Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (7): 1871-1881.doi: 10.3724/SP.J.1006.2023.24134

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Analysis of ASPAT gene family based on drought-stressed transcriptome sequencing in Vicia faba L.

WEI Zheng-Xin1(), LIU Chang-Yan2(), CHEN Hong-Wei2, LI Li2, SUN Long-Qing2, HAN Xue-Song2, JIAO Chun-Hai2,*(), SHA Ai-Hua1,*()   

  1. 1College of Agriculture, Yangtze University / Engineering Research center of Ecology and Agricultural Use of Wetland, Ministry of Education, Jingzhou 434025, Hubei, China
    2Hubei Academy of Agricultural Sciences Institute of Food Crops / Hubei Provincial Key Laboratory of Germplasm Innovation and Genetic Improvement of Food Crops, Wuhan 430064, Hubei, China
  • Received:2022-06-03 Accepted:2022-11-25 Online:2023-07-12 Published:2022-12-01
  • Contact: *E-mail: aihuasha@163.com; E-mail: jiaoch@hotmai.com E-mail:2545439813@qq.com;Liucy0602@163.com;jiaoch@hotmai.com;aihuasha@163.com
  • About author:First author contact:**Contributed equally to this work
  • Supported by:
    The National Key Research and Development Program of China(2019YFD1001303);The National Key Research and Development Program of China(2019YFD1001300);The China Agriculture Research System of MOF and MARA(CARS-08);The Hubei Agricultural Science and Technology Innovation Center Project(2021-620-000-001-01)

Abstract:

Fava beans (Vicia faba L.) is an important food bean crop, and drought can lead to lower fava bean yields. The identification of drought tolerance genes of fava beans is beneficial to breed the drought-resistant varieties through molecular marker-assisted breeding and genetic engineering. In a previous study, we identified a class of aspartate aminotransferase genes (ASPAT) in response to faba bean drought stress by transcriptome sequencing. ASPAT catalyzes the reversible reaction of transamination between aspartate and α-oxoglutarate to generate oxaloacetate and glutamate, and plays a key role in plant metabolism. Based on transcriptomic sequencing data, ASPAT members were identified in genome-wide level. The physicochemical properties, subcellular localizations, gene structures, protein domains, conserved motifs, phylogeny, protein interaction, and gene expression patterns of each member were analyzed. The results indicate that eight ASPAT genes were identified from the transcriptomes, which included three eukaryotype ASPAT (AAT) genes and five prokarytoype ASPAT (PAT) genes with mitochondria and chloroplast location, respectively. Phylogenetic analysis showed that ASPAT could be divided into two subfamilies Iα and Iβ. Iα is AAT protein including VfASPAT1-VfASPAT3, and Iβ is PAT protein consisting of VfASPAT4-VfASPAT8. ASPAT family members of Vicia faba contain motif 1, motif 3, and motif 9, and had similar gene structures and common protein domain aminotran-1-2. VfASPATs protein interaction network suggested that the members might be involved in stress metabolism. Transcriptome and qRT-PCR indicated that he expression patterns of the eight members were different at 16 hours and 64 hours under drought stress. All the members were up-regulated with the exception of VfASPAT4 and VfASPAT6, implying that VfASPATs may have a positive regulation effect on drought stress. In this study, eight ASPAT genes of Vicia faba were identified, and the structures, distribution, evolutionary relationship, and the relative expression patterns of ASPAT gene family members were analyzed. The results of this study laid a foundation for further analysis of drought resistance function of VfASPATs, and the application of ASPAT to improve drought resistance of fava bean.

Key words: Vicia faba L., aspartate aminotransferase (ASPAT), gene family, drought stress, gene expression

Table 1

Primers used for qRT-PCR"

基因Gene name 正向引物序列Forward sequence (5'-3') 反向引物序列 Reverse sequence (5'-3')
VfASPAT1 AAGGATAAACGAATAGCCGCAGT TCGGGATGATAGTAACGGAATGT
VfASPAT2 GGCTTCTCACATTTCTCCTTCTC CAACTCGCCTAACTACATCCAAC
VfASPAT3 TGAAGAATTGCAGCCGTATG TGGCAACTCTTTGCTGTTTG
VfASPAT4 ATTGAGGTGGAGCAGAACAGA CGCCAAGCGAATAACAGGAAC
VfASPAT5 GGTGATGAGGTTATTGTGTTTGC CTTTCCAGTAGGATTGTGAGGG
VfASPAT6 AAGCCCTCGCAGATCGGAACAC CCAAAAACTCCCATAGGCACAA
VfASPAT7 AAAATGGAAGGTAAACTGTCGC CCTGTACTGATTGAGGTCGGAA
VfASPAT8 CTGCAGCAACAAGGGAACAAC TGGCAACTCTTTGCTGTTTG
VfNADHD4 AGGGTTAGTGAGCACCATGC ATAGCCAAAGGGAATACGCC

Table 2

Comparison of germination rate between two faba bean varieties under drought stress (%)"

处理时间
Processing time
鄂蚕豆1号-T
Ecandou 1-T
CDAS105-T 鄂蚕豆1号-CK
Ecandou 1-CK
CDAS105-CK
48 h 0 0 47.6 cd 61.9 bc
64 h 0 4.8 e 78.6 a 76.2 a
72 h 0 9.5 e 83.3 a 81.0 a
96 h 9.5 e 38.1 d 88.1 a 85.7 a

Table 3

Prediction of physicochemical properties and subcellular localization prediction of ASPAT in Vicia faba L."

蛋白质
Protein
氨基酸数目Number of amino acids 等电点
pI
相对分子质量
Molecular weight
脂融指数Aliphatic index 不稳定指数Instability index 疏水性分值GARVY 亚细胞定位
Subcellular
localization
VfASPAT1 424 8.42 46,958.64 82.38 39.68 -0.261 线粒体Mitochondrion
VfASPAT2 417 7.24 45,448.99 96.91 43.76 -0.052 叶绿体Chloroplast
VfASPAT3 453 7.73 49,658.54 84.86 36.02 -0.197 叶绿体, 线粒体
Chloroplast, mitochondrion
VfASPAT4 481 7.60 52,060.70 96.36 36.72 0.039 叶绿体Chloroplast
VfASPAT5 394 6.22 43,469.05 85.91 29.62 -0.063 叶绿体Chloroplast
VfASPAT6 407 5.59 45,024.06 96.61 35.48 0.030 叶绿体Chloroplast
VfASPAT7 409 6.02 44,829.10 89.51 41.14 -0.077 叶绿体Chloroplast
VfASPAT8 459 6.56 49,923.62 79.48 50.90 -0.147 叶绿体Chloroplast

Table 4

Prediction of secondary structure of ASPAT protein in Vicia faba L. (%)"

蛋白质
Protein
α-螺旋
Alpha helix
β-转角
Beta turn
延伸链
Extended strand
无规则卷曲
Random coil
VfASPAT1 45.28 7.55 14.39 32.78
VfASPAT2 43.65 6.95 15.11 34.29
VfASPAT3 40.84 7.06 17.44 34.66
VfASPAT4 39.09 7.07 18.50 35.34
VfASPAT5 42.39 8.63 17.51 31.47
VfASPAT6 43.49 7.13 14.99 34.40
VfASPAT7 41.08 7.33 19.07 32.52
VfASPAT8 35.29 8.28 20.04 36.38

Fig. 1

Phylogenetic analysis of ASPAT protein in Vicia faba L."

Fig. 2

VfASPAT gene structure, protein domain, and conserved motif A: gene structure; B: protein domain; C: motif; D: amino acid sequence of motif."

Fig. 3

Pyridoxal phosphate binding site of ASPAT protein in faba bean and Arabidopsis thaliana The red rectangle box indicates the pyridoxal phosphate binding sites of AAT and PAT."

Fig. 4

Protein-protein network of ASPAT in Vicia faba L."

Fig. 5

Relative expression pattern of ASPAT genes in Vicia faba based on transcriptome CK1-16 /CK1-64 represents 16 h/64 h normal treatments of Ecandou 1; CK2-16/CK2-64 represents 16 h/64 h normal treatments of CDAS105; T1-16/T1-64 represents 16 h/64 h drought stress of Ecandou 1; T2-16/T2-64 represents 16 h/64 h drought stress of CDAS105."

Fig. 6

Relative expression level of VfASPAT between Ecandou 1 and CDAS105 by qRT-PCR CK-16 and CK-64 indicates the expression ratio of CDAS105/Ecandou 1 at 16 h and 64 h under normal condition; T-16 and T-64 indicates the expression ratio of CDAS105/Ecandou 1 at 16 h and 64 h under drought stress. Lowercase letters indicate significant difference in the 0.05 probability level among the treatments."

[1] 郝振萍, 金潇潇, 王长义, 王倩, 赵辉. 鲜食蚕豆苗期耐盐品种的筛选. 江苏农业科学, 2016, 44(12): 198-200.
Hao Z P, Jin X X, Wang C Y, Wang Q, Zhao H. Selection of salt tolerant varieties of fresh Vicia faba at seedling stage. Jiangsu Agric Sci, 2016, 44(12): 198-200. (in Chinese)
[2] Session J. Food and agriculture organization of the United Nations. Forest, 2004, 5: 9.
[3] 王海飞, 关建平, 马钰, 孙雪莲, 宗绪晓. 中国蚕豆种质资源ISSR标记遗传多样性分析. 作物学报, 2011, 37: 595-602.
doi: 10.3724/SP.J.1006.2011.00595
Wang H F, Guan J P, Ma Y, Sun X L, Zong X X. Genetic diversity of Chinese faba bean (Vcia faba L.) germplasm revealed by ISSR markers. Acta Agron Sin, 2011, 37: 595-602. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2011.00595
[4] Bimurzayev N, Sari H, Kurunc A, Doganay K H, Asmamaw M. Effects of different salt sources and salinity levels on emergence and seedling growth of faba bean genotypes. Sci Rep, 2021, 11: 18198.
doi: 10.1038/s41598-021-97810-6 pmid: 34521913
[5] 刘任远, 鲁仕宝, 黄强. 干旱灾害成因及对策研究. 生态经济, 2013, (8): 27-31.
Liu R Y, Lu S B, Huang Q. The study on causes and solutions of drought damage. Ecol Econ, 2013, (8): 27-31. (in Chinese with English abstract)
[6] 赵丽芬, 董绿凤, 王邦海, 张瑞玲. 干旱对蚕豆生长发育及产量的影响. 农业科技通讯, 2013, (10): 138-141.
Zhao L F, Dong L F, Wang B H, Zhang R L. Effects of drought on the growth and yield of Vicia faba L. Bull Agric Sci Technol, 2013, (10): 138-141. (in Chinese)
[7] 武学霞, 李兰平, 刘玉皎. 蚕豆耐旱机制研究进展. 分子植物育种[2022-09-27]. http://kns.cnki.net/kcms/detail/46.1068.S.20210423.1305.014.html
Wu X X, Li L P, Liu Y J. Research advances on drought tolerance mechanism in Faba bean (Vicia faba L.). Mol Plant Breed [2022-09-27]. http://kns.cnki.net/kcms/detail/46.1068.S.20210423.1305.014.html (in Chinese with English abstract)
[8] 肖贵, 张明, 连荣芳, 墨金萍, 王梅春, 朱国宝. 干旱半干旱区黑膜蚕豆高产栽培技术. 甘肃农业科技, 2017, (6): 52-53.
Xiao G, Zhang M, Liang R F, Mo J P, Wang M C, Zhu G B. High yield cultivation techniques of broad bean with black film in arid and semi-arid areas. Gansu Agric Sci Technol, 2017, (6): 52-53. (in Chinese)
[9] 李萍, 侯万伟, 刘玉皎. 青海高原耐旱蚕豆品种青海13号响应干旱胁迫蛋白质组学分析. 作物学报, 2019, 45: 267-275.
doi: 10.3724/SP.J.1006.2019.84075
Li P, Hou W W, Liu Y J. Proteomic analysis of drought stress response on drought resistance for Vicia faba L. variety ‘Qinghai 13’ in Qinghai Plateau of China. Acta Agron Sin, 2019, 45: 267-275. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2019.84075
[10] Liepman A H, Olsen L J. Genomic analysis of aminotransferases in Arabidopsis thaliana. Crit Rev Plant Sci, 2004, 23: 73-89.
doi: 10.1080/07352680490273419
[11] Wrenger C, Muller I B, Silber A M, Jordanova R, Lamzin V S, Groves M R. Aspartate aminotransferase-bridging carbohydrate and energy metabolism in plasmodium falciparum. Curr Drug Metabol, 2012, 13: 332-336.
doi: 10.2174/138920012799320400
[12] Murooka Y, Mori Y, Hayashi M. Variation of the amino acid content of Arabidopsis seeds by expressing soybean aspartate aminotransferase gene. J Biosci Bioengin, 2002, 9: 225-230.
[13] de la Torre F, Cañas R A, Pascual M B, Avila C, Canovas F M. Plastidic aspartate aminotransferases and the biosynthesis of essential amino acids in plants. J Exp Bot, 2014, 65: 5527-5534.
doi: 10.1093/jxb/eru240 pmid: 24902885
[14] Gaufichon L, Rothstein S J, Suzuki A. Asparagine metabolic pathways in Arabidopsis. Plant Cell Physiol, 2016, 57: 675-689.
[15] de la Torre F, Santis L D, Suárez M F, Crespillo R, Canovas F M. Identification and functional analysis of a prokaryotic-type aspartate aminotransferase: implications for plant amino acid metabolism. Plant J, 2006, 46: 414-425.
pmid: 16623902
[16] Miesak B H, Coruzzi G M. Molecular and physiological analysis of Arabidopsis mutants defective in cytosolic or chloroplastic aspartate aminotransferase. Plant Physiol, 2002, 129: 650-660.
doi: 10.1104/pp.005090
[17] Brauc S, De Vooght E, Claeys M, Höfte M, Angenon G. Influence of over-expression of cytosolic aspartate aminotransferase on amino acid metabolism and defence responses against Botrytis cinerea infection in Arabidopsis thaliana. J Plant Physiol, 2011, 168: 1813-1819.
[18] Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J, 2002, 31: 279-292.
doi: 10.1046/j.1365-313X.2002.01359.x
[19] Su T, Han M, Min J, Cao D, Zhai G, Zhou H, Li N, Li M. Genome-wide characterization of AspATs in populus: gene expression variation and enzyme activities in response to nitrogen perturbations. Forests, 2019, 10: 449.
doi: 10.3390/f10050449
[20] 梁成刚, 张青, 李敬, 熊丹, 许光利, 汪燕, 刘泉, 黄鹏, 李天. 水稻灌浆期高温对天冬氨酸代谢酶活性及其家族氨基酸含量的影响. 中国水稻科学, 2013, 27: 71-76.
Liang C G, Zhang Q, Li J, Xiong D, Xu G L, Wang Y, Liu Q, Huang P, Li T. Effect of high temperature on aspartate metabolism enzyme activities and aspartate family amino acids contents at rice grain filling stage. Chin J Rice Sci, 2013, 27: 71-76. (in Chinese with English abstract)
[21] Zhou Y, Cai H, Xiao J, Li X, Zhang Q, Lian X. Over-expression of aspartate aminotransferase genes in rice resulted in altered nitrogen metabolism and increased amino acid content in seeds. Theor Appl Genet, 2009, 118: 1381-1390.
doi: 10.1007/s00122-009-0988-3 pmid: 19259642
[22] Han M, Zhang C, Suglo P, Sun S Y, Wang M Y, Su T. l-Aspartate: an essential metabolite for plant growth and stress acclimation. Molecules, 2021, 26: 1887.
doi: 10.3390/molecules26071887
[23] Khan N, Bano A, Rahman M A, Guo J, Kang Z Y, Babar M A. Comparative physiological and metabolic analysis reveals a complex mechanism involved in drought tolerance in chickpea (Cicer arietinum L.) induced by PGPR and PGRs. Sci Rep, 2019, 9: 2097.
doi: 10.1038/s41598-019-38702-8
[24] Ullah N, Yüce M, Gökçe Z N Ö, Budak H. Comparative metabolite profiling of drought stress in roots and leaves of seven Triticeae species. BMC Genomics, 2017, 18: 969.
doi: 10.1186/s12864-017-4321-2
[25] Ali Q, Athar H, Haider M Z, Shahid S, Aslam N, Shehzad F, Naseem J, Ashraf R, Ali A, Hussain S M. Plant Tolerance to Environmental Stress. Boca Raton: CRC Press, 2019. pp 175-204.
[26] Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190
[27] Doncheva N T, Morris J H, Gorodkin J, Jensen L J. Cytoscape string app: network analysis and visualization of proteomics data. J Proteome Res, 2018, 18: 623-632.
doi: 10.1021/acs.jproteome.8b00702
[28] Kou Y, Qiao L, Wang Q. Identification of core miRNA based on small RNA-seq and RNA-seq for colorectal cancer by bioinformatics. Tumour Biol, 2015, 36: 2249-2255.
doi: 10.1007/s13277-014-2832-x
[29] Zhang H M, Wheeler S L, Xia X, Colyvas K, Offler C E, Patrick J W. Transcript profiling identifies gene cohorts controlled by each signal regulating trans-differentiation of epidermal cells of Vicia faba cotyledons to a transfer cell phenotype. Front Plant Sci, 2017, 8: 2021.
doi: 10.3389/fpls.2017.02021
[30] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[31] Schlüter U, Bräutigam A, Droz J M, Schwender J, Weber A P M. The role of alanine and aspartate aminotransferases in C4 photosynthesis. Plant Biol, 2019, 21: 64-76.
[32] 王宇晨, 曲春浦, 刘关君. 杨树天冬氨酸转氨酶基因家族鉴定及表达分析. 南方农业学报, 2019, 50: 506-514.
Wang Y C, Qu C P, Liu G J. Identification and expression analysis of poplar aspartate aminotransferase (ASPAT) genes family. J Southern Agric, 2019, 50: 506-514. (in Chinese with English abstract)
[33] 黄宁, 张玉叶, 凌辉, 罗俊, 吴期滨, 阙友雄. 甘蔗二氨基庚二酸异构酶基因的克隆与表达分析. 热带作物学报, 2013, 34: 2200-2208.
Huang N, Zhang Y Y, Ling H, Luo J, Wu Q B, Que Y X. Cloning and expression analysis of a diaminopimelate epimerase gene in sugarcane. Chin J Trop Crops, 2013, 34: 2200-2208. (in Chinese with English abstract)
[34] 沙伟, 赵超越, 马天意, 张梅娟, 彭疑芳. 苹果酸脱氢酶在植物中的研究进展. 分子植物育种 [2022-09-27]. .
Sha W, Zhao C Y, Ma T Y, Zhang M J, Peng Y F. Research progress of malate dehydrogenase in plants. Mol Plant Breed [2022-09-27]. . (in Chinese with English abstract)
[35] Barghini E, Cossu R M, Cavallini A, Giordani T. Transcriptome analysis of response to drought in poplar interspecific hybrids. Genomics Data, 2015, 3: 143-145.
doi: 10.1016/j.gdata.2015.01.004 pmid: 26484164
[36] Silvente S, Camas A, Lara M. Molecular cloning of the cDNA encoding aspartate aminotransferase from bean root nodules and determination of its role in nodule nitrogen metabolism. J Exp Bot, 2003, 54: 1545-1551.
pmid: 12730270
[1] CHEN Li, WANG Jing, QIU Xiao, SUN Hai-Lian, ZHANG Wen-Hao, WANG Tian-Zuo. Differences of physiological responses and transcriptional regulation of alfalfa with different drought tolerances under drought stresses [J]. Acta Agronomica Sinica, 2023, 49(8): 2122-2132.
[2] DING Hong-Yan, FENG Xiao-Xi, WANG Bai-Yu, ZHANG Ji-Sen. Evolution and relative expression pattern of LRRII-RLK gene family in sugarcane Saccharum spontaneum [J]. Acta Agronomica Sinica, 2023, 49(7): 1769-1784.
[3] MEI Yu-Qin, LIU Yi, WANG Chong, LEI Jian, ZHU Guo-Peng, YANG Xin-Sun. Genome-wide identification and expression analysis of PHB gene family in sweet potato [J]. Acta Agronomica Sinica, 2023, 49(6): 1715-1725.
[4] LIU Jia, ZOU Xiao-Yue, MA Ji-Fang, WANG Yong-Fang, DONG Zhi-Ping, LI Zhi-Yong, BAI Hui. Genome-wide identification and characterization of MAPK genes and their response to biotic stresses in foxtail millet [J]. Acta Agronomica Sinica, 2023, 49(6): 1480-1495.
[5] SUN Quan-Xi, YUAN Cui-Ling, MOU Yi-Fei, YAN Cai-Xia, ZHAO Xiao-Bo, WANG Juan, WANG Qi, SUN Hui, LI Chun-Juan, SHAN Shi-Hua. Genome-wide identification and expression analysis of SWEET genes from peanut genomes [J]. Acta Agronomica Sinica, 2023, 49(4): 938-954.
[6] WANG Zhen, ZHANG Xiao-Li, LIU Miao, YAO Meng-Nan, MENG Xiao-Jing, QU Cun-Min, LU Kun, LI Jia-Na, LIANG Ying. Transcriptional differential expression analysis between BnMAPK1-overexpression and Zhongyou 821 rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2023, 49(3): 856-868.
[7] QI Yan-Ni, LI Wen-Juan, ZHAO Li-Rong, LI Wen, WANG Li-Min, XIE Ya-Ping, ZHAO Wei, DANG Zhao, ZHANG Jian-Ping. Identification and expression analysis of CYP79 gene family, a key enzyme for cyanogenic glycoside synthesis in flax [J]. Acta Agronomica Sinica, 2023, 49(3): 687-702.
[8] LI Zhao-Wei, MO Zu-Yi, SUN Cong-Ying, SHI Yu, SHANG Ping, LIN Wei-Wei, FAN Kai, LIN Wen-Xiong. Construction of rice mutants by gene editing of OsNAC2d and their response to drought stress [J]. Acta Agronomica Sinica, 2023, 49(2): 365-376.
[9] PAN Jie-Ming, TIAN Shao-Rui, LIANG Yan-Lan, ZHU Yu-Lin, ZHOU Ding-Gang, QUE You-Xiong, LING Hui, HUANG Ning. Identification and expression analysis of PIN-LIKES gene family in sugarcane [J]. Acta Agronomica Sinica, 2023, 49(2): 414-425.
[10] DING Hong, ZHANG Zhi-Meng, XU Yang, ZHANG Guan-Chu, GUO Qing, QIN Fei-Fei, DAI Liang-Xiang. Physiological and transcriptional regulation mechanisms of nitrogen alleviating drought stress in peanut [J]. Acta Agronomica Sinica, 2023, 49(1): 225-238.
[11] ZHANG Cheng, ZHANG Zhan, YANG Jia-Bao, MENG Wan-Qiu, ZENG Ling-Lu, SUN Li. Genome-wide identification and relative expression analysis of DGATs gene family in sunflower [J]. Acta Agronomica Sinica, 2023, 49(1): 73-85.
[12] WANG Heng-Bo, ZHANG Chang, WU Ming-Xing, LI Xiang, JIANG Zhong-Li, LIN Rong-Xiao, GUO Jin-Long, QUE You-Xiong. Genome-wide identification of NAC transcription factors ATAF subfamily in Sacchrum spontaneum and functional analysis of its homologous gene ScNAC2 in sugarcane cultivar [J]. Acta Agronomica Sinica, 2023, 49(1): 46-61.
[13] MA Li, BAI Jing, ZHAO Yu-Hong, SUN Bo-Lin, HOU Xian-Fei, FANG Yan, WANG Wang-Tian, PU Yuan-Yuan, LIU Li-Jun, XU Jia, TAO Xiao-Lei, SUN Wan-Cang, WU Jun-Yan. Protein and physiological differences under cold stress, and identification and analysis of BnGSTs in Brassica napus L. [J]. Acta Agronomica Sinica, 2023, 49(1): 153-166.
[14] LI Juan, ZHOU Jing-Ru, CHU Na, SUN Hui-Dong, HUANG Mei-Ting, FU Hua-Ying, GAO San-Ji. Gene cloning and expression analysis of ScPR10 in sugarcane under Acidovorax avenae subsp. avenae infection [J]. Acta Agronomica Sinica, 2023, 49(1): 97-104.
[15] CAO Ji-Ling, ZENG Qing, ZHU Jian-Guo. Responses of photosynthetic characteristics and gene expression in different wheat cultivars to elevated ozone concentration at grain filling stage [J]. Acta Agronomica Sinica, 2022, 48(9): 2339-2350.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[4] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[5] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[6] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[7] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[8] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[9] Qi Zhixiang;Yang Youming;Zhang Cunhua;Xu Chunian;Zhai Zhixi. Cloning and Analysis of cDNA Related to the Genes of Secondary Wall Thickening of Cotton (Gossypium hirsutum L.) Fiber[J]. Acta Agron Sin, 2003, 29(06): 860 -866 .
[10] KE Li-Ping;ZHENG Tao;WU Xue-Long;HE Hai-Yan;CHEN Jin-Qing. Analysis of Self-Incompatibility Locus Gene in Brassica napus[J]. Acta Agron Sin, 2008, 34(05): 764 -769 .