Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (8): 2122-2132.doi: 10.3724/SP.J.1006.2023.24205

• CROP GENETICS & BREEDING · GERMPLASM RESOURCES · MOLECULAR GENETICS • Previous Articles     Next Articles

Differences of physiological responses and transcriptional regulation of alfalfa with different drought tolerances under drought stresses

CHEN Li1,2(), WANG Jing1,2, QIU Xiao3, SUN Hai-Lian3, ZHANG Wen-Hao1, WANG Tian-Zuo1,*()   

  1. 1 Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
    2 College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
    3 Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Huhhot 010000, Inner Mongolia, China
  • Received:2022-09-06 Accepted:2022-11-25 Online:2023-08-12 Published:2022-12-02
  • Contact: WANG Tian-Zuo E-mail:chenli125975@163.com;tzwang@ibcas.ac.cn
  • Supported by:
    National Key Research and Development Program of China(2022YFF1003203);Science and Technology Program of Inner Mongolia Autonomous Region(2021GG0372)

Abstract:

Alfalfa is the most important legume forage, which is often planted in aird or semi-arid regions. The objective of this study is to explore the responsive mechanism of alfalfa with different drought tolerance to drought stress, which provides the theoretical basis for tolerant breeding of alfalfa. In this study, the new variety Medicago sativa ‘Zhongke 1’ was used as the test material, and M. sativa ‘Sanditi’ was used as the control. The effects of drought stress on growth traits, photosynthesis, chlorophyll concentration, leaf water content, osmotic adjustment substances, and antioxidant enzyme activities were determined by natural drought strategy in pots. The deferentially expressed genes were compared by transcriptome analysis. Drought stress significantly reduced plant height, biomass, relative water content of leaves, photosynthetic rate, transpiration rate, stomatal conductance, intercellular carbon dioxide and chlorophyll concentration of alfalfa. Compared with Sanditi, Zhongke 1 revealed the lower malondialdehyde concentration and electrical conductivity under drought stress, but stronger osmotic regulation ability and superoxide radical scavenging ability. Transcriptome sequencing identified 5308 and 8053 drought-responsive genes of Zhongke 1 and Sanditi, respectively. GO functional annotation demonstrated that 346 drought-responsive genes were significantly enriched in six GO item categories in Zhongke 1, while 1683 drought-responsive genes in Sanditi were significantly enriched in 29 GO item categories. The relative expression levels of 19 key drought-tolerant genes in Zhongke 1 were significantly higher than those in Sanditi. Alfalfa may maintain a relatively high photosynthetic rate by up-regulating the relative expression levels of drought tolerant genes SUS, P5CS, LEA, SOD, POD, PEPC, and NCED, thus improving osmotic regulation ability and antioxidant enzyme activity. The results provide a theoretical basis for further exploration of alfalfa’s candidate genes in response to drought stress and drought tolerant breeding.

Key words: alfalfa, drought stress, physiological characteristics, transcriptome

Fig. 1

Effects of drought stress on plant height (A), aboveground biomass (B), underground biomass (C), and survival rate (D) of alfalfa with different drought tolerances * and ** represent significant difference among the different varieties in the same treatment at P < 0.05 and P < 0.01, respectively. # and ## represent significant difference between the different treatments in the same variety at P < 0.05 and P < 0.01, respectively."

Fig. 2

Effects of drought stress on photosynthetic rate (A), stomatal conductance (B), intercellular CO2 concentration (C), transpiration rate (D), water use efficiency (E), and chlorophyll concentration (F) of alfalfa with different drought tolerances * and ** represent significant difference among the different varieties in the same treatment at P < 0.05 and P < 0.01, respectively. # and ## represent significant difference between the different treatments in the same variety at P < 0.05 and P < 0.01, respectively."

Fig. 3

Effects of drought stress on leaf relative electrical conductivity (A) and relative water content (B) of alfalfa with different drought tolerances * and ** represent significant difference among the different varieties in the same treatment at P < 0.05 and P < 0.01, respectively. # and ## represent significant difference between the different treatments in the same variety at P < 0.05 and P < 0.01, respectively."

Fig. 4

Effects of drought stress on leaf proline (A) and soluble sugar concentration (B) of alfalfa with different drought tolerances * and ** represent significant difference among the different varieties in the same treatment at P < 0.05 and P < 0.01, respectively. # and ## represent significant difference between the different treatments in the same variety at P < 0.05 and P < 0.01, respectively."

Fig. 5

Effects of drought stress on malondialdehyde concentration (A), activities of superoxide dismutase (B), and peroxidase (C) in alfalfa with different drought tolerances * and **represent significant difference among the different varieties in the same treatment at P < 0.05 and P < 0.01, respectively. # and ## represent significant difference between the different treatments in the same variety at P < 0.05 and P < 0.01, respectively."

Fig. 6

Transcriptome analysis of under normal and drought conditions A: the heatmap of transcriptome; B: the number of differentially expressed genes."

Table 1

GO annotation of differentially expressed genes between drought and control treatment in Zhongke 1"

类别
Categories
基因本体ID
GO ID
描述
Description
多重假设检验校正后的P
P-adj value
基因数
No. of genes
CC GO:0005618 细胞壁Cell wall 0.02 21
CC GO:0030312 外封装结构External encapsulating structure 0.02 21
MF GO:0046906 四吡咯结合Tetrapyrrole binding 0.05 85
MF GO:0016788 水解酶活性, 作用于酯键Hydrolase activity, acting on ester bonds 0.05 94
MF GO:0020037 血红素结合Heme binding 0.05 82
MF GO:0004553 水解酶活性, 水解O-糖基化合物
Hydrolase activity, hydrolyzing O-glycosyl compounds
0.05 85

Table 2

GO annotation of differentially expressed genes between drought and control treatment in Sanditi"

类别
Category
基因本体ID
GO ID
描述
Description
多重假设检验校正后的P
P-adj value
基因数
No. of genes
CC GO:0009521 光系统Photosystem 0.01×10-5 32
CC GO:0034357 光合膜Photosynthetic membrane 0.01×10-5 32
CC GO:0009579 类囊体Thylakoid 0.01×10-5 33
CC GO:0044436 类囊体部分Thylakoid part 0.01×10-5 33
MF GO:0016757 转移酶活性, 转移糖基Transferase activity, transferring glycosyl groups 0.08×10-5 149
CC GO:0009523 光系统II Photosystem II 0.03×10-3 20
MF GO:0016758 转移酶活性, 转移己糖基团Transferase activity, transferring hexosyl groups 0.04×10-3 132
MF GO:0004185 丝氨酸型羧肽酶活性Serine-type carboxypeptidase activity 0.04×10-3 29
MF GO:0046906 四吡咯结合Tetrapyrrole binding 0.04×10-3 131
MF GO:0016705 氧化还原酶活性, 作用于配对供体, 结合或减少分子氧
Oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen
0.04×10-3 113
BP GO:0015979 光合作用Photosynthesis 0.01×10-2 38
CC GO:0009654 光系统II析氧复合物Photosystem II oxygen evolving complex 0.02×10-2 14
CC GO:0042651 类囊体膜Thylakoid membrane 0.08×10-2 14
CC GO:1990204 氧化还原酶复合物Oxidoreductase complex 0.08×10-2 14
MF GO:0005506 铁离子结合Iron ion binding 0.09×10-2 119
CC GO:0019898 膜的外在成分Extrinsic component of membrane 0.04×10-1 13
MF GO:0003700 DNA结合转录因子活性DNA-binding transcription factor activity 0.07×10-1 116
MF GO:0016835 碳氧裂解酶活性Carbon-oxygen lyase activity 0.01 26
CC GO:0009522 光系统I Photosystem I 0.02 10
MF GO:0016747 转移酶活性, 转移除氨酰基以外的酰基
Transferase activity, transferring acyl groups other than amino-acyl groups
0.02 64
MF GO:0008236 丝氨酸型肽酶活性Serine-type peptidase activity 0.02 64
MF GO:0020037 血红素结合Heme binding 0.02 129
MF GO:0004180 羧肽酶活性Carboxypeptidase activity 0.03 29
MF GO:0070008 丝氨酸型外肽酶活性Serine-type exopeptidase activity 0.03 30
MF GO:0016746 转移酶活性, 转移酰基Transferase activity, transferring acyl groups 0.03 76
MF GO:0017171 丝氨酸水解酶活性Serine hydrolase activity 0.03 64
MF GO:0016701 氧化还原酶活性, 作用于单个供体并结合分子氧
Oxidoreductase activity, acting on single donors with incorporation of molecular oxygen
0.04 26
MF GO:0140110 转录调节活性Transcription regulator activity 0.04 122
MF GO:0008374 O-酰基转移酶活性O-acyltransferase activity 0.04 11

Fig. 7

Heatmap of the differential expressed genes under drought stress The relative expression level (Z-value) of the gene is represented by the color from green (low) to red (high)."

[1] 韩德梁, 王彦荣. 紫花苜蓿对干旱胁迫适应性的研究进展. 草业学报, 2005, 14(6): 7-13.
Han D L, Wang Y R. Adaptability of Medicago sativa under water stress. Acta Pratac Sin, 2005, 14(6): 7-13. (in Chinese with English abstract)
[2] Jia Y H, Shao M A. Temporal stability of soil water storage under four types of revegetation on the northern loess plateau of China. Agric Water Manag, 2013, 117: 33-42.
doi: 10.1016/j.agwat.2012.10.013
[3] 王晓娟, 张树振, 林双双, 邓志刚, 金樑. 紫花苜蓿(Medicago sativa L.)生物能源利用的研究进展. 中国农业科学, 2013, 46: 1694-1705.
Wang X J, Zhang S Z, Lin S S, Deng Z G, Jin L. Advances in study on bio-energy utilization of stem cell wall components in alfalfa (Medicago sativa L.). Sci Agric Sin, 2013, 46: 1694-1705. (in Chinese with English abstract)
[4] 张迪, 任立飞, 刘广彬, 罗伏青, 张文浩, 王天佐. 不同干燥方式对苜蓿种子代谢物的影响. 草业学报, 2021, 30(3): 158-166.
doi: 10.11686/cyxb2020147
Zhang D, Ren L F, Liu G B, Luo F Q, Zhang W H, Wang T Z. Comparative metabolite profiling of alfalfa seeds dried at different temperatures. Acta Pratac Sin, 2021, 30(3): 158-166. (in Chinese with English abstract)
[5] Mickky B M, Abbas M A, Ei-shhaby O A. Alterations in photosynthetic capacity and morpho-histological features of leaf in alfalfa plants subjected to water deficit-stress in different soil types. Indian J Plant Physiol, 2018, 23: 426-443.
doi: 10.1007/s40502-018-0383-7
[6] Wang T, Zhang W H. Priorities for the development of alfalfa pasture in northern China. Fundam Res, 2022, doi:10.1016/j.fmre.2022.04.017.
doi: 10.1016/j.fmre.2022.04.017
[7] 杨青川, 康俊梅, 张铁军, 刘凤歧, 龙瑞才, 孙彦. 苜蓿种质资源的分布、育种与利用. 科学通报, 2016, 61: 261-270.
Yang Q C, Kang J M, Zhang T J, Liu F Q, Long R C, Sun Y. Distribution, breeding and utilization of alfalfa germplasm resources. Chin Sci Bull, 2016, 61: 261-270 (in Chinese with English abstract).
doi: 10.1360/N972015-00879
[8] 陆姣云, 熊军波, 张鹤山, 田宏, 杨惠敏, 刘洋. 水分胁迫对紫花苜蓿产量、品质和微量元素的影响. 草业学报, 2020, 29(8): 126-133.
doi: 10.11686/cyxb2019462
Lu J Y, Xiong J B, Zhang H S, Tian H, Yang H M, Liu Y. Effects of water stress on yield, quality and trace element composition of alfalfa. Acta Pratac Sin, 2020, 29(8): 126-133. (in Chinese with English abstract)
[9] 张立全, 贾旭慧, 赵静玮. PEG模拟干旱胁迫对紫花苜蓿种子发芽及幼苗生长的影响. 分子植物育种, 2020, 18: 3759-3764.
Zhang L Q, Jia X H, Zhao J W. Effects of PEG simulated drought stress on seed germination and seedling growth of alfalfa. Mol Plant Breed, 2020, 18: 3759-3764 (in Chinese with English abstract).
[10] 李佳欢, 刘希强, 吕进英, 任成, 王开丽, 黄顶, 邓波, 王堃. 基于植株各器官生理响应对12种苜蓿抗旱性的综合评价. 草地学报, 2020, 28: 1319-1328.
doi: 10.11733/j.issn.1007-0435.2020.05.017
Li J H, Liu X Q, Lyu J Y, Ren C, Wang K L, Huang D, Deng B, Wang K. drought resistance evaluation of 12 alfalfa varieties based on physiological response of four plant organs. Acta Agrest Sin, 2020, 28: 1319-1328. (in Chinese with English abstract)
[11] Bid M, Haddad M, Ben Khaled A, Mansour E, Bachar K, Lacheheb B, Ferchichi A. Water relations and gas exchange in alfalfa leaves under drought conditions in southern Tunisian oases. Polish J Environ Stud, 2016, 25: 917-924.
doi: 10.15244/pjoes/61282
[12] 张曦, 王振南, 陆姣云, 杨梅, 杨惠敏. 紫花苜蓿叶性状对干旱的阶段性响应. 生态学报, 2016, 36: 2669-2676.
Zhang X, Wang Z N, Lu J Y, Yang M, Yang H M. Responses of leaf traits to drought at different growth stages of alfalfa. Acta Ecol Sin, 2016, 36: 2669-2676. (in Chinese with English abstract)
[13] Roy M, Niu J P, Irshad A, Kareem H A, Hassan M U, Xu N, Sui X, Guo Z P, Amo A, Wang Q Z. Exogenous melatonin protects alfalfa (Medicago sativa L.) seedlings from drought-induced damage by modulating reactive oxygen species metabolism, mineral balance and photosynthetic efficiency. Plant Stress, 2021, 2: 100044.
doi: 10.1016/j.stress.2021.100044
[14] 阿衣古力·阿布都瓦依提, 王铮, 木合塔尔·扎热, 齐曼·尤努斯. 干旱胁迫对3个苜蓿品种的生长及光合特性的影响. 中国农学通报, 2016, 32(14): 7-12.
doi: 10.11924/j.issn.1000-6850.casb15110133
Aygul A, Wang Z, Muhtar Z, Qiman Y. Effect of drought stress on plant growth and photosynthetic characteristics of three alfalfa varieties. Chin Agric Sci Bull, 2016, 32(14): 7-12. (in Chinese with English abstract)
doi: 10.11924/j.issn.1000-6850.casb15110133
[15] Claeys H, Inzé D. The agony of choice: how plants balance growth and survival under water-limiting conditions. Plant Physiol, 2013, 162: 1768-1779.
doi: 10.1104/pp.113.220921 pmid: 23766368
[16] Zhang C M, Shi S L, Liu Z, Yang F, Yin G L. Drought tolerance in alfalfa (Medicago sativa L.)varieties is associated with enhanced antioxidative protection and declined lipid peroxidation. J Plant Physiol, 2019, 232: 226-240.
doi: 10.1016/j.jplph.2018.10.023
[17] SuzukI N, Koussevitzky S, Mittler R, Miller G. ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ, 2012, 35: 259-270.
doi: 10.1111/j.1365-3040.2011.02336.x
[18] Slama I, Tayachi S, Jdey A, Rouached A, Abdelly C. Differential response to water deficit stress in alfalfa (Medicago sativa) cultivars: growth, water relations, osmolyte accumulation and lipid peroxidation. Afr J Biotechnol, 2011, 10: 16250-16259.
[19] Quan W, Liu X, Wang H, Chan Z L. Comparative physiological and transcriptional analyses of two contrasting drought tolerant alfalfa varieties. Front Plant Sci, 2016, 6: 1256.
[20] 冷暖, 刘晓巍, 张娜, 许立新. 草地早熟禾干旱胁迫转录组差异性分析. 草业学报, 2017, 26(12): 128-137.
doi: 10.11686/cyxb2017130
Leng N, Liu X W, Zhang N, Xu L X. Differential gene analysis of Poapratensis in response to drought stress. Acta Pratac Sin, 2017, 26(12): 128-137. (in Chinese with English abstract)
[21] Ma Q, Bao A K, Chai W W, Wang W Y, Zhang J L, Li Y X, Wang S M. Transcriptomic analysis of the succulent xerophyte Zygophyllum xanthoxylum in response to salt treatment and osmotic stress. Plant Soil, 2016, 402: 343-361.
doi: 10.1007/s11104-016-2809-1
[22] Swarbreck S M, Lindquist E A, Ackerly D D, Andersen G L. Analysis of leaf and root transcriptomes of soil-grown Avena barbata plants. Plant Cell Physiol, 2011, 52: 317-332.
doi: 10.1093/pcp/pcq188
[23] Molina C, Zaman-Allah M, Khan F, Fatnassi N, Horres R, Rotter B, Steinhauer D, Amenc L, Drevon J J, Winter P, Kahl G. The salt-responsive transcriptome of chickpea roots and nodules via deep super SAGE. BMC Plant Biol, 2011, 11: 31.
doi: 10.1186/1471-2229-11-31
[24] 汤海港, 黄艳华, 路海博, 田丹阳, 张蕴薇. 转录组测序技术及其在能源草基因挖掘和品种选育中的应用前景分析. 草地学报, 2016, 24: 731-737.
doi: 10.11733/j.issn.1007-0435.2016.04.004
Tang H G, Huang Y H, Lu H B, Tian D Y, Zhang Y W. The application perspective of transcriptome sequencing on discovering the genes and variety breeding of bioenergy grass. Acta Agrest Sin, 2016, 24: 731-737. (in Chinese with English abstract)
[25] 王园园, 赵明, 张红香, 卢正宽, 穆春生. 干旱胁迫对紫花苜蓿幼苗形态和生理特征的影响. 中国草地学报, 2021, 43(9): 78-87.
Wang Y Y, Zhao M, Zhang H X, Lu Z K, Mu C S. Effects of drought stress on morphological and physiological characteristics of alfalfa seedlings. Chin J Grassland, 2021, 43(9): 78-87. (in Chinese with English abstract)
[26] 张翠梅, 师尚礼, 吴芳. 干旱胁迫对不同抗旱性苜蓿品种根系生长及生理特性影响. 中国农业科学, 2018, 51: 868-882.
doi: 10.3864/j.issn.0578-1752.2018.05.006
Zhang C M, Shi S L, Wu F. Effects of drought stress on root and physiological responses of different drought tolerant alfalfa varieties. Sci Agric Sin, 2018, 51: 868-882. (in Chinese with English abstract)
[27] Wang T Z, Chen L, Zhao M G, Tian Q Y, Zhang W H. Identification of drought-responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing. BMC Genomics, 2011, 12: 367.
doi: 10.1186/1471-2164-12-367
[28] Smart R E. Rapid estimates of relative water content. Plant Physiol, 1974, 53: 258-260.
doi: 10.1104/pp.53.2.258 pmid: 16658686
[29] Nayyar H. Accumulation of osmolytes and osmotic adjustment in water-stressed wheat (Triticum aestivum) and maize (Zea mays) as affected by calcium and its antagonists. Environ Exp Bot, 2003, 50: 253-264.
doi: 10.1016/S0098-8472(03)00038-8
[30] Arnon D I. Copper enzymes in isolated chloroplasts- polyphenoloxidase in Beta vulgaris. Plant Physiol, 1949, 24: 1-5.
doi: 10.1104/pp.24.1.1 pmid: 16654194
[31] 邹琦. 植物生理学实验指导. 北京: 中国农业出版社, 2007.
Zou Q. Plant Physiology Experiment Guidance. Beijing: China Agriculture Press, 2007. (in Chinese)
[32] Giannopolitis C N, Ries S K. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol, 1977, 59: 309-314.
doi: 10.1104/pp.59.2.309 pmid: 16659839
[33] Pandolfini T, Gabbrielli R, Comparini C. Nickel toxicity and peroxidase activity in seedlings of Triticum aestivum L. Plant Cell Environt, 1992, 15: 719-725.
[34] Shen C, Du H L, Chen Z, Lu H W, Zhu F G, Chen H, Meng X Z, Liu Q W, Liu P, Zheng L H, Li X X, Dong J L, Liang C Z, Wang T. The chromosome-level genome sequence of the autotetraploid alfalfa and resequencing of core germplasms provide genomic resources for alfalfa research. Mol Plant, 2020, 13: 1250-1261.
doi: S1674-2052(20)30216-1 pmid: 32673760
[35] 韩志顺, 郑敏娜, 梁秀芝, 康佳惠, 陈燕妮. 干旱胁迫对不同紫花苜蓿品种形态特征和生理特性的影响. 中国草地学报, 2020, 42(3): 37-43.
Han Z S, Zheng M N, Liang X Z, Kang J H, Chen Y N. Effects of drought stress on morphological and physiological characteristics of different alfalfa cultivars. Chin J Grassland, 2020, 42(3): 37-43. (in Chinese with English abstract)
[36] 刘军, 齐广平, 康燕霞, 马彦麟, 栗志. 土壤水分胁迫对紫花苜蓿光合特性及其生物量的影响. 干旱区研究, 2019, 36: 893-900.
Liu J, Qi G P, Kang Y X, Ma Y L, Li Z. Effects of soil water stress on photosynthetic characteristics and biomass of Medicago sativa. Arid Zone Res, 2019, 36: 893-900. (in Chinese with English abstract)
[37] 南思睿, 罗永忠, 于思敏, 何钰, 仝慧鑫. 干旱胁迫后复水对新疆大叶苜蓿幼苗光合和叶绿素荧光的影响. 草地学报, 2022, 30: 1141-1149.
doi: 10.11733/j.issn.1007-0435.2022.05.014
Nan S R, Luo Y Z, Yu S M, He Y, Tong H X. Effects of rewatering after drought stress on photosynthesis and chlorophyll fluorescence of Medicago sativa cv. Xingjiangdaye seedlings. Acta Agrest Sin, 2022, 30: 1141-1149 (in Chinese with English abstract).
[38] 韩瑞宏, 卢欣石, 高桂娟, 杨秀娟. 紫花苜蓿(Medicago sativa)对干旱胁迫的光合生理响应. 生态学报, 2007, 27: 5229-5237.
Han R H, Lu X S, Gao G J, Yang X J. Photosynthetic physiological response of alfalfa (Medicago sativa) to drought stress. Acta Ecol Sin, 2007, 27: 5229-5237 (in Chinese with English abstract).
[39] Leng P, Yuan B, Guo Y. The role of abscisic acid in fruit ripening and responses to abiotic stress. J Exp Bot, 2014, 65: 4577-4588.
doi: 10.1093/jxb/eru204 pmid: 24821949
[40] 王志恒, 魏玉清, 赵延蓉, 王悦娟. 基于转录组学比较研究甜高粱幼苗响应干旱和盐胁迫的生理特征. 草业学报, 2022, 31(3): 71-84.
doi: 10.11686/cyxb2020557
Wang Z H, Wei Y Q, Zhao Y R, Wang Y J. A transcriptomic study of physiological responses to drought and salt stress in sweet sorghum seedlings. Acta Pratac Sin, 2022, 31(3): 71-84. (in Chinese with English abstract)
[41] Zhang C M, Shang L S. Physiological and proteomic responses of contrasting alfalfa (Medicago sativa L.) varieties to PEG-induced osmotic stress. Front Plant Sci, 2018, 9: 242.
doi: 10.3389/fpls.2018.00242
[42] 韩瑞宏, 田华, 高桂娟, 卢欣石. 干旱胁迫下紫花苜蓿叶片水分代谢与两种渗透调节物质的变化. 华北农学报, 2008, 23(4): 140-144.
doi: 10.7668/hbnxb.2008.04.032
Han R H, Tian H, Gao G J, Lu X S. Change of water metabolism and two osmotic adjustment substances in the leaves of alfalfa under drought stress. Acta Agric Boreali-Sin, 2008, 23(4): 140-144. (in Chinese with English abstract)
[43] 张美, 张会. 胚胎发育晚期丰富蛋白(LEA蛋白)与植物抗逆性研究进展. 生物资源, 2017, 39(3): 155-161.
Zhang M, Zhang H. Research progress of late embryogenesis abundant (LEA) protein involved in plant tolerance to abiotic stresse. Biotic Resour, 2017, 39(3): 155-161. (in Chinese with English abstract)
[44] Gill S S, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem, 2010, 48: 909-930.
doi: 10.1016/j.plaphy.2010.08.016
[45] 权文利, 产祝龙. 紫花苜蓿抗旱机制研究进展. 生物技术通报, 2016, 32(10): 34-41.
doi: 10.13560/j.cnki.biotech.bull.1985.2016.10.003
Quan W L, Chan Z L. Research progress on drought resistance mechanism of alfalfa. Biotechnol Bull, 2016, 32(10): 34-41. (in Chinese with English abstract)
[1] WANG Fei-Fei, ZHANG Sheng-Zhong, HU Xiao-Hui, CHU Ye, CUI Feng-Gao, ZHONG Wen, ZHAO Li-Bo, ZHANG Tian-Yu, GUO Jin-Tao, YU Hao-Liang, MIAO Hua-Rong, CHEN Jing. Comparative transcriptome profiling of dormancy regulatory network in peanut [J]. Acta Agronomica Sinica, 2023, 49(9): 2446-2461.
[2] HU Xin, LUO Zheng-Ying, LI Chun-Jia, WU Zhuan-Di, LI Xu-Juan, LIU Xin-Long. Comparative transcriptome analysis of elite ‘ROC’ sugarcane parents for exploring genes involved in Sporisorium scitamineum infection by using Illumina- and SMRT-based RNA-seq [J]. Acta Agronomica Sinica, 2023, 49(9): 2412-2432.
[3] WEI Zheng-Xin, LIU Chang-Yan, CHEN Hong-Wei, LI Li, SUN Long-Qing, HAN Xue-Song, JIAO Chun-Hai, SHA Ai-Hua. Analysis of ASPAT gene family based on drought-stressed transcriptome sequencing in Vicia faba L. [J]. Acta Agronomica Sinica, 2023, 49(7): 1871-1881.
[4] LI Ling-Yu, ZHOU Qi-Rui, LI Yang, ZHANG An-Min, WANG Bei-Bei, MA Shang-Yu, FAN Yong-Hui, HUANG Zheng-Lai, ZHANG Wen-Jing. Transcriptome analysis of exogenous 6-BA in regulating young spike development of wheat after low temperature at booting stage [J]. Acta Agronomica Sinica, 2023, 49(7): 1808-1817.
[5] ZHANG Zhen-Bo, JIA Chun-Lan, REN Bai-Zhao, LIU Peng, ZHAO Bin, ZHANG Ji-Wang. Effects of combined application of nitrogen and phosphorus on yield and leaf senescence physiological characteristics in summer maize [J]. Acta Agronomica Sinica, 2023, 49(6): 1616-1629.
[6] ZHANG Xiao-Hong, PENG Qiong, YAN Zheng. Transcriptome sequencing analysis of different sweet potato varieties under salt stress [J]. Acta Agronomica Sinica, 2023, 49(5): 1432-1444.
[7] ZHANG Chen-Hui, ZHANG Yan, LI Guo-Hui, YANG Zi-Jun, ZHA Ying-Ying, ZHOU Chi-Yan, XU Ke, HUO Zhong-Yang, DAI Qi-Gen, GUO Bao-Wei. Root morphology and physiological characteristics for high yield formation under side-deep fertilization in rice [J]. Acta Agronomica Sinica, 2023, 49(4): 1039-1051.
[8] LI Zhao-Wei, MO Zu-Yi, SUN Cong-Ying, SHI Yu, SHANG Ping, LIN Wei-Wei, FAN Kai, LIN Wen-Xiong. Construction of rice mutants by gene editing of OsNAC2d and their response to drought stress [J]. Acta Agronomica Sinica, 2023, 49(2): 365-376.
[9] DING Hong, ZHANG Zhi-Meng, XU Yang, ZHANG Guan-Chu, GUO Qing, QIN Fei-Fei, DAI Liang-Xiang. Physiological and transcriptional regulation mechanisms of nitrogen alleviating drought stress in peanut [J]. Acta Agronomica Sinica, 2023, 49(1): 225-238.
[10] ZHANG Tian-Yu, WANG Yue, LIU Ying, ZHOU Ting, YUE Cai-Peng, HUANG Jin-Yong, HUA Ying-Peng. Bioinformatics analysis and core member identification of proline metabolism gene family in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(8): 1977-1995.
[11] LI Pei-Ting, ZHAO Zhen-Li, HUANG Chao-Hua, HUANG Guo-Qiang, XU Liang-Nian, DENG Zu-Hu, ZHANG Yu, ZHAO Xin-Wang. Analysis of drought responsive regulatory network in sugarcane based on transcriptome and WGCNA [J]. Acta Agronomica Sinica, 2022, 48(7): 1583-1600.
[12] WANG Xia, YIN Xiao-Yu, Yu Xiao-Ming, LIU Xiao-Dan. Effects of drought hardening on contemporary expression of drought stress memory genes and DNA methylation in promoter of B73 inbred progeny [J]. Acta Agronomica Sinica, 2022, 48(5): 1191-1198.
[13] DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703.
[14] ZHANG Hai-Yan, XIE Bei-Tao, JIANG Chang-Song, FENG Xiang-Yang, ZHANG Qiao, DONG Shun-Xu, WANG Bao-Qing, ZHANG Li-Ming, QIN Zhen, DUAN Wen-Xue. Screening of leaf physiological characteristics and drought-tolerant indexes of sweetpotato cultivars with drought resistance [J]. Acta Agronomica Sinica, 2022, 48(2): 518-528.
[15] YANG Ya-Jie, LI Yu-Ying, SHEN Zhuang-Zhuang, CHEN Tian, RONG Er-Hua, WU Yu-Xiang. Differential expressed analysis by transcriptome sequencing in leaves of different ploidy Gossypium herbaceum [J]. Acta Agronomica Sinica, 2022, 48(11): 2733-2748.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .