Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (9): 2446-2461.doi: 10.3724/SP.J.1006.2023.24186

• CROP GENETICS & BREEDING · GERMPLASM RESOURCES · MOLECULAR GENETICS • Previous Articles     Next Articles

Comparative transcriptome profiling of dormancy regulatory network in peanut

WANG Fei-Fei1(), ZHANG Sheng-Zhong1, HU Xiao-Hui1, CHU Ye2, CUI Feng-Gao1, ZHONG Wen3, ZHAO Li-Bo4, ZHANG Tian-Yu3, GUO Jin-Tao5, YU Hao-Liang6, MIAO Hua-Rong1,*(), CHEN Jing1,*()   

  1. 1Shandong Peanut Research Institute, Qingdao 266100, Shandong, China
    2Department of Horticulture, University of Georgia Tifton Campus, Tifton 31793, GA, United States
    3Shandong Seed Administration Station, Jinan 250100, Shandong, China
    4Qingdao Agricultural Technology Extension Center, Qingdao 266071, Shandong, China
    5Agricultural Service Center of Hezhuang, Xinzheng, Zhengzhou 451150, Henan, China
    6Yantai Fenglin Foodstuff Co., Ltd, Yantai 264108, Shandong, China
  • Received:2022-08-10 Accepted:2023-02-21 Online:2023-09-12 Published:2023-03-03
  • Supported by:
    Youth Fund Project of the National Natural Science Foundation of China(32001584);Youth Fund Project of the National Natural Science Foundation of China(32201876);General Project of Shandong Natural Science Foundation(ZR2022MC045);Shandong Province Agriculture Improved Seed Project(2020LZGC001);Innovation Project of Shandong Academy of Agriculture Sciences(CXGC2022A03);Innovation Project of Shandong Academy of Agriculture Sciences(CXGC2022A21);Qingdao People’s Livelihood Science and Technology Project(20-3-4-26-nsh);Major Science and Technology Program of Xinjiang Uygur Autonomous Region(2022A02008-3)

Abstract:

Seed dormancy is an important and complex agronomic trait affecting yield and quality of peanut (Arachis hypogaea L.). Seed dormancy and germination was reported to be regulated by the balance between abscisic acid (ABA) and gibberellic acid (GA). In this study, transcriptomic sequencing was performed with Huayu 52 (HY52), a peanut cultivar with strong dormancy, and two EMS mutant lines from HY52 with a weak level of dormancy. Seeds from these three lines were imbibed for 0, 12, and 24 h before tissue harvesting and RNA seq analysis. GA content of M23 and M67 was significantly higher than HY52 at 12 h after imbibition, however, the ABA content and ABA/GA ratio were lower than HY52. A total of 31,374 differentially expressed genes (DEGs) including biosynthesis and signal transduction related genes of plant hormones such as ABA and GA were discovered. We identified 50 genes related to ABA, 8 genes related to GA, 49 genes related to ethylene, and 13 genes related to auxin. Expression profiles of ABA and GA related genes was consistent with the higher GA and lower ABA content in the mutants compared with HY52 after 12 h and 24 h imbibition. In addition, many DEGs involved in carbohydrate and lipid metabolism, amino acid metabolism, and glutathione metabolism pathway were also identified. There were 5 carbohydrate metabolism related genes (GPT) and 4 lipid metabolism related genes. In addition, differentially regulated circadian rhythm pathways were found to involve in the process of peanut seed dormancy release. These results suggested that the regulation of dormancy maintenance and release was more complicated than phytohormone balance.

Key words: peanut, dormancy maintenance, dormancy release, transcriptome, plant hormone, amino acid metabolism

Fig. 1

Dormancy difference and GA, ABA content of HY52, M23, and M67 after imbibition at 12 h and 24 h A: germination rate of dormant peanut variety HY52, weak dormant accessions M23 and M67, B-D: GA content, ABA content and ABA/GA of HY52, M23, and M67 after imbibition at 0, 12, and 24 h, respectively. GA: gibberellin; ABA: abscisic acid; HY52: Huayu 52. Asterisks indicate significant differences compared to HY52 by one-way ANOVA (* P<0.05, ** P<0.01, and *** P<0.001)."

Table 1

Summary of RNA-seq data collected from dormant variety Huayu 52 and weak dormant accessions M23 and M67"

样品名称
Sample name
原始读长
Raw reads
有效读长
Clean reads
有效碱基
Clean bases (Gb)
有效读长的比例
Valid ratio (reads) (%)
基因组上的比对率
Mapped ratio (%)
≥Q30 (%) GC含量
GC content (%)
HY52_0_1 47,336,764 46,882,472 7.03 99.04 92.15 94.54 46.00
HY52_0_2 40,239,562 39,850,56 5.98 99.03 92.52 96.56 45.50
HY52_0_3 42,126,764 41,757,916 6.26 99.12 92.29 94.37 47.00
M23_0_1 53,524,396 47,595,296 7.14 88.92 84.53 90.44 48.50
M23_0_2 54,811,458 53,791,824 8.07 98.14 91.70 96.29 48.00
M23_0_3 58,964,636 58,493,438 8.77 99.20 92.87 96.57 45.50
M67_0_1 44,573,54 44,010,372 6.60 98.74 92.02 95.24 47.00
M67_0_2 43,794,954 43,380,290 6.51 99.05 91.63 92.85 45.50
M67_0_3 43,654,578 43,168,590 6.48 98.89 92.05 93.96 46.00
HY52_12_1 43,666,144 43,006,610 6.45 98.49 92.15 95.24 49.00
HY52_12_2 40,974,886 40,618,232 6.09 99.13 92.86 93.45 46.00
HY52_12_3 48,252,204 47,774,688 7.17 99.01 92.33 94.51 45.50
M23_12_1 44,263,360 43,728,20 6.56 98.79 92.87 94.23 47.00
M23_12_2 44,207,630 43,791,190 6.57 99.06 92.59 94.40 46.00
M23_12_3 57,707,210 57,167,752 8.58 99.07 93.87 96.48 46.50
M67_12_1 47,514,726 46,870,288 7.03 98.64 92.41 95.52 47.00
M67_12_2 47,016,098 46,486,226 6.97 98.87 92.85 94.35 45.00
M67_12_3 41,492,948 41,145,894 6.17 99.16 92.88 93.62 45.00
HY52_24_1 51,701,800 50,178,368 7.53 97.05 93.48 96.37 47.50
HY52_24_2 39,391,916 39,016,270 5.85 99.05 92.14 93.33 46.50
HY52_24_3 48,847,594 48,142,426 7.22 98.56 93.28 96.44 47.00
M23_24_1 42,599,196 41,768,316 6.27 98.05 92.71 94.42 46.00
M23_24_2 63,130,436 62,578,018 9.39 99.12 93.84 95.84 45.00
M23_24_3 60,429,598 59,883,810 8.98 99.10 94.47 96.12 46.50
M67_24_1 44,066,802 43,632,302 6.54 99.01 94.07 95.96 47.50
M67_24_2 41,088,448 40,772,706 6.12 99.23 94.22 96.06 45.50
M67_24_3 42,584,300 42,214,250 6.33 99.13 93.06 92.79 45.00

Table 2

Functional annotation of full-length transcriptome in Huayu 52"

数据库
Database
总基因簇
Total_unigene
KOG数据库
KOG database
KEGG数据库
KEGG database
NR数据库
NR database
SwissProt数据库
SwissProt
database
GO数据库
GO database
注释基因总数
Overall_
annotated
Gene_Number 47,697 25,840 19,192 43,623 33,161 19,468 43,930
Annotation_Ratio 54.18% 40.24% 91.46% 69.52% 40.82% 92.10%

Fig. 2

Comparison and Venn diagram of differentially expressed genes in nine treatments HY52: Huayu 52; DEGs: differentially expressed genes."

Fig. 3

Enriched profiles of differentially expressed genes (DEGs) during peanut seed imbibition period Profiles of HY52 (A) and M67 (C) were clustered into two groups, namely Up (upregulated) and Bi (biphasic expression pattern), however, M23 (B) were clustered into three groups, namely Up (upregulated), Down (downregulated), and Bi (biphasic expression pattern). Profile numbers are indicated in the top left-hand corner, and the corresponding P-values for each profile are shown in the bottom left-hand corner. The number of DEGs with each profile is shown in the brackets. HY52: Huayu 52."

Fig. 4

GO enrichment of the DEGs during peanut dormancy maintenance period HY52: Huayu 52."

Fig. 5

KEGG enrichment of DEGs during peanut dormancy maintenance period HY52: Huayu 52."

Fig. 6

GO enrichment of the DEGs during peanut dormancy release period"

Fig. 7

KEGG enrichment analysis of DEGs during peanut dormancy release period"

Fig. 8

DEGs involved in plant hormone biosynthesis, metabolism and signal transduction in dormant variety HY52, and weak dormant accession M67 in the process of imbibition A: the diagram of biosynthesis, metabolism, and signal transduction in ABA, GA, ethylene, and auxin; B: the heatmaps of the relative expression patterns of DEGs related to plant hormones. HY52: Huayu 52."

Fig. 9

DEGs involved in synthesis and metabolism of carbohydrate and lipid in dormant variety HY52 and weak dormant accession M67 in the process of imbibition A: the relative expression patterns of DEGs related to lipid metabolism displayed by heatmap; B: the relative expression patterns of DEGs related to carbohydrate synthesis and metabolism displayed by heat map. HY52: Huayu 52; DEGs: differentially expressed genes."

Fig. 10

Heatmap showed the expression patterns of DEGs in the top 20 GO terms related to plant hormone and stress generated from HY52_12 vs M67_12 (A) and HY52_24 vs M67_24 (B), respectively HY52: Huayu 52."

[1] Hilhorst H W. Standardizing seed dormancy research. Methods Mol Biol, 2011, 773: 43-52.
doi: 10.1007/978-1-61779-231-1_3 pmid: 21898248
[2] Baskin J M, Baskin C C. A classification system for seed dormancy. Seed Sci Res, 2007, 14: 1-16.
doi: 10.1079/SSR2003150
[3] Fenner M, Thompson K, The Ecology of Seeds. New York: Cambridge University Press, 2005. pp 99-104.
[4] Wang M L, Wang H, Zhao C, Tonnis B, Tallury S, Wang X, Clevenger J, Guo B. Identification of QTLs for seed dormancy in cultivated peanut using a recombinant inbred line mapping population. Plant Mol Biol Rep, 2021, 40: 208-217.
doi: 10.1007/s11105-021-01315-5
[5] 胡晓辉, 崔凤高, 张胜忠, 苗华荣, 张智猛, 陈静. 花生种子休眠特异突变材料的创制及理化因素研究. 花生学报, 2018, 47(1): 33-37.
Hu X H, Cui F G, Zhang S Z, Miao H R, Zhang Z M, Chen J. Study on the creation and physicochemical factors of peanut seed dormancy mutant. J Peanut Sci, 2018, 47(1): 33-37. (in Chinese with English abstract)
[6] Shi J, Shi J, Liang W, Zhang D. Integrating GWAS and transcriptomics to identify genes involved in seed dormancy in rice. Theor Appl Genet, 2021, 134: 3553-3562.
doi: 10.1007/s00122-021-03911-1 pmid: 34312681
[7] Finkelstein R, Reeves W, Ariizumi T, Steber C. Molecular aspects of seed dormancy. Annu Rev Plant Biol, 2008, 59: 387-415.
doi: 10.1146/annurev.arplant.59.032607.092740 pmid: 18257711
[8] Sondheimer E, Tzou D S, GalsonE C. Abscisic acid levels and seed dormancy. Plant Physiol, 1968, 43: 1443-1447.
doi: 10.1104/pp.43.9.1443 pmid: 16656935
[9] Kallio P, Piiroinen P. Effect of gibberellin on the termination of dormancy in some seeds. Nature, 1959, 183: 1830-1831.
doi: 10.1038/1831830a0
[10] Nee G, Xiang Y, Soppe W J. The release of dormancy, a wake-up call for seeds to germinate. Curr Opin Plant Biol, 2017, 35: 8-14.
doi: S1369-5266(16)30133-9 pmid: 27710774
[11] Kucera B, Cohn M A, Leubner-Metzger G. Plant hormone interactions during seed dormancy release and germination. Seed Sci Res, 2007, 15: 281-307.
doi: 10.1079/SSR2005218
[12] Zhang M, Zeng Q, Liu H, Qi F, Sun Z, Miao L, Li X, Li C, Liu D, Guo J, Zhang M, Xu J, Shi L, Tian M, Dong W, Huang B, Zhang X. Identification of a stable major QTL for fresh-seed germination on chromosome Arahy. 04 in cultivated peanut (Arachis hypogaea L.). Crop J, 2022, 10: 1767-1773.
doi: 10.1016/j.cj.2022.03.012
[13] 郝西, 张俊, 刘娟, 臧秀旺, 董文召, 汤丰收. 不同花生品种种子休眠性鉴定. 种子, 2018, 37(8): 1-3.
Hao X, Zhang J, Liu J, Zang X W, Dong W Z, Tang F S. Identification of seed dormancy of diffident varieties. Seed, 2018, 37(8): 1-3. (in Chinese with English abstract)
[14] 任明刚, 何大智, 冯明友, 李婵, 杨如英, 张超, 穆航. 贵州78份地方花生品种的休眠性及相关分析. 种子, 2020, 39(11): 55-58.
Ren M G, He D Z, Feng M Y, Li C, Yang R Y, Zhang C, Mu H. Dormancy and correlation analysis of 78 local peanut varieties in Guizhou. Seed, 2020, 39(11): 55-58 (in Chinese with English abstract).
[15] Xie K, Bai J, Yang Y Y, Duan N B, Ma Y M, Guo T, Yao F Y, Ding H F. The RNA-seq transcriptome analysis identified genes related to rice seed dormancy. Biol Plant, 2019, 63: 308-313.
doi: 10.32615/bp.2019.035
[16] Han Z, Wang B, Tian L, Wang S, Zhang J, Guo S, Zhang H, Xu L, Chen Y. Comprehensive dynamic transcriptome analysis at two seed germination stages in maize (Zea mays L.). Physiol Plant, 2020, 168: 205-217.
[17] Li X, Qiao H, Wang Z, Han B, Xing Y, Yang Y. A Comparative transcriptome analysis reveals new insights into pre-harvest sprouting (PHS) in wheat. Res Square, 2021, DOI: 10.21203/rs.3.rs-910461/v1.
doi: 10.21203/rs.3.rs-910461/v1
[18] Park M, Choi W, Shin S Y, Moon H, Lee D, Gho Y S, Jung K H, Jeon J S, Shin C. Identification of genes and microRNAs affecting pre-harvest sprouting in rice(Oryza sativa L.)by transcriptome and small RNAome analyses. Front Plant Sci, 2021, 12: 727302.
doi: 10.3389/fpls.2021.727302
[19] Xu P, Tang G, Cui W, Chen G, Ma C L, Zhu J, Li P, Shan L, Liu Z, Wan S. Transcriptional differences in peanut (Arachis hypogaea L.)seeds at the freshly harvested, after-ripening and newly germinated seed stages: insights into the regulatory networks of seed dormancy release and germination. PLoS One, 2020, 15: e0219413.
[20] Zhang J, Qian J Y, Bian Y H, Liu X, Wang C L. Transcriptome and metabolite conjoint analysis reveals the seed dormancy release process in Callery Pear. Int J Mol Sci, 2022, 23: 2186.
doi: 10.3390/ijms23042186
[21] Tai L, Wang H J, Xu X J, Sun W H, Ju L, Liu W T, Li W Q, Sun J, Chen K M. Pre-harvest sprouting in cereals: genetic and biochemical mechanisms. J Exp Bot, 2021, 72: 2857-2876.
doi: 10.1093/jxb/erab024 pmid: 33471899
[22] Bertioli D J, Jenkins J, Clevenger J, Dudchenko O, Gao D, Seijo G, Leal-Bertioli S C M, Ren L, Farmer A D, Pandey M K, Samoluk S S, Abernathy B, Agarwal G, Ballen-Taborda C, Cameron C, Campbell J, Chavarro C, Chitikineni A, Chu Y, Dash S, El Baidouri M, Guo B, Huang W, Kim K D, Korani W, Lanciano S, Lui C G, Mirouze M, Moretzsohn M C, Pham M, Shin J H, Shirasawa K, Sinharoy S, Sreedasyam A, Weeks N T, Zhang X, Zheng Z, Sun Z, Froenicke L, Aiden E L, Michelmore R, Varshney R K, Holbrook C C, Cannon E K S, Scheffler B E, Grimwood J, Ozias-Akins P, Cannon S B, Jackson S A, Schmutz J. The genome sequence of segmental allotetraploid peanut Arachis hypogaea. Nat Genet, 2019, 51: 877-884.
doi: 10.1038/s41588-019-0405-z pmid: 31043755
[23] Ernst J, Bar-Joseph Z. STEM: a tool for the analysis of short time series gene expression data. BMC Bioinformatics, 2006, 7: 191.
pmid: 16597342
[24] Liu D, Yu H L, Li F L, Guo H H. An analysis of dormancy and dormancy release in Taxus chinensis var. mairei seeds. Seed Sci Technol, 2011, 39: 29-43.
doi: 10.15258/sst
[25] Graeber K, Nakabayashi K, Miatton E, Leubner-Metzger G, Soppe W J. Molecular mechanisms of seed dormancy. Plant Cell Environ, 2012, 35: 1769-1786.
doi: 10.1111/pce.2012.35.issue-10
[26] Ali-Rachedi S, Bouinot D, Wagner M H, Bonnet M, Sotta B, Grappin P, Jullien M. Changes in endogenous abscisic acid levels during dormancy release and maintenance of mature seeds: studies with the Cape Verde Islands ecotype, the dormant model of Arabidopsis thaliana. Planta, 2004, 219: 479-488.
doi: 10.1007/s00425-004-1251-4 pmid: 15060827
[27] Cadman C S, Toorop P E, Hilhorst H W, Finch-Savage W E. Gene expression profiles of Arabidopsis Cvi seeds during dormancy cycling indicate a common underlying dormancy control mechanism. Plant J, 2006, 46: 805-822.
doi: 10.1111/tpj.2006.46.issue-5
[28] Finch-Savage W E, Leubner-Metzger G. Seed dormancy and the control of germination. New Phytol, 2006, 171: 501-523.
doi: 10.1111/j.1469-8137.2006.01787.x pmid: 16866955
[29] 崔维佩, 唐桂英, 徐平丽, 李鹏祥, 朱洁琼, 单雷. 花生种子萌发过程中内源激素含量的变化. 中国油料作物学报, 2020, 42: 869-877.
Cui W P, Tang G Y, Xu P L, Li P X, Zhu J Q, Shan L. Changes of endogenous hormone content in peanut seeds during germination. Chin J Oil Crop Sci, 2020, 42: 869-877. (in Chinese with English abstract)
[30] Grappin P, Bouinot D, Sotta B, Miginiac E, Jullien M. Control of seed dormancy in Nicotiana plumbaginifolia: post-imbibition abscisic acid synthesis imposes dormancy maintenance. Planta, 2000, 210: 279-285.
doi: 10.1007/PL00008135 pmid: 10664134
[31] Shu K, Liu X D, Xie Q, He Z H. Two faces of one seed: hormonal regulation of dormancy and germination. Mol Plant, 2016, 9: 34-45.
doi: S1674-2052(15)00356-1 pmid: 26343970
[32] Yang B, Cheng J, Wang J, Cheng Y, He Y, Zhang H, Wang Z. Physiological characteristics of cold stratification on seed dormancy release in rice. Plant Growth Regul, 2019, 89: 131-141.
doi: 10.1007/s10725-019-00516-z
[33] Merlot S, Gosti F, Guerrier D, Vavasseur A, Giraudat J. The ABI1 and ABI2 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signalling pathway. Plant J, 2001, 25: 295-303.
pmid: 11208021
[34] Lee S, Cheng H, King K E, Wang W, He Y, Hussain A, Lo J, Harberd N P, Peng J. Gibberellin regulates Arabidopsis seed germination via RGL2, a GAI/RGA-like gene whose expression is up-regulated following imbibition. Genes Dev, 2002, 16: 646-658.
doi: 10.1101/gad.969002
[35] Ramaih S, Guedira M, Paulsen G M. Relationship of indoleacetic acid and tryptophan to dormancy and preharvest sprouting of wheat. Funct Plant Biol, 2003, 30: 939-945.
doi: 10.1071/FP03113 pmid: 32689078
[36] Bai B, Novak O, Ljung K, Hanson J, Bentsink L. Combined transcriptome and translatome analyses reveal a role for tryptophan-dependent auxin biosynthesis in the control of DOG1-dependent seed dormancy. New Phytol, 2018, 217: 1077-1085.
doi: 10.1111/nph.14885 pmid: 29139127
[37] Pellizzaro A, Neveu M, Lalanne D, Vu B L, Kanno Y, Seo M, Leprince O, Buitink J. A role for auxin signaling in the acquisition of longevity during seed maturation. New Phytol, 2020, 225: 284-296.
doi: 10.1111/nph.16150 pmid: 31461534
[38] Preston J, Tatematsu K, Kanno Y, Hobo T, Kimura M, Jikumaru Y, Yano R, Kamiya Y, Nambara E. Temporal expression patterns of hormone metabolism genes during imbibition of Arabidopsis thaliana seeds: a comparative study on dormant and non-dormant accessions. Plant Cell Physiol, 2009, 50: 1786-1800.
doi: 10.1093/pcp/pcp121 pmid: 19713425
[39] Ayele B T, Ozga J A, Wickramarathna A D, Reinecke D M. Gibberellin metabolism and transport during germination and young seedling growth of pea (Pisum sativum L.). J Plant Growth Regul, 2011, 31: 235-252.
doi: 10.1007/s00344-011-9234-8
[40] Liu A, Gao F, Kanno Y, Jordan M C, Kamiya Y, Seo M, Ayele B T. Regulation of wheat seed dormancy by after-ripening is mediated by specific transcriptional switches that induce changes in seed hormone metabolism and signaling. PLoS One, 2013, 8: e56570.
doi: 10.1371/journal.pone.0056570
[41] Fait A, Angelovici R, Less H, Ohad I, Urbanczyk-Wochniak E, Fernie A R, Galili G. Arabidopsis seed development and germination is associated with temporally distinct metabolic switches. Plant Physiol, 2006, 142: 839-854.
doi: 10.1104/pp.106.086694
[42] Rosental L, Nonogaki H, Fait A. Activation and regulation of primary metabolism during seed germination. Seed Sci Res, 2014, 24: 1-15.
doi: 10.1017/S0960258513000391
[43] Pandey M K, Pandey A K, Kumar R, Nwosu C V, Guo B, Wright G C, Bhat R S, Chen X, Bera S K, Yuan M, Jiang H, Faye I, Radhakrishnan T, Wang X, Liang X, Liao B, Zhang X, Varshney R K, Zhuang W. Translational genomics for achieving higher genetic gains in groundnut. Theor Appl Genet, 2020, 133: 1679-1702.
doi: 10.1007/s00122-020-03592-2 pmid: 32328677
[44] Ullrich S E. Barley: Production, Improvement, and Uses. Chichester: John Wiley & Sons, 2010. p 137.
[45] Bryan A, Joseph L, Bennett J A, Jacobson H I, Andersen T T. Design and synthesis of biologically active peptides: a ‘tail’ of amino acids can modulate activity of synthetic cyclic peptides. Peptides, 2011, 32: 2504-2510.
doi: 10.1016/j.peptides.2011.10.007
[46] Sato K, Yamane M, Yamaji N, Kanamori H, Tagiri A, Schwerdt J G, Fincher G B, Matsumoto T, Takeda K, Komatsuda T. Alanine aminotransferase controls seed dormancy in barley. Nat Commun, 2016, 7: 11625.
doi: 10.1038/ncomms11625 pmid: 27188711
[47] McClung C R. Plant circadian rhythms. Plant Cell, 2006, 18: 792-803.
doi: 10.1105/tpc.106.040980 pmid: 16595397
[48] Penfield S, Hall A. A role for multiple circadian clock genes in the response to signals that break seed dormancy in Arabidopsis. Plant Cell, 2009, 21: 1722-1732.
doi: 10.1105/tpc.108.064022 pmid: 19542296
[1] HU Mei-Ling, ZHI Chen-Yang, XUE Xiao-Meng, WU Jie, WANG Jin, YAN Li-Ying, WANG Xin, CHEN Yu-Ning, KANG Yan-Ping, WANG Zhi-Hui, HUAI Dong-Xin, JIANG Hui-Fang, LEI Yong, LIAO Bo-Shou. Establishment of near-infrared reflectance spectroscopy model for predicting sucrose content of single seed in peanut [J]. Acta Agronomica Sinica, 2023, 49(9): 2498-2504.
[2] HU Xin, LUO Zheng-Ying, LI Chun-Jia, WU Zhuan-Di, LI Xu-Juan, LIU Xin-Long. Comparative transcriptome analysis of elite ‘ROC’ sugarcane parents for exploring genes involved in Sporisorium scitamineum infection by using Illumina- and SMRT-based RNA-seq [J]. Acta Agronomica Sinica, 2023, 49(9): 2412-2432.
[3] XU Yang, ZHANG Dai, KANG Tao, WEN Sai-Qun, ZHANG Guan-Chu, DING Hong, GUO Qing, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of salt stress on ion dynamics and the relative expression level of salt tolerance genes in peanut seedlings [J]. Acta Agronomica Sinica, 2023, 49(9): 2373-2384.
[4] CHEN Li, WANG Jing, QIU Xiao, SUN Hai-Lian, ZHANG Wen-Hao, WANG Tian-Zuo. Differences of physiological responses and transcriptional regulation of alfalfa with different drought tolerances under drought stresses [J]. Acta Agronomica Sinica, 2023, 49(8): 2122-2132.
[5] HUANG Li, CHEN Wei-Gang, LI Wei-Tao, YU Bo-Lun, GUO Jian-Bin, ZHOU Xiao-Jing, LUO Huai-Yong, LIU Nian, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Identification of major QTLs for nodule formation in peanut [J]. Acta Agronomica Sinica, 2023, 49(8): 2097-2104.
[6] LI Xing, YANG Hui, LUO Lu, LI Hua-Dong, ZHANG Kun, ZHANG Xiu-Rong, LI Yu-Ying, YU Hai-Yang, WANG Tian-Yu, LIU Jia-Qi, WANG Yao, LIU Feng-Zhen, WAN Yong-Shan. QTLs mapping for single-seed weight of cultivated peanut [J]. Acta Agronomica Sinica, 2023, 49(8): 2160-2170.
[7] LI Ling-Yu, ZHOU Qi-Rui, LI Yang, ZHANG An-Min, WANG Bei-Bei, MA Shang-Yu, FAN Yong-Hui, HUANG Zheng-Lai, ZHANG Wen-Jing. Transcriptome analysis of exogenous 6-BA in regulating young spike development of wheat after low temperature at booting stage [J]. Acta Agronomica Sinica, 2023, 49(7): 1808-1817.
[8] ZHANG Xiao-Hong, PENG Qiong, YAN Zheng. Transcriptome sequencing analysis of different sweet potato varieties under salt stress [J]. Acta Agronomica Sinica, 2023, 49(5): 1432-1444.
[9] TAO Shun-Yu, WU Bei, LIU Nian, LUO Huai-Yong, HUANG Li, ZHOU Xiao-Jing, CHEN Wei-Gang, GUO Jian-Bin, YU Bo-Lun, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Development and employment of InDel marker in peanut QTL mapping of oil content [J]. Acta Agronomica Sinica, 2023, 49(5): 1222-1230.
[10] SUN Quan-Xi, YUAN Cui-Ling, MOU Yi-Fei, YAN Cai-Xia, ZHAO Xiao-Bo, WANG Juan, WANG Qi, SUN Hui, LI Chun-Juan, SHAN Shi-Hua. Genome-wide identification and expression analysis of SWEET genes from peanut genomes [J]. Acta Agronomica Sinica, 2023, 49(4): 938-954.
[11] JI Hong-Chang, HU Chang-Li, QIU Xiao-Chen, WU Lan-Rong, LI Jing-Jing, LI Xin, LI Xiao-Ting, LIU Yu-Han, TANG Yan-Yan, ZHANG Xiao-Jun, WANG Jing-Shan, QIAO Li-Xian. High-throughput phenotyping models for quality traits in peanut kernels [J]. Acta Agronomica Sinica, 2023, 49(3): 869-876.
[12] LIU Jun-Hua, WU Zheng-Feng, DANG Yan-Xue, YU Tian-Yi, ZHENG Yong-Mei, WAN Shu-Bo, WANG Cai-Bin, LI Lin. Effects of density on population quality and yield of peanut with different plant types under the mode of single-seed precision sowing [J]. Acta Agronomica Sinica, 2023, 49(2): 459-471.
[13] ZHU Ji-Jie, WANG Shi-Jie, ZHAO Hong-Xia, JIA Xiao-Yun, LI Miao, WANG Guo-Yin. Transcriptome analysis of different cotton varieties’ leaves in response to chemical defoliant agent thidiazuron under field conditions [J]. Acta Agronomica Sinica, 2023, 49(10): 2705-2716.
[14] GUO Jian-Bin, CHENG Liang-Qiang, LI Wei-Tao, LIU Nian, LUO Huai-Yong, DING Ying-Bin, YU Bo-Lun, CHEN Wei-Gang, HUANG Li, ZHOU Xiao-Jing, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Correlation analysis of sucrose content with protein and oil content and QTL mapping of sucrose content in peanut [J]. Acta Agronomica Sinica, 2023, 49(10): 2698-2704.
[15] ZOU Xiao-Xia, LIN Yi-Min, ZHAO Ya-Fei, LIU Yan, LIU Juan, WANG Yue-Fu, WANG Wei- Hua. Effects of calcium application on the distribution of photosynthetic carbon in plant-soil system at different peanut pod development stages [J]. Acta Agronomica Sinica, 2023, 49(1): 239-248.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[2] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[3] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[4] Wang Yiqun. Infection of Rhizobia to Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 32 -35 .
[5] KE Li-Ping;ZHENG Tao;WU Xue-Long;HE Hai-Yan;CHEN Jin-Qing. Analysis of Self-Incompatibility Locus Gene in Brassica napus[J]. Acta Agron Sin, 2008, 34(05): 764 -769 .
[6] CUI Xiu-Hui. Male Sterility Induced by Chemical Hybridizing Agent SQ-1 in Common Millet[J]. Acta Agron Sin, 2008, 34(01): 106 -110 .
[7] A JIA La-Tie;ZENG Long-Jun;XUE Da-Wei;HU Jiang;ZENG Da-Li;GAO Zhen-Yu;GUO Long-Biao;LI Shi-Gui;QIAN Qian
. QTL Analysis for Chlorophyll Content in Four Grain-Filling Stage in Rice[J]. Acta Agron Sin, 2008, 34(01): 61 -66 .
[8] YANG Wen-Xiong;YANG Fang-Ping;LIANG Dan;HE Zhong-Hu;SHANG Xun-Wu;XIA Xian-Chun. Molecular Characterization of Slow-Rusting Genes Lr34/Yr18 in Chinese Wheat Cultivars[J]. Acta Agron Sin, 2008, 34(07): 1109 -1113 .
[9] WANG Ying;WU Cun-Xiang;ZHANG Xue-Ming;WANG Yun-Peng;HAN Tian-Fu. Effects of Soybean Major Maturity Genes under Different Photoperiods[J]. Acta Agron Sin, 2008, 34(07): 1160 -1168 .
[10] WANG Guo-Li;GUO Zhen-Fei. Effects of Phosphorus Nutrient on the Photosynthetic Characteristics in Rice Cultivars with Different Cold-Sensitivity[J]. Acta Agron Sin, 2007, 33(08): 1385 -1389 .