Fu H. Cross-species divergence of the major recognition pathways of ubiquitylated substrates for ubiquitin/26S proteasome-mediated proteolysis. FEBS J, 2010, 277: 796-816.
doi: 10.1111/j.1742-4658.2009.07531.x pmid: 20059542
[9] Díaz-Martínez L A, Kang Y, Walters K J, Clarke D J. Yeast UBL-UBA proteins have partially redundant functions in cell cycle control. Cell Div, 2006, 1: 28.
pmid: 17144915
[10] Wang D Y, Lv C, Guan Y, Ni X Y, Wu F Z. Dsk2 involves in conidiation, multi-stress tolerance and thermal adaptation in Beauveria bassiana. Environ Microbiol Rep, 2021, 13: 384-393.
doi: 10.1111/emi4.v13.3
[11] Kaur N, Zhao Q Z, Xie Q, Hu J P. Arabidopsis RING peroxins are E3 ubiquitin ligases that interact with two homologous ubiquitin receptor proteins. J Integr Plant Biol, 2013, 55: 108-120.
doi: 10.1111/jipb.12014
[12] 汪文娟, 苏菁, 陈深, 杨健源, 陈凯玲, 冯爱卿, 汪聪颖, 封金奇, 陈炳, 朱小源. 广东省侵染美香占2号的稻瘟病菌致病性及无毒基因变异分析. 中国农业科学, 2022, 55: 1346-1358.
doi: 10.3864/j.issn.0578-1752.2022.07.007
Wang E J, Su J, Chen S, Yang J Y, Chen K L, Feng A Q, Wang C Y, Feng J Q, Chen B, Zhu X Y. Pathogenicity and avirulence genes variation of Magnaporthe oryzae from a rice variety Meixiangzhan 2 in Guangdong province. Sci Agric Sin, 2022, 55: 1346-1358. (in Chinese with English abstract)
[13] Muthukrishnan S, Liang G H, Trick H N, Gill B S. Pathogenesis-related proteins and their genes in cereals. Plant Cell Tissue Organ Cult, 2001, 64: 93-114.
doi: 10.1023/A:1010763506802
[14] Alexander D, Goodman R M, Gut-Rella M, Glascock C, Weymann K, Friedrich L, Maddox D, Ahl-Goy P, Luntz T, Ward E. Increased tolerance to two oomycete pathogens in transgenic tobacco expressing pathogenesis-related protein 1a. Proc Natl Acad Sci USA, 1993, 90: 7327-7331.
doi: 10.1073/pnas.90.15.7327 pmid: 8346252
[15] Kauffmann S, Legrand M, Geoffroy P, Fritig B. Biological function of ‘pathogenesis-related’ proteins: four PR proteins of tobacco have 1,3-β-glucanase activity. EMBO J, 1987, 6: 3209-3212.
doi: 10.1002/j.1460-2075.1987.tb02637.x pmid: 16453802
[16] Datta K, Velazhahan R, Oliva N, Ona I, Mew T, Khush G S, Muthukrishnan S, Datta S K. Over-expression of the cloned rice thaumatin-like protein (PR-5) gene in transgenic rice plants enhances environmental friendly resistance to Rhizoctonia solani causing sheath blight disease. Theor Appl Genet, 1999, 98: 1138-1145.
doi: 10.1007/s001220051178
[17] Park C H, Kim S, Park J Y, Ahn I P, Jwa N S, Im K H, Lee Y H. Molecular characterization of a pathogenesis-related protein 8 gene encoding a class III chitinase in rice. Mol Cells, 2004, 17: 144-150.
[18] Midoh N, Iwata M. Cloning and characterization of a probenazole-inducible gene for an intracellular pathogenesis-related protein in rice. Plant Cell Physiol, 1996, 37: 9-18.
doi: 10.1093/oxfordjournals.pcp.a028918 pmid: 8720923
[19] 侯明明. 病程相关蛋白质在水稻发育及与白叶枯病菌互作过程中的表达研究. 河北农业大学硕士论文, 河北保定, 2011.
Hou M M. Characteristic Expression of Pathogenesis-related Proteins in Rice Development and Interaction with Xanthomonas oryzae pv. oryzae. MS Thesis of Hebei Agricultural University, Baoding, Hebei, China, 2011. (in Chinese with English abstract)
[20] 郑家国, 任光俊, 陆贤军, 姜心禄. 花后水分亏缺对水稻产量和品质的影响. 中国水稻科学, 2003, 17: 239-243.
Zheng J G, Ren G J, Lu X J, Jiang X L. Effects of water stress on rice grain yield and quality after heading stage. Chin J Rice Sci, 2003, 17: 239-243. (in Chinese with English abstract)
[21] 王平荣, 邓晓建, 高晓玲, 陈静, 万佳, 姜华, 徐正君. DREB 转录因子研究进展. 遗传, 2006, 28: 369-374.
Wang P R, Deng X J, Guo X L, Chen J, Wang J, Jiang H, Xu Z J. Progress in the study on DREB transcription factor. Hereditas (Beijing), 2006, 28: 369-374. (in Chinese with English abstract)
[22] Liu Q, Yan S J, Huang W J, Yang J Y, Dong J F, Zhang S H, Zhao J L, Yang T F, Mao X X, Zhu X Y, Liu B, 2018b. NAC transcription factor ONAC066 positively regulates disease resistance by suppressing the ABA signaling pathway in rice. Plant Mol Biol, 98: 289-302.
doi: 10.1007/s11103-018-0768-z
[23] 王彬, 陈敏氡, 林亮, 叶新如, 朱海生, 温庆放. 植物干旱胁迫的信号通路及相关转录因子研究进展. 西北植物学报, 2020, 40: 792-1806.
Wang B, Chen M D, Lin L, Ye X R, Zhu H S, Wen Q F. Signal plant pathways and related transcription factors of drought stress in plants. Acta Bot Boreali-Occident Sin, 2020, 40: 1792-1806. (in Chinese with English abstract)
[24] Xie X R, Ma X L, Zhu Q L, Zeng D C, Li G S, Liu Y G. CRISPR-GE: a convenient software toolkit for CRISPR-based genome editing. Mol Plant, 2017, 10: 1246-1249.
doi: 10.1016/j.molp.2017.06.004
[25] 曾栋昌, 马兴亮, 谢先荣, 祝钦泷, 刘耀光. 植物CRISPR/ Cas9多基因编辑载体构建和突变分析的操作方法. 中国科学: 生命科学, 2018, 48: 783-794.
Zeng D C, Ma X L, Xie X R, Zhu Q L, Liu Y G. A protocol for CRISPR/Cas9-based multi-gene editing and sequence decoding of mutant sites in plants. Sci Sin (Vitae), 2018, 48: 783-794. (in Chinese with English abstract)
[26] Zhang Y, Su J B, Duan S, Ao Y, Dai J R, Liu J, Wang P, Li Y G, Liu B, Feng D R, Wang J F, Wang H B. A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes. Plant Methods, 2011, 7: 30.
doi: 10.1186/1746-4811-7-30 pmid: 21961694
[27] Ding B, Bellizzi M D R, Ning Y S, Meyers B C, Wang G L. HDT701, a histone H4 deacetylase, negatively regulates plant innate immunity by modulating histone H4 acetylation of defense-related genes in rice. Plant Cell, 2012, 24: 3783-3794.
doi: 10.1105/tpc.112.101972
[28] Pan X Q, Welti R, Wang X M. Quantitative analysis of major plant hormones in crude plant extracts by high-performance liquid chromatography-mass spectrometry. Nat Prot, 2010, 5: 986-992.
doi: 10.1038/nprot.2010.37
[29] Hui W K, Wang Y, Yan S J, Shi J F, Huang W J, Zayed M Z, Peng C C, Chen X Y, Wu G J. Simultaneous analysis of endogenous plant growth substances during floral sex differentiation in Jatropha curcas L. using HPLC-ESI-MS/MS. Sci Hortic (Amsterdam), 2018, 241: 209-217.
doi: 10.1016/j.scienta.2018.06.086
[30] Zhao J H, Zhang W, Da S J, Liu X C, Duan J. Rice histone deacetylase HDA704 positively regulates drought and salt tolerance by controlling stomatal aperture and density. Planta, 2021, 254: 79.
doi: 10.1007/s00425-021-03729-7 pmid: 34542712
[31] Park C J, Han S W, Chen X, Ronald P C. Elucidation of XA21- mediated innate immunity. Cell Microbiol, 2010, 12: 1017-1025.
doi: 10.1111/j.1462-5822.2010.01489.x
[32] Son S, An H K, Seol Y J, Park S R, Im J H. Rice transcription factor WRKY114 directly regulates the expression of OsPR1a and chitinase to enhance resistance against Xanthomonas oryzae pv. oryzae. Biochem Biophys Res Commun, 2020, 533: 1262-1268.
doi: 10.1016/j.bbrc.2020.09.141
[33] Wang G N, Ding X H, Yuan M, Qiu D Y, Li X H, Xu C G, Wang S P. Dual function of rice OsDR8 gene in disease resistance and thiamine accumulation. Plant Mol Biol, 2006, 60: 437-449.
doi: 10.1007/s11103-005-4770-x
[34] 赵慧. 水稻耐旱性调控网络关键调节基因的克隆及OsERF65的功能研究. 华中农业大学硕士学位论文, 湖北武汉, 2020.
Zhao H. Cloning of Key Regulatory Genes in Rice Drought Tolerance Regulatory Network and Functional Study of OsERF65. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2020. (in Chinese with English abstract)
[35] Lata C, Prasad M. Role of DREBs in regulation of abiotic stress responses in plants. J Exp Bot, 2011, 62: 4731-4748.
doi: 10.1093/jxb/err210 pmid: 21737415
[36] Assmann S M, Wang X Q. From milliseconds to millions of years: guard cells and environmental responses. Curr Opin Plant Biol, 2001, 4: 421-428.
pmid: 11597500
[1] XIANG Jia-Ming, DAI Qian, LIU Li-Jun. Exogenous salicylic acid improves the tolerance of Yunma 1 (Cannabis sativa L.) to copper stress [J]. Acta Agronomica Sinica, 2023, 49(7): 1979-1993.
[2] DONG Zhi-Qiang, LYU Li-Hua, YAO Yan-Rong, ZHANG Jing-Ting, ZHANG Li-Hua, YAO Hai-Po, SHEN Hai-Ping, JIA Xiu-Ling. Yield and quality of strong gluten wheat Shiluan 02-1 under water and nitrogen interaction [J]. Acta Agronomica Sinica, 2023, 49(7): 1942-1953.
[3] SONG Yi, LI Jing, GU He-He, LU Zhi-Feng, LIAO Shi-Peng, LI Xiao-Kun, CONG Ri-Huan, REN Tao, LU Jian-Wei. Effects of application of nitrogen on seed yield and quality of winter oilseed rape (Brassica napus L.) [J]. Acta Agronomica Sinica, 2023, 49(7): 2002-2011.
[4] LU Meng-Qi, XIE Ruo-Han, LI Xiang, YANG Ming-Chong, HE Zi-Wei, GAO Jie, ZHAO Xiao-Yan, SHEN Xiang-Ling, CHEN Yan, WANG Ji-Bin, HU Li-Hua, DUAN Ming-Zheng, WANG Ling-Qiang. Relationship of “LabelmeP1.0”-derived vascular parameters with agronomic traits in sorghum [J]. Acta Agronomica Sinica, 2023, 49(7): 1954-1967.
[5] WANG Rang-Jian, YANG Jun, ZHANG Li-Lan, GAO Xiang-Feng. Genome-wide association analysis of geraniol primrose glycoside abundance in tender tea shoots [J]. Acta Agronomica Sinica, 2023, 49(7): 1843-1859.
[6] DING Hong-Yan, FENG Xiao-Xi, WANG Bai-Yu, ZHANG Ji-Sen. Evolution and relative expression pattern of LRRII-RLK gene family in sugarcane Saccharum spontaneum [J]. Acta Agronomica Sinica, 2023, 49(7): 1769-1784.
[7] WEI Zheng-Xin, LIU Chang-Yan, CHENG Hong-Wei, LI Li, SUN Long-Qing, HAN Xue-Song, JIAO Chun-Hai, SHA Ai-Hua. Analysis of ASPAT gene family based on drought-stressed transcriptome sequencing in Vicia faba L. [J]. Acta Agronomica Sinica, 2023, 49(7): 1871-1881.
[8] SHI Pei-Yao, CHEN Li-Juan, SUN Hao-Jie, CHENG Meng-Hao, XIAO Jin, YUAN Chun-Xia, WANG Xiu-E, WANG Hai-Yan. Development of specific oligonucleotide probe library of Aegilops comosa and construction of oligo-FISH karyotype [J]. Acta Agronomica Sinica, 2023, 49(6): 1455-1465.
[9] GAO Xin, GUO Lei, SHAN Bao-Xue, XIAO Yan-Jun, LIU Xiu-Kun, LI Hao-Sheng, LIU Jian-Jun, ZHAO Zhen-Dong, CAO Xin-You. Types and ratios of starch granules in grains and their roles in the formation and improvement of wheat quality properties [J]. Acta Agronomica Sinica, 2023, 49(6): 1447-1454.
[10] MEI Yu-Qin, LIU Yi, WANG Chong, LEI Jian, ZHU Guo-Peng, YANG Xin-Sun. Genome-wide identification and expression analysis of PHB gene family in sweet potato [J]. Acta Agronomica Sinica, 2023, 49(6): 1715-1725.
[11] MA Chun-Min, LI Wei-Xi, LI Fang-Jun, TIAN Xiao-Li, LI Zhao-Hu. Identification and expression analysis of nitrate transporter NRT gene family in upland cotton (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2023, 49(6): 1496-1517.
[12] LIU Ting-Xuan, GU Yong-Zhe, ZHANG Zhi-Hao, WANG Jun, SUN Jun-Ming, QIU Li-Juan. Mapping soybean protein QTLs based on high-density genetic map [J]. Acta Agronomica Sinica, 2023, 49(6): 1532-1541.
[13] LIU Jia, ZOU Xiao-Yue, MA Ji-Fang, WANG Yong-Fang, DONG Zhi-Ping, LI Zhi-Yong, BAI Hui. Genome-wide identification and characterization of MAPK genes and their response to biotic stresses in foxtail millet [J]. Acta Agronomica Sinica, 2023, 49(6): 1480-1495.
[14] YAN Jin-Yao, SONG Yi, LU Zhi-Feng, REN Tao, LU Jian-Wei. Effect of phosphorus fertilizer rate on rapeseed yield and quality (Brassica napus L.) [J]. Acta Agronomica Sinica, 2023, 49(6): 1668-1677.
[15] ZHANG Jing, GAO Wen-Bo, YAN Lin, ZHANG Zong-Wen, ZHOU Hai-Tao, WU Bin. Identification and evaluation of salt-alkali tolerance and screening of salt-alkali tolerant germplasm of oat (Avena sativa L.) [J]. Acta Agronomica Sinica, 2023, 49(6): 1551-1561.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[4] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[5] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[6] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[7] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[8] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[9] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .
[10] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .