Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (8): 2122-2132.doi: 10.3724/SP.J.1006.2023.24205
• CROP GENETICS & BREEDING · GERMPLASM RESOURCES · MOLECULAR GENETICS • Previous Articles Next Articles
CHEN Li1,2(), WANG Jing1,2, QIU Xiao3, SUN Hai-Lian3, ZHANG Wen-Hao1, WANG Tian-Zuo1,*()
[1] | 韩德梁, 王彦荣. 紫花苜蓿对干旱胁迫适应性的研究进展. 草业学报, 2005, 14(6): 7-13. |
Han D L, Wang Y R. Adaptability of Medicago sativa under water stress. Acta Pratac Sin, 2005, 14(6): 7-13. (in Chinese with English abstract) | |
[2] |
Jia Y H, Shao M A. Temporal stability of soil water storage under four types of revegetation on the northern loess plateau of China. Agric Water Manag, 2013, 117: 33-42.
doi: 10.1016/j.agwat.2012.10.013 |
[3] | 王晓娟, 张树振, 林双双, 邓志刚, 金樑. 紫花苜蓿(Medicago sativa L.)生物能源利用的研究进展. 中国农业科学, 2013, 46: 1694-1705. |
Wang X J, Zhang S Z, Lin S S, Deng Z G, Jin L. Advances in study on bio-energy utilization of stem cell wall components in alfalfa (Medicago sativa L.). Sci Agric Sin, 2013, 46: 1694-1705. (in Chinese with English abstract) | |
[4] |
张迪, 任立飞, 刘广彬, 罗伏青, 张文浩, 王天佐. 不同干燥方式对苜蓿种子代谢物的影响. 草业学报, 2021, 30(3): 158-166.
doi: 10.11686/cyxb2020147 |
Zhang D, Ren L F, Liu G B, Luo F Q, Zhang W H, Wang T Z. Comparative metabolite profiling of alfalfa seeds dried at different temperatures. Acta Pratac Sin, 2021, 30(3): 158-166. (in Chinese with English abstract) | |
[5] |
Mickky B M, Abbas M A, Ei-shhaby O A. Alterations in photosynthetic capacity and morpho-histological features of leaf in alfalfa plants subjected to water deficit-stress in different soil types. Indian J Plant Physiol, 2018, 23: 426-443.
doi: 10.1007/s40502-018-0383-7 |
[6] |
Wang T, Zhang W H. Priorities for the development of alfalfa pasture in northern China. Fundam Res, 2022, doi:10.1016/j.fmre.2022.04.017.
doi: 10.1016/j.fmre.2022.04.017 |
[7] | 杨青川, 康俊梅, 张铁军, 刘凤歧, 龙瑞才, 孙彦. 苜蓿种质资源的分布、育种与利用. 科学通报, 2016, 61: 261-270. |
Yang Q C, Kang J M, Zhang T J, Liu F Q, Long R C, Sun Y. Distribution, breeding and utilization of alfalfa germplasm resources. Chin Sci Bull, 2016, 61: 261-270 (in Chinese with English abstract).
doi: 10.1360/N972015-00879 |
|
[8] |
陆姣云, 熊军波, 张鹤山, 田宏, 杨惠敏, 刘洋. 水分胁迫对紫花苜蓿产量、品质和微量元素的影响. 草业学报, 2020, 29(8): 126-133.
doi: 10.11686/cyxb2019462 |
Lu J Y, Xiong J B, Zhang H S, Tian H, Yang H M, Liu Y. Effects of water stress on yield, quality and trace element composition of alfalfa. Acta Pratac Sin, 2020, 29(8): 126-133. (in Chinese with English abstract) | |
[9] | 张立全, 贾旭慧, 赵静玮. PEG模拟干旱胁迫对紫花苜蓿种子发芽及幼苗生长的影响. 分子植物育种, 2020, 18: 3759-3764. |
Zhang L Q, Jia X H, Zhao J W. Effects of PEG simulated drought stress on seed germination and seedling growth of alfalfa. Mol Plant Breed, 2020, 18: 3759-3764 (in Chinese with English abstract). | |
[10] |
李佳欢, 刘希强, 吕进英, 任成, 王开丽, 黄顶, 邓波, 王堃. 基于植株各器官生理响应对12种苜蓿抗旱性的综合评价. 草地学报, 2020, 28: 1319-1328.
doi: 10.11733/j.issn.1007-0435.2020.05.017 |
Li J H, Liu X Q, Lyu J Y, Ren C, Wang K L, Huang D, Deng B, Wang K. drought resistance evaluation of 12 alfalfa varieties based on physiological response of four plant organs. Acta Agrest Sin, 2020, 28: 1319-1328. (in Chinese with English abstract) | |
[11] |
Bid M, Haddad M, Ben Khaled A, Mansour E, Bachar K, Lacheheb B, Ferchichi A. Water relations and gas exchange in alfalfa leaves under drought conditions in southern Tunisian oases. Polish J Environ Stud, 2016, 25: 917-924.
doi: 10.15244/pjoes/61282 |
[12] | 张曦, 王振南, 陆姣云, 杨梅, 杨惠敏. 紫花苜蓿叶性状对干旱的阶段性响应. 生态学报, 2016, 36: 2669-2676. |
Zhang X, Wang Z N, Lu J Y, Yang M, Yang H M. Responses of leaf traits to drought at different growth stages of alfalfa. Acta Ecol Sin, 2016, 36: 2669-2676. (in Chinese with English abstract) | |
[13] |
Roy M, Niu J P, Irshad A, Kareem H A, Hassan M U, Xu N, Sui X, Guo Z P, Amo A, Wang Q Z. Exogenous melatonin protects alfalfa (Medicago sativa L.) seedlings from drought-induced damage by modulating reactive oxygen species metabolism, mineral balance and photosynthetic efficiency. Plant Stress, 2021, 2: 100044.
doi: 10.1016/j.stress.2021.100044 |
[14] |
阿衣古力·阿布都瓦依提, 王铮, 木合塔尔·扎热, 齐曼·尤努斯. 干旱胁迫对3个苜蓿品种的生长及光合特性的影响. 中国农学通报, 2016, 32(14): 7-12.
doi: 10.11924/j.issn.1000-6850.casb15110133 |
Aygul A, Wang Z, Muhtar Z, Qiman Y. Effect of drought stress on plant growth and photosynthetic characteristics of three alfalfa varieties. Chin Agric Sci Bull, 2016, 32(14): 7-12. (in Chinese with English abstract)
doi: 10.11924/j.issn.1000-6850.casb15110133 |
|
[15] |
Claeys H, Inzé D. The agony of choice: how plants balance growth and survival under water-limiting conditions. Plant Physiol, 2013, 162: 1768-1779.
doi: 10.1104/pp.113.220921 pmid: 23766368 |
[16] |
Zhang C M, Shi S L, Liu Z, Yang F, Yin G L. Drought tolerance in alfalfa (Medicago sativa L.)varieties is associated with enhanced antioxidative protection and declined lipid peroxidation. J Plant Physiol, 2019, 232: 226-240.
doi: 10.1016/j.jplph.2018.10.023 |
[17] |
SuzukI N, Koussevitzky S, Mittler R, Miller G. ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ, 2012, 35: 259-270.
doi: 10.1111/j.1365-3040.2011.02336.x |
[18] | Slama I, Tayachi S, Jdey A, Rouached A, Abdelly C. Differential response to water deficit stress in alfalfa (Medicago sativa) cultivars: growth, water relations, osmolyte accumulation and lipid peroxidation. Afr J Biotechnol, 2011, 10: 16250-16259. |
[19] | Quan W, Liu X, Wang H, Chan Z L. Comparative physiological and transcriptional analyses of two contrasting drought tolerant alfalfa varieties. Front Plant Sci, 2016, 6: 1256. |
[20] |
冷暖, 刘晓巍, 张娜, 许立新. 草地早熟禾干旱胁迫转录组差异性分析. 草业学报, 2017, 26(12): 128-137.
doi: 10.11686/cyxb2017130 |
Leng N, Liu X W, Zhang N, Xu L X. Differential gene analysis of Poapratensis in response to drought stress. Acta Pratac Sin, 2017, 26(12): 128-137. (in Chinese with English abstract) | |
[21] |
Ma Q, Bao A K, Chai W W, Wang W Y, Zhang J L, Li Y X, Wang S M. Transcriptomic analysis of the succulent xerophyte Zygophyllum xanthoxylum in response to salt treatment and osmotic stress. Plant Soil, 2016, 402: 343-361.
doi: 10.1007/s11104-016-2809-1 |
[22] |
Swarbreck S M, Lindquist E A, Ackerly D D, Andersen G L. Analysis of leaf and root transcriptomes of soil-grown Avena barbata plants. Plant Cell Physiol, 2011, 52: 317-332.
doi: 10.1093/pcp/pcq188 |
[23] |
Molina C, Zaman-Allah M, Khan F, Fatnassi N, Horres R, Rotter B, Steinhauer D, Amenc L, Drevon J J, Winter P, Kahl G. The salt-responsive transcriptome of chickpea roots and nodules via deep super SAGE. BMC Plant Biol, 2011, 11: 31.
doi: 10.1186/1471-2229-11-31 |
[24] |
汤海港, 黄艳华, 路海博, 田丹阳, 张蕴薇. 转录组测序技术及其在能源草基因挖掘和品种选育中的应用前景分析. 草地学报, 2016, 24: 731-737.
doi: 10.11733/j.issn.1007-0435.2016.04.004 |
Tang H G, Huang Y H, Lu H B, Tian D Y, Zhang Y W. The application perspective of transcriptome sequencing on discovering the genes and variety breeding of bioenergy grass. Acta Agrest Sin, 2016, 24: 731-737. (in Chinese with English abstract) | |
[25] | 王园园, 赵明, 张红香, 卢正宽, 穆春生. 干旱胁迫对紫花苜蓿幼苗形态和生理特征的影响. 中国草地学报, 2021, 43(9): 78-87. |
Wang Y Y, Zhao M, Zhang H X, Lu Z K, Mu C S. Effects of drought stress on morphological and physiological characteristics of alfalfa seedlings. Chin J Grassland, 2021, 43(9): 78-87. (in Chinese with English abstract) | |
[26] |
张翠梅, 师尚礼, 吴芳. 干旱胁迫对不同抗旱性苜蓿品种根系生长及生理特性影响. 中国农业科学, 2018, 51: 868-882.
doi: 10.3864/j.issn.0578-1752.2018.05.006 |
Zhang C M, Shi S L, Wu F. Effects of drought stress on root and physiological responses of different drought tolerant alfalfa varieties. Sci Agric Sin, 2018, 51: 868-882. (in Chinese with English abstract) | |
[27] |
Wang T Z, Chen L, Zhao M G, Tian Q Y, Zhang W H. Identification of drought-responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing. BMC Genomics, 2011, 12: 367.
doi: 10.1186/1471-2164-12-367 |
[28] |
Smart R E. Rapid estimates of relative water content. Plant Physiol, 1974, 53: 258-260.
doi: 10.1104/pp.53.2.258 pmid: 16658686 |
[29] |
Nayyar H. Accumulation of osmolytes and osmotic adjustment in water-stressed wheat (Triticum aestivum) and maize (Zea mays) as affected by calcium and its antagonists. Environ Exp Bot, 2003, 50: 253-264.
doi: 10.1016/S0098-8472(03)00038-8 |
[30] |
Arnon D I. Copper enzymes in isolated chloroplasts- polyphenoloxidase in Beta vulgaris. Plant Physiol, 1949, 24: 1-5.
doi: 10.1104/pp.24.1.1 pmid: 16654194 |
[31] | 邹琦. 植物生理学实验指导. 北京: 中国农业出版社, 2007. |
Zou Q. Plant Physiology Experiment Guidance. Beijing: China Agriculture Press, 2007. (in Chinese) | |
[32] |
Giannopolitis C N, Ries S K. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol, 1977, 59: 309-314.
doi: 10.1104/pp.59.2.309 pmid: 16659839 |
[33] | Pandolfini T, Gabbrielli R, Comparini C. Nickel toxicity and peroxidase activity in seedlings of Triticum aestivum L. Plant Cell Environt, 1992, 15: 719-725. |
[34] |
Shen C, Du H L, Chen Z, Lu H W, Zhu F G, Chen H, Meng X Z, Liu Q W, Liu P, Zheng L H, Li X X, Dong J L, Liang C Z, Wang T. The chromosome-level genome sequence of the autotetraploid alfalfa and resequencing of core germplasms provide genomic resources for alfalfa research. Mol Plant, 2020, 13: 1250-1261.
doi: S1674-2052(20)30216-1 pmid: 32673760 |
[35] | 韩志顺, 郑敏娜, 梁秀芝, 康佳惠, 陈燕妮. 干旱胁迫对不同紫花苜蓿品种形态特征和生理特性的影响. 中国草地学报, 2020, 42(3): 37-43. |
Han Z S, Zheng M N, Liang X Z, Kang J H, Chen Y N. Effects of drought stress on morphological and physiological characteristics of different alfalfa cultivars. Chin J Grassland, 2020, 42(3): 37-43. (in Chinese with English abstract) | |
[36] | 刘军, 齐广平, 康燕霞, 马彦麟, 栗志. 土壤水分胁迫对紫花苜蓿光合特性及其生物量的影响. 干旱区研究, 2019, 36: 893-900. |
Liu J, Qi G P, Kang Y X, Ma Y L, Li Z. Effects of soil water stress on photosynthetic characteristics and biomass of Medicago sativa. Arid Zone Res, 2019, 36: 893-900. (in Chinese with English abstract) | |
[37] |
南思睿, 罗永忠, 于思敏, 何钰, 仝慧鑫. 干旱胁迫后复水对新疆大叶苜蓿幼苗光合和叶绿素荧光的影响. 草地学报, 2022, 30: 1141-1149.
doi: 10.11733/j.issn.1007-0435.2022.05.014 |
Nan S R, Luo Y Z, Yu S M, He Y, Tong H X. Effects of rewatering after drought stress on photosynthesis and chlorophyll fluorescence of Medicago sativa cv. Xingjiangdaye seedlings. Acta Agrest Sin, 2022, 30: 1141-1149 (in Chinese with English abstract). | |
[38] | 韩瑞宏, 卢欣石, 高桂娟, 杨秀娟. 紫花苜蓿(Medicago sativa)对干旱胁迫的光合生理响应. 生态学报, 2007, 27: 5229-5237. |
Han R H, Lu X S, Gao G J, Yang X J. Photosynthetic physiological response of alfalfa (Medicago sativa) to drought stress. Acta Ecol Sin, 2007, 27: 5229-5237 (in Chinese with English abstract). | |
[39] |
Leng P, Yuan B, Guo Y. The role of abscisic acid in fruit ripening and responses to abiotic stress. J Exp Bot, 2014, 65: 4577-4588.
doi: 10.1093/jxb/eru204 pmid: 24821949 |
[40] |
王志恒, 魏玉清, 赵延蓉, 王悦娟. 基于转录组学比较研究甜高粱幼苗响应干旱和盐胁迫的生理特征. 草业学报, 2022, 31(3): 71-84.
doi: 10.11686/cyxb2020557 |
Wang Z H, Wei Y Q, Zhao Y R, Wang Y J. A transcriptomic study of physiological responses to drought and salt stress in sweet sorghum seedlings. Acta Pratac Sin, 2022, 31(3): 71-84. (in Chinese with English abstract) | |
[41] |
Zhang C M, Shang L S. Physiological and proteomic responses of contrasting alfalfa (Medicago sativa L.) varieties to PEG-induced osmotic stress. Front Plant Sci, 2018, 9: 242.
doi: 10.3389/fpls.2018.00242 |
[42] |
韩瑞宏, 田华, 高桂娟, 卢欣石. 干旱胁迫下紫花苜蓿叶片水分代谢与两种渗透调节物质的变化. 华北农学报, 2008, 23(4): 140-144.
doi: 10.7668/hbnxb.2008.04.032 |
Han R H, Tian H, Gao G J, Lu X S. Change of water metabolism and two osmotic adjustment substances in the leaves of alfalfa under drought stress. Acta Agric Boreali-Sin, 2008, 23(4): 140-144. (in Chinese with English abstract) | |
[43] | 张美, 张会. 胚胎发育晚期丰富蛋白(LEA蛋白)与植物抗逆性研究进展. 生物资源, 2017, 39(3): 155-161. |
Zhang M, Zhang H. Research progress of late embryogenesis abundant (LEA) protein involved in plant tolerance to abiotic stresse. Biotic Resour, 2017, 39(3): 155-161. (in Chinese with English abstract) | |
[44] |
Gill S S, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem, 2010, 48: 909-930.
doi: 10.1016/j.plaphy.2010.08.016 |
[45] |
权文利, 产祝龙. 紫花苜蓿抗旱机制研究进展. 生物技术通报, 2016, 32(10): 34-41.
doi: 10.13560/j.cnki.biotech.bull.1985.2016.10.003 |
Quan W L, Chan Z L. Research progress on drought resistance mechanism of alfalfa. Biotechnol Bull, 2016, 32(10): 34-41. (in Chinese with English abstract) |
[1] | WANG Fei-Fei, ZHANG Sheng-Zhong, HU Xiao-Hui, CHU Ye, CUI Feng-Gao, ZHONG Wen, ZHAO Li-Bo, ZHANG Tian-Yu, GUO Jin-Tao, YU Hao-Liang, MIAO Hua-Rong, CHEN Jing. Comparative transcriptome profiling of dormancy regulatory network in peanut [J]. Acta Agronomica Sinica, 2023, 49(9): 2446-2461. |
[2] | HU Xin, LUO Zheng-Ying, LI Chun-Jia, WU Zhuan-Di, LI Xu-Juan, LIU Xin-Long. Comparative transcriptome analysis of elite ‘ROC’ sugarcane parents for exploring genes involved in Sporisorium scitamineum infection by using Illumina- and SMRT-based RNA-seq [J]. Acta Agronomica Sinica, 2023, 49(9): 2412-2432. |
[3] | WEI Zheng-Xin, LIU Chang-Yan, CHEN Hong-Wei, LI Li, SUN Long-Qing, HAN Xue-Song, JIAO Chun-Hai, SHA Ai-Hua. Analysis of ASPAT gene family based on drought-stressed transcriptome sequencing in Vicia faba L. [J]. Acta Agronomica Sinica, 2023, 49(7): 1871-1881. |
[4] | LI Ling-Yu, ZHOU Qi-Rui, LI Yang, ZHANG An-Min, WANG Bei-Bei, MA Shang-Yu, FAN Yong-Hui, HUANG Zheng-Lai, ZHANG Wen-Jing. Transcriptome analysis of exogenous 6-BA in regulating young spike development of wheat after low temperature at booting stage [J]. Acta Agronomica Sinica, 2023, 49(7): 1808-1817. |
[5] | ZHANG Zhen-Bo, JIA Chun-Lan, REN Bai-Zhao, LIU Peng, ZHAO Bin, ZHANG Ji-Wang. Effects of combined application of nitrogen and phosphorus on yield and leaf senescence physiological characteristics in summer maize [J]. Acta Agronomica Sinica, 2023, 49(6): 1616-1629. |
[6] | ZHANG Xiao-Hong, PENG Qiong, YAN Zheng. Transcriptome sequencing analysis of different sweet potato varieties under salt stress [J]. Acta Agronomica Sinica, 2023, 49(5): 1432-1444. |
[7] | ZHANG Chen-Hui, ZHANG Yan, LI Guo-Hui, YANG Zi-Jun, ZHA Ying-Ying, ZHOU Chi-Yan, XU Ke, HUO Zhong-Yang, DAI Qi-Gen, GUO Bao-Wei. Root morphology and physiological characteristics for high yield formation under side-deep fertilization in rice [J]. Acta Agronomica Sinica, 2023, 49(4): 1039-1051. |
[8] | LI Zhao-Wei, MO Zu-Yi, SUN Cong-Ying, SHI Yu, SHANG Ping, LIN Wei-Wei, FAN Kai, LIN Wen-Xiong. Construction of rice mutants by gene editing of OsNAC2d and their response to drought stress [J]. Acta Agronomica Sinica, 2023, 49(2): 365-376. |
[9] | DING Hong, ZHANG Zhi-Meng, XU Yang, ZHANG Guan-Chu, GUO Qing, QIN Fei-Fei, DAI Liang-Xiang. Physiological and transcriptional regulation mechanisms of nitrogen alleviating drought stress in peanut [J]. Acta Agronomica Sinica, 2023, 49(1): 225-238. |
[10] | ZHANG Tian-Yu, WANG Yue, LIU Ying, ZHOU Ting, YUE Cai-Peng, HUANG Jin-Yong, HUA Ying-Peng. Bioinformatics analysis and core member identification of proline metabolism gene family in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(8): 1977-1995. |
[11] | LI Pei-Ting, ZHAO Zhen-Li, HUANG Chao-Hua, HUANG Guo-Qiang, XU Liang-Nian, DENG Zu-Hu, ZHANG Yu, ZHAO Xin-Wang. Analysis of drought responsive regulatory network in sugarcane based on transcriptome and WGCNA [J]. Acta Agronomica Sinica, 2022, 48(7): 1583-1600. |
[12] | WANG Xia, YIN Xiao-Yu, Yu Xiao-Ming, LIU Xiao-Dan. Effects of drought hardening on contemporary expression of drought stress memory genes and DNA methylation in promoter of B73 inbred progeny [J]. Acta Agronomica Sinica, 2022, 48(5): 1191-1198. |
[13] | DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703. |
[14] | ZHANG Hai-Yan, XIE Bei-Tao, JIANG Chang-Song, FENG Xiang-Yang, ZHANG Qiao, DONG Shun-Xu, WANG Bao-Qing, ZHANG Li-Ming, QIN Zhen, DUAN Wen-Xue. Screening of leaf physiological characteristics and drought-tolerant indexes of sweetpotato cultivars with drought resistance [J]. Acta Agronomica Sinica, 2022, 48(2): 518-528. |
[15] | YANG Ya-Jie, LI Yu-Ying, SHEN Zhuang-Zhuang, CHEN Tian, RONG Er-Hua, WU Yu-Xiang. Differential expressed analysis by transcriptome sequencing in leaves of different ploidy Gossypium herbaceum [J]. Acta Agronomica Sinica, 2022, 48(11): 2733-2748. |
|